Abstract

We investigate the applicability of photonic crystal waveguides to high-resolution on-chip spectrometers. We argue that the figure of merit by which their performance should be gauged is not the group index bandwidth product, which photonic crystal waveguides are usually optimized for, but the working finesse, which relates to the maximum number of spectral lines resolvable by a slow-light spectrometer. Through numerical simulation, we show that a properly-optimized photonic crystal waveguide could form the basis of a spectrometer with a spectral resolution of 0.04 nm over a 12.5 nm bandwidth near 1550 nm and with a footprint six times smaller than a conventional spectrometer.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. K. Smit and C. Van Dam, “PHASAR-Based WDM-Devices: Principles, Design and Applications,” IEEE J. Quantum Electron.2(2), 236–250 (1996).
    [CrossRef]
  2. B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun.282(15), 3168–3171 (2009).
    [CrossRef]
  3. Z. J. Sun and K. A. McGreer, “Demultiplexer with 120 channels and 0.29-nm channel spacing,” IEEE Photon. Technol. Lett.10(1), 90–92 (1998).
    [CrossRef]
  4. B. B. C. Kyotoku, L. Chen, and M. Lipson, “Sub-nm resolution cavity enhanced microspectrometer,” Opt. Express18(1), 102–107 (2010).
    [CrossRef] [PubMed]
  5. C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 m,” Appl. Phys. Lett.67(17), 2448–2449 (1995).
    [CrossRef]
  6. S.-W. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, and T. Zhang, “Concept of a high-resolution miniature spectrometer using an integrated filter array,” Opt. Lett.32(6), 632–634 (2007).
    [CrossRef] [PubMed]
  7. Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express19(13), 12356–12364 (2011).
    [CrossRef] [PubMed]
  8. X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett.100(23), 231104 (2012).
    [CrossRef]
  9. P. B. Deotare, L. Kogos, Q. Quan, R. Ilic, and M. Loncar, “On-chip integrated spectrometer using nanobeam photonic crystal cavities,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM3B.4.
  10. W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “5 GHz Channel Spacing InP-Based 32-Channel Arrayed-Waveguide Grating,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWO2.
  11. Z. Shi and R. W. Boyd, “Slow-light enhanced spectrometers on chip,” Proc. SPIE8007,80071D (2011).
    [CrossRef]
  12. Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett.32(8), 915–917 (2007).
    [CrossRef] [PubMed]
  13. Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, Slow-light Fourier transform interferometer, Phys. Rev. Lett.99(24), 240801 (2007).
    [CrossRef]
  14. Z. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Am. B25(12), C136–C143 (2008).
    [CrossRef]
  15. R. Jacobsen, A. Lavrinenko, L. Frandsen, C. Peucheret, B. Zsigri, G. Moulin, J. Fage-Pedersen, and P. Borel, “Direct experimental and numerical determination of extremely high group indices in photonic crystal waveguides,” Opt. Express13(20), 7861–7871 (2005).
    [CrossRef] [PubMed]
  16. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express14(20), 9444–9450 (2006).
    [CrossRef] [PubMed]
  17. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett.34(7), 1072–1074 (2009).
    [CrossRef] [PubMed]
  18. J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun.3,1075 (2012).
    [CrossRef]
  19. S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt.12(10), 104004 (2010).
    [CrossRef]
  20. H. Lotfi, N. Granpayeh, and S. A. Schulz, “Photonic crystal waveguides with ultra-low group velocity,” Opt. Commun.285(10), 2743–2745 (2012).
    [CrossRef]
  21. F. Wang, J. S. Jensen, and O. Sigmund, “High-performance slow light photonic crystal waveguides with topology optimized or circular-hole based material layouts,” Photon. Nanostruct.: Fundam. Appl.10(4), 378–388 (2012).
    [CrossRef]
  22. Z. Shi and R. W. Boyd, “Fundamental limits to slow-light arrayed-waveguide-grating spectrometers,” Opt. Express21(6), 7793 (2013).
    [CrossRef] [PubMed]
  23. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
    [CrossRef]
  24. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides: Role of Fabrication Disorder and Photon Group Velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
    [CrossRef] [PubMed]
  25. L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express18(26), 27627–27638 (2010).
    [CrossRef]
  26. Available online at: www.st-andrews.ac.uk/microphotonics
  27. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001).
    [CrossRef] [PubMed]
  28. M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. OFaolain, and T. F. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B80(19), 195305 (2009).
    [CrossRef]
  29. J. Topolancik, B. Ilic, and Frank Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett.99(25), 253901(2007).
    [CrossRef]
  30. M. Patterson, S. Hughes, S. Combrié, N-V-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102(25), 253903 (2009).
    [CrossRef] [PubMed]

