Abstract

We demonstrate theoretically that chirped dynamic gratings can be created in optical fibers through stimulated Brillouin scattering with frequency-chirped “signal” and “write” pulses. When the grating is interrogated with a third pulse of the opposite chirp, a compressed signal pulse is retrieved. This provides a method to regenerate stored pulses and enhance signal levels for communications applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett.33(9), 926–928 (2008).
    [CrossRef] [PubMed]
  2. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318(5857), 1748–1750 (2007).
    [CrossRef] [PubMed]
  3. S. Chin and L. Thévenaz, “Tunable photonic delay lines in optical fibers,” Laser Photon. Rev.6(6), 724–738 (2012).
    [CrossRef]
  4. Y. Dong, X. Bao, and L. Chen, “Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarization-maintaining photonic crystal fiber,” Opt. Lett.34(17), 2590–2592 (2009).
    [CrossRef] [PubMed]
  5. J. Sancho, N. Primerov, S. Chin, Y. Antman, A. Zadok, S. Sales, and L. Thévenaz, “Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers,” Opt. Express20(6), 6157–6162 (2012).
    [CrossRef] [PubMed]
  6. F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett.12(10), 847–849 (1987).
    [CrossRef] [PubMed]
  7. G. P. Agrawal, Nonlinear Optics, 5th Ed. (Academic Press, San Diego, 2013), Ch. 9.
  8. Z. Zhang, X. Zhou, L. Lan, and Y. Liu, “Performance analysis of optical buffering based on stimulated-Brillouin-scattering-induced acoustic excitation in an optical fiber,” Opt. Commun.285(24), 5378–5383 (2012).
    [CrossRef]
  9. Y. Ding, L. Bao, and J. Li, “Pulse compression effect based on stimulated Brillouin scattering light storage in optical fiber,” Optik (Stuttg.)122(24), 2172–2175 (2011).
    [CrossRef]
  10. J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, “The theory and design of chirp radars,” Bell Syst. Tech. J.39, 745–808 (1960).
  11. E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett.34(22), 3526–3528 (2009).
    [CrossRef] [PubMed]
  12. M. Baldo, G. E. Town, and M. Romagnoli, “Generation of highly chirped pulses in a diode-pumped optical fiber laser,” Opt. Commun.140(1-3), 19–22 (1997).
    [CrossRef]
  13. Y. Cao, P. Lu, Z. Yang, and W. Chen, “An efficient method of all-optical buffering with ultra-small core photonic crystal fibers,” Opt. Express16(18), 14142–14150 (2008).
    [CrossRef] [PubMed]
  14. R. Pant, C. G. Poulton, D. Y. Choi, H. Mcfarlane, S. Hile, E. B. Li, L. Thévenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express19(9), 8285–8290 (2011).
    [CrossRef] [PubMed]
  15. R. Pant, E. B. Li, C. G. Poulton, D. Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Observation of Brillouin dynamic grating in a photonic chip,” Opt. Lett.38(3), 305–307 (2013).
    [CrossRef] [PubMed]

2013 (1)

2012 (3)

S. Chin and L. Thévenaz, “Tunable photonic delay lines in optical fibers,” Laser Photon. Rev.6(6), 724–738 (2012).
[CrossRef]

J. Sancho, N. Primerov, S. Chin, Y. Antman, A. Zadok, S. Sales, and L. Thévenaz, “Tunable and reconfigurable multi-tap microwave photonic filter based on dynamic Brillouin gratings in fibers,” Opt. Express20(6), 6157–6162 (2012).
[CrossRef] [PubMed]

Z. Zhang, X. Zhou, L. Lan, and Y. Liu, “Performance analysis of optical buffering based on stimulated-Brillouin-scattering-induced acoustic excitation in an optical fiber,” Opt. Commun.285(24), 5378–5383 (2012).
[CrossRef]

2011 (2)