2013

2012

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett.100(23), 231104 (2012).
[CrossRef]

H. Lotfi, N. Granpayeh, and S. A. Schulz, “Photonic crystal waveguides with ultra-low group velocity,” Opt. Commun.285(10), 2743–2745 (2012).
[CrossRef]

F. Wang, J. S. Jensen, and O. Sigmund, “High-performance slow light photonic crystal waveguides with topology optimized or circular-hole based material layouts,” Photon. Nanostruct.: Fundam. Appl.10(4), 378–388 (2012).
[CrossRef]

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun.3,1075 (2012).
[CrossRef]

2011

2010

2009

M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. OFaolain, and T. F. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B80(19), 195305 (2009).
[CrossRef]

M. Patterson, S. Hughes, S. Combrié, N-V-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102(25), 253903 (2009).
[CrossRef] [PubMed]

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun.282(15), 3168–3171 (2009).
[CrossRef]

Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett.34(7), 1072–1074 (2009).
[CrossRef] [PubMed]

2008

2007

S.-W. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, and T. Zhang, “Concept of a high-resolution miniature spectrometer using an integrated filter array,” Opt. Lett.32(6), 632–634 (2007).
[CrossRef] [PubMed]

Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett.32(8), 915–917 (2007).
[CrossRef] [PubMed]

Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, Slow-light Fourier transform interferometer, Phys. Rev. Lett.99(24), 240801 (2007).
[CrossRef]

J. Topolancik, B. Ilic, and Frank Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett.99(25), 253901(2007).
[CrossRef]

2006

2005

R. Jacobsen, A. Lavrinenko, L. Frandsen, C. Peucheret, B. Zsigri, G. Moulin, J. Fage-Pedersen, and P. Borel, “Direct experimental and numerical determination of extremely high group indices in photonic crystal waveguides,” Opt. Express13(20), 7861–7871 (2005).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides: Role of Fabrication Disorder and Photon Group Velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
[CrossRef] [PubMed]

2001

1998

Z. J. Sun and K. A. McGreer, “Demultiplexer with 120 channels and 0.29-nm channel spacing,” IEEE Photon. Technol. Lett.10(1), 90–92 (1998).
[CrossRef]

1996

M. K. Smit and C. Van Dam, “PHASAR-Based WDM-Devices: Principles, Design and Applications,” IEEE J. Quantum Electron.2(2), 236–250 (1996).
[CrossRef]

1995

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 m,” Appl. Phys. Lett.67(17), 2448–2449 (1995).
[CrossRef]

Adibi, A.

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express19(13), 12356–12364 (2011).
[CrossRef] [PubMed]

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun.282(15), 3168–3171 (2009).
[CrossRef]

Askari, M.

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun.282(15), 3168–3171 (2009).
[CrossRef]

Baba, T.

Beggs, D. M.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt.12(10), 104004 (2010).
[CrossRef]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express18(26), 27627–27638 (2010).
[CrossRef]

M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. OFaolain, and T. F. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B80(19), 195305 (2009).
[CrossRef]

Borel, P.

Borel, P. I.

Bourderionnet, J.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun.3,1075 (2012).
[CrossRef]

Boyd, R. W.

Camacho, R. M.

Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, Slow-light Fourier transform interferometer, Phys. Rev. Lett.99(24), 240801 (2007).
[CrossRef]

Capmany, J.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun.3,1075 (2012).
[CrossRef]

Chamanzar, M.

Chen, L.

Chen, X.