Y. Ding, L. Bao, and J. Li, “Pulse compression effect based on stimulated Brillouin scattering light storage in optical fiber,” Optik (Stuttg.)122(24), 2172–2175 (2011).
[CrossRef]

R. Pant, C. G. Poulton, D. Y. Choi, H. Mcfarlane, S. Hile, E. B. Li, L. Thévenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express19(9), 8285–8290 (2011).
[CrossRef] [PubMed]

2009 (2)

2008 (2)

2007 (1)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

1997 (1)

M. Baldo, G. E. Town, and M. Romagnoli, “Generation of highly chirped pulses in a diode-pumped optical fiber laser,” Opt. Commun.140(1-3), 19–22 (1997).
[CrossRef]

1987 (1)

1960 (1)

J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, “The theory and design of chirp radars,” Bell Syst. Tech. J.39, 745–808 (1960).

Albersheim, W. J.

J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, “The theory and design of chirp radars,” Bell Syst. Tech. J.39, 745–808 (1960).

Antman, Y.

Baldo, M.

M. Baldo, G. E. Town, and M. Romagnoli, “Generation of highly chirped pulses in a diode-pumped optical fiber laser,” Opt. Commun.140(1-3), 19–22 (1997).
[CrossRef]

Bao, L.

Y. Ding, L. Bao, and J. Li, “Pulse compression effect based on stimulated Brillouin scattering light storage in optical fiber,” Optik (Stuttg.)122(24), 2172–2175 (2011).
[CrossRef]

Bao, X.

Boyd, R. W.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Cao, Y.

Chen, L.

Chen, W.

Chin, S.

Choi, D. Y.

Darlington, S.

J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, “The theory and design of chirp radars,” Bell Syst. Tech. J.39, 745–808 (1960).

Ding, Y.

Y. Ding, L. Bao, and J. Li, “Pulse compression effect based on stimulated Brillouin scattering light storage in optical fiber,” Optik (Stuttg.)122(24), 2172–2175 (2011).
[CrossRef]

Dong, Y.

Eggleton, B. J.

Ferrari, A. C.

Gauthier, D. J.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

He, Z.

Hile, S.

Hotate, K.

Ippen, E. P.

Kelleher, E. J. R.

Klauder, J. R.

J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, “The theory and design of chirp radars,” Bell Syst. Tech. J.39, 745–808 (1960).

Lan, L.

Z. Zhang, X. Zhou, L. Lan, and Y. Liu, “Performance analysis of optical buffering based on stimulated-Brillouin-scattering-induced acoustic excitation in an optical fiber,” Opt. Commun.285(24), 5378–5383 (2012).
[CrossRef]

Li, E. B.

Li, J.

Y. Ding, L. Bao, and J. Li, “Pulse compression effect based on stimulated Brillouin scattering light storage in optical fiber,” Optik (Stuttg.)122(24), 2172–2175 (2011).
[CrossRef]

Liu, Y.

Z. Zhang, X. Zhou, L. Lan, and Y. Liu, “Performance analysis of optical buffering based on stimulated-Brillouin-scattering-induced acoustic excitation in an optical fiber,” Opt. Commun.285(24), 5378–5383 (2012).
[CrossRef]

Lu, P.

Luther-Davies, B.

Madden, S.

Madden, S. J.

Mcfarlane, H.

Ouellette, F.

Pant, R.

Popov, S. V.

Poulton, C. G.

Price, A. C.

J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, “The theory and design of chirp radars,” Bell Syst. Tech. J.39, 745–808 (1960).

Primerov, N.

Romagnoli, M.

M. Baldo, G. E. Town, and M. Romagnoli, “Generation of highly chirped pulses in a diode-pumped optical fiber laser,” Opt. Commun.140(1-3), 19–22 (1997).
[CrossRef]

Sales, S.

Sancho, J.

Song, K. Y.

Sun, Z.

Taylor, J. R.

Thévenaz, L.