Colman, P.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun.3,1075 (2012).
[CrossRef]

Combrié, S.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun.3,1075 (2012).
[CrossRef]

M. Patterson, S. Hughes, S. Combrié, N-V-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102(25), 253903 (2009).
[CrossRef] [PubMed]

De Rossi, A.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun.3,1075 (2012).
[CrossRef]

M. Patterson, S. Hughes, S. Combrié, N-V-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102(25), 253903 (2009).
[CrossRef] [PubMed]

Deotare, P. B.

P. B. Deotare, L. Kogos, Q. Quan, R. Ilic, and M. Loncar, “On-chip integrated spectrometer using nanobeam photonic crystal cavities,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM3B.4.

Dolfi, D.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun.3,1075 (2012).
[CrossRef]

Dudley, C. C.

Eftekhar, A. A.

Englund, D.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett.100(23), 231104 (2012).
[CrossRef]

Fage-Pedersen, J.

Frandsen, L.

Frandsen, L. H.

Gabet, R.

M. Patterson, S. Hughes, S. Combrié, N-V-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102(25), 253903 (2009).
[CrossRef] [PubMed]

Gan, X.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett.100(23), 231104 (2012).
[CrossRef]

Gao, Y.

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 m,” Appl. Phys. Lett.67(17), 2448–2449 (1995).
[CrossRef]

Gasulla, I.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun.3,1075 (2012).
[CrossRef]

Gauthier, D. J.

Granpayeh, N.

H. Lotfi, N. Granpayeh, and S. A. Schulz, “Photonic crystal waveguides with ultra-low group velocity,” Opt. Commun.285(10), 2743–2745 (2012).
[CrossRef]

Hamachi, Y.

Hatami, F.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett.100(23), 231104 (2012).
[CrossRef]

Hosseini, E. S.

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun.282(15), 3168–3171 (2009).
[CrossRef]

Howell, J. C.

Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, Slow-light Fourier transform interferometer, Phys. Rev. Lett.99(24), 240801 (2007).
[CrossRef]

Hughes, S.

M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. OFaolain, and T. F. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B80(19), 195305 (2009).
[CrossRef]

M. Patterson, S. Hughes, S. Combrié, N-V-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102(25), 253903 (2009).
[CrossRef] [PubMed]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides: Role of Fabrication Disorder and Photon Group Velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
[CrossRef] [PubMed]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

Hugonin, J. P.

Ilic, B.

J. Topolancik, B. Ilic, and Frank Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett.99(25), 253901(2007).
[CrossRef]

Ilic, R.

P. B. Deotare, L. Kogos, Q. Quan, R. Ilic, and M. Loncar, “On-chip integrated spectrometer using nanobeam photonic crystal cavities,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM3B.4.

Jacobsen, R.

Jaouën, Y.

M. Patterson, S. Hughes, S. Combrié, N-V-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102(25), 253903 (2009).
[CrossRef] [PubMed]

Jensen, J. S.

F. Wang, J. S. Jensen, and O. Sigmund, “High-performance slow light photonic crystal waveguides with topology optimized or circular-hole based material layouts,” Photon. Nanostruct.: Fundam. Appl.10(4), 378–388 (2012).
[CrossRef]

Jiang, W.

W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “5 GHz Channel Spacing InP-Based 32-Channel Arrayed-Waveguide Grating,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWO2.

Joannopoulos, J. D.

Johnson, S. G.

Kogos, L.

P. B. Deotare, L. Kogos, Q. Quan, R. Ilic, and M. Loncar, “On-chip integrated spectrometer using nanobeam photonic crystal cavities,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM3B.4.

Krauss, T. F.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt.12(10), 104004 (2010).
[CrossRef]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express18(26), 27627–27638 (2010).
[CrossRef]

M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. OFaolain, and T. F. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B80(19), 195305 (2009).
[CrossRef]

Kubo, S.

Kuipers, L.

Kuramochi, E.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

Kymissis, I.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett.100(23), 231104 (2012).
[CrossRef]

Kyotoku, B. B. C.

Lalanne, P.

Lavrinenko, A.

Lavrinenko, A. V.

Lehoucq, G.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun.3,1075 (2012).
[CrossRef]

Li, G. Z.

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 m,” Appl. Phys. Lett.67(17), 2448–2449 (1995).
[CrossRef]

Li, M.

Li, Q.

Lipson, M.

Liu, E. K.

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 m,” Appl. Phys. Lett.67(17), 2448–2449 (1995).
[CrossRef]

Liu, X. D.

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 m,” Appl. Phys. Lett.67(17), 2448–2449 (1995).
[CrossRef]

Lloret, J.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun.3,1075 (2012).
[CrossRef]

Loncar, M.

P. B. Deotare, L. Kogos, Q. Quan, R. Ilic, and M. Loncar, “On-chip integrated spectrometer using nanobeam photonic crystal cavities,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM3B.4.

Lotfi, H.

H. Lotfi, N. Granpayeh, and S. A. Schulz, “Photonic crystal waveguides with ultra-low group velocity,” Opt. Commun.285(10), 2743–2745 (2012).
[CrossRef]

Lourdudoss, S.

W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “5 GHz Channel Spacing InP-Based 32-Channel Arrayed-Waveguide Grating,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWO2.

Lu, W.

Mazoyer, S.

McGreer, K. A.

Z. J. Sun and K. A. McGreer, “Demultiplexer with 120 channels and 0.29-nm channel spacing,” IEEE Photon. Technol. Lett.10(1), 90–92 (1998).
[CrossRef]

Melloni, A.

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express18(26), 27627–27638 (2010).
[CrossRef]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt.12(10), 104004 (2010).
[CrossRef]

Momeni, B.

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express19(13), 12356–12364 (2011).
[CrossRef] [PubMed]

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun.282(15), 3168–3171 (2009).
[CrossRef]

Morichetti, F.

Moulin, G.

Notomi, M.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

O’Faolain, L.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt.12(10), 104004 (2010).
[CrossRef]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express18(26), 27627–27638 (2010).
[CrossRef]

OFaolain, L.

M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. OFaolain, and T. F. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B80(19), 195305 (2009).
[CrossRef]

Okamoto, K.

W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “5 GHz Channel Spacing InP-Based 32-Channel Arrayed-Waveguide Grating,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWO2.

Olsson, F.

W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “5 GHz Channel Spacing InP-Based 32-Channel Arrayed-Waveguide Grating,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWO2.

Patterson, M.

M. Patterson, S. Hughes, S. Combrié, N-V-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102(25), 253903 (2009).
[CrossRef] [PubMed]

M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. OFaolain, and T. F. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B80(19), 195305 (2009).
[CrossRef]

Pervez, N.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett.100(23), 231104 (2012).
[CrossRef]

Peucheret, C.

Quan, Q.

P. B. Deotare, L. Kogos, Q. Quan, R. Ilic, and M. Loncar, “On-chip integrated spectrometer using nanobeam photonic crystal cavities,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM3B.4.

Ramunno, L.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides: Role of Fabrication Disorder and Photon Group Velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
[CrossRef] [PubMed]

Sales, S.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun.3,1075 (2012).
[CrossRef]

Sancho, J.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun.3,1075 (2012).
[CrossRef]

Schulz, S.

M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. OFaolain, and T. F. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B80(19), 195305 (2009).
[CrossRef]

Schulz, S. A.

H. Lotfi, N. Granpayeh, and S. A. Schulz, “Photonic crystal waveguides with ultra-low group velocity,” Opt. Commun.285(10), 2743–2745 (2012).
[CrossRef]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt.12(10), 104004 (2010).
[CrossRef]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express18(26), 27627–27638 (2010).
[CrossRef]

Shi, Z.

Shinya, A.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

Sigmund, O.

F. Wang, J. S. Jensen, and O. Sigmund, “High-performance slow light photonic crystal waveguides with topology optimized or circular-hole based material layouts,” Photon. Nanostruct.: Fundam. Appl.10(4), 378–388 (2012).
[CrossRef]

Sipe, J. E.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides: Role of Fabrication Disorder and Photon Group Velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
[CrossRef] [PubMed]

Smit, M. K.

M. K. Smit and C. Van Dam, “PHASAR-Based WDM-Devices: Principles, Design and Applications,” IEEE J. Quantum Electron.2(2), 236–250 (1996).
[CrossRef]

Soares, F. M.

W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “5 GHz Channel Spacing InP-Based 32-Channel Arrayed-Waveguide Grating,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWO2.

Soltani, M.

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express19(13), 12356–12364 (2011).
[CrossRef] [PubMed]

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun.282(15), 3168–3171 (2009).
[CrossRef]

Spasenovic, M.

Sun, Z. J.

Z. J. Sun and K. A. McGreer, “Demultiplexer with 120 channels and 0.29-nm channel spacing,” IEEE Photon. Technol. Lett.10(1), 90–92 (1998).
[CrossRef]

Topolancik, J.

J. Topolancik, B. Ilic, and Frank Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett.99(25), 253901(2007).
[CrossRef]

Tran, N-V-Q.

M. Patterson, S. Hughes, S. Combrié, N-V-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102(25), 253903 (2009).
[CrossRef] [PubMed]

Van Dam, C.

M. K. Smit and C. Van Dam, “PHASAR-Based WDM-Devices: Principles, Design and Applications,” IEEE J. Quantum Electron.2(2), 236–250 (1996).
[CrossRef]

Vollmer, Frank

J. Topolancik, B. Ilic, and Frank Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett.99(25), 253901(2007).
[CrossRef]

Vudyasetu, P. K.

Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, Slow-light Fourier transform interferometer, Phys. Rev. Lett.99(24), 240801 (2007).
[CrossRef]

Wang, F.

F. Wang, J. S. Jensen, and O. Sigmund, “High-performance slow light photonic crystal waveguides with topology optimized or circular-hole based material layouts,” Photon. Nanostruct.: Fundam. Appl.10(4), 378–388 (2012).
[CrossRef]

Wang, H.

Wang, S.-W.

Watanabe, T.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

White, T. P.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt.12(10), 104004 (2010).
[CrossRef]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express18(26), 27627–27638 (2010).
[CrossRef]

M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. OFaolain, and T. F. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B80(19), 195305 (2009).
[CrossRef]

Xavier, S.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun.3,1075 (2012).
[CrossRef]

Xia, C.

Xia, Z.

Yegnanarayanan, S.

Yoo, S. J. B.

W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “5 GHz Channel Spacing InP-Based 32-Channel Arrayed-Waveguide Grating,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWO2.

Young, J. F.

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides: Role of Fabrication Disorder and Photon Group Velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
[CrossRef] [PubMed]

Zhang, T.

Zhao, C. Z.

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 m,” Appl. Phys. Lett.67(17), 2448–2449 (1995).
[CrossRef]

Zheng, W.

Zsigri, B.

Appl. Phys. Lett.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett.100(23), 231104 (2012).
[CrossRef]

C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 m,” Appl. Phys. Lett.67(17), 2448–2449 (1995).
[CrossRef]

IEEE J. Quantum Electron.

M. K. Smit and C. Van Dam, “PHASAR-Based WDM-Devices: Principles, Design and Applications,” IEEE J. Quantum Electron.2(2), 236–250 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

Z. J. Sun and K. A. McGreer, “Demultiplexer with 120 channels and 0.29-nm channel spacing,” IEEE Photon. Technol. Lett.10(1), 90–92 (1998).
[CrossRef]

J. Opt.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt.12(10), 104004 (2010).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Commun.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat. Commun.3,1075 (2012).
[CrossRef]

Opt. Commun.

H. Lotfi, N. Granpayeh, and S. A. Schulz, “Photonic crystal waveguides with ultra-low group velocity,” Opt. Commun.285(10), 2743–2745 (2012).
[CrossRef]

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun.282(15), 3168–3171 (2009).
[CrossRef]

Opt. Express

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001).
[CrossRef] [PubMed]

R. Jacobsen, A. Lavrinenko, L. Frandsen, C. Peucheret, B. Zsigri, G. Moulin, J. Fage-Pedersen, and P. Borel, “Direct experimental and numerical determination of extremely high group indices in photonic crystal waveguides,” Opt. Express13(20), 7861–7871 (2005).
[CrossRef] [PubMed]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express14(20), 9444–9450 (2006).
[CrossRef] [PubMed]

B. B. C. Kyotoku, L. Chen, and M. Lipson, “Sub-nm resolution cavity enhanced microspectrometer,” Opt. Express18(1), 102–107 (2010).
[CrossRef] [PubMed]

L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express18(26), 27627–27638 (2010).
[CrossRef]

Z. Xia, A. A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar, S. Yegnanarayanan, and A. Adibi, “High resolution on-chip spectroscopy based on miniaturized microdonut resonators,” Opt. Express19(13), 12356–12364 (2011).
[CrossRef] [PubMed]

Z. Shi and R. W. Boyd, “Fundamental limits to slow-light arrayed-waveguide-grating spectrometers,” Opt. Express21(6), 7793 (2013).
[CrossRef] [PubMed]

Opt. Lett.

Photon. Nanostruct.: Fundam. Appl.

F. Wang, J. S. Jensen, and O. Sigmund, “High-performance slow light photonic crystal waveguides with topology optimized or circular-hole based material layouts,” Photon. Nanostruct.: Fundam. Appl.10(4), 378–388 (2012).
[CrossRef]

Phys. Rev. B

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B72(16), 161318 (2005).
[CrossRef]

M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. OFaolain, and T. F. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B80(19), 195305 (2009).
[CrossRef]

Phys. Rev. Lett.

J. Topolancik, B. Ilic, and Frank Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett.99(25), 253901(2007).
[CrossRef]

M. Patterson, S. Hughes, S. Combrié, N-V-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett.102(25), 253903 (2009).
[CrossRef] [PubMed]

S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides: Role of Fabrication Disorder and Photon Group Velocity,” Phys. Rev. Lett.94(3), 033903 (2005).
[CrossRef] [PubMed]

Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, Slow-light Fourier transform interferometer, Phys. Rev. Lett.99(24), 240801 (2007).
[CrossRef]

Proc. SPIE

Z. Shi and R. W. Boyd, “Slow-light enhanced spectrometers on chip,” Proc. SPIE8007,80071D (2011).
[CrossRef]

Other

P. B. Deotare, L. Kogos, Q. Quan, R. Ilic, and M. Loncar, “On-chip integrated spectrometer using nanobeam photonic crystal cavities,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM3B.4.

W. Jiang, K. Okamoto, F. M. Soares, F. Olsson, S. Lourdudoss, and S. J. B. Yoo, “5 GHz Channel Spacing InP-Based 32-Channel Arrayed-Waveguide Grating,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWO2.

Available online at: www.st-andrews.ac.uk/microphotonics

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic (a), dispersion diagram (b) and group-index profile and calculated propagation loss (c) of a W1 Silicon photonic crystal waveguide designed to have a constant group index 〈ng〉 = 31.7 over a 14 nm bandwidth. Areas of the dispersion diagram shaded dark grey indicate modes of the bulk photonic crystal, whose first Brillouin Zone is shown in the inset. Modes above the light line (light grey shading) will leak energy out of the slab. Guided modes are labeled even (solid) or odd (dashed) based on their symmetry properties. The operating bandwidth of this device is indicated by the shaded area in (c). The distribution of |E|2 in the slow-light regime is shown in (d).

Fig. 2
Fig. 2

Group index bandwidth product (a), and working finesse (b) of PhCWs for different values of the radius r1, and lateral shift s1, of the holes adjacent to the line defect. The designs corresponding to the maximum GBP and maximum W are labeled ‘1’ and ‘2’, respectively.

Fig. 3
Fig. 3

Group-index profile and calculated propagation loss (a) and characteristic spectral resolution (b) of waveguides optimized for maximum GBP (1), and maximum working finesse W (2).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

W n g c α Δ ω .
α = c 1 γ ( k ) n g + c 2 ρ ( k ) n g 2 ,

Metrics