Town, G. E.

M. Baldo, G. E. Town, and M. Romagnoli, “Generation of highly chirped pulses in a diode-pumped optical fiber laser,” Opt. Commun.140(1-3), 19–22 (1997).
[CrossRef]

Travers, J. C.

Yang, Z.

Zadok, A.

Zhang, Z.

Z. Zhang, X. Zhou, L. Lan, and Y. Liu, “Performance analysis of optical buffering based on stimulated-Brillouin-scattering-induced acoustic excitation in an optical fiber,” Opt. Commun.285(24), 5378–5383 (2012).
[CrossRef]

Zhou, X.

Z. Zhang, X. Zhou, L. Lan, and Y. Liu, “Performance analysis of optical buffering based on stimulated-Brillouin-scattering-induced acoustic excitation in an optical fiber,” Opt. Commun.285(24), 5378–5383 (2012).
[CrossRef]

Zhu, Z.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Zou, W.

Bell Syst. Tech. J. (1)

J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, “The theory and design of chirp radars,” Bell Syst. Tech. J.39, 745–808 (1960).

Laser Photon. Rev. (1)

S. Chin and L. Thévenaz, “Tunable photonic delay lines in optical fibers,” Laser Photon. Rev.6(6), 724–738 (2012).
[CrossRef]

Opt. Commun. (2)

Z. Zhang, X. Zhou, L. Lan, and Y. Liu, “Performance analysis of optical buffering based on stimulated-Brillouin-scattering-induced acoustic excitation in an optical fiber,” Opt. Commun.285(24), 5378–5383 (2012).
[CrossRef]

M. Baldo, G. E. Town, and M. Romagnoli, “Generation of highly chirped pulses in a diode-pumped optical fiber laser,” Opt. Commun.140(1-3), 19–22 (1997).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Optik (Stuttg.) (1)

Y. Ding, L. Bao, and J. Li, “Pulse compression effect based on stimulated Brillouin scattering light storage in optical fiber,” Optik (Stuttg.)122(24), 2172–2175 (2011).
[CrossRef]

Science (1)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science318(5857), 1748–1750 (2007).
[CrossRef] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Optics, 5th Ed. (Academic Press, San Diego, 2013), Ch. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Storage of a chirped signal pulse through the formation of a chirped acoustic grating with a similarly chirped “write” pulse. (b) Retrieval of compressed signal by interrogating grating with oppositely chirped “read” pulse.

Fig. 2
Fig. 2

Grating strength versus distance for gratings formed by chirped (blue) and unchirped (red) pulses. Note the greater localization of the grating formed with chirped pulses. The dotted lines demarcate the region occupied by the grating.

Fig. 3
Fig. 3

Grating phase for chirped (blue) and unchirped (red) pulses. The phase of the unchirped grating is constant. The dotted lines demarcate the region where the grating has finite amplitude.

Fig. 4
Fig. 4

Expanded view of the phase profile in the region where the grating has finite amplitude. A fit to the calculated profile confirms the creation of a quadratic phase.

Fig. 5
Fig. 5

Retrieved pulses after a 4 ns delay showing the significant compression achievable with a chirped Brillouin dynamic grating and “read” pulses of opposite chirp (blue curve). The output labeled (0,0,0) is simply the unused portion of an unchirped signal pulse. The input signal (dashed curve) is translated to the output by the 25 ns transit time.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

A 1 (z=0,t)= A 10 exp[ 1+i C 1 2 t 2 τ 1 2 ],
A 2 (z=L,t)= A 20 exp[ 1+i C 2 2 t 2 τ 2 2 ],
ω 1 = ω 0 +( C 1 / τ 1 2 )t,
ω 2 = ω 0 Ω B +( C 2 / τ 2 2 )t.
A 3 (z=L,t)= A 30 exp[ 1+i C 3 2 t 2 τ 3 2 ].
A 1 z + n c A 1 t = g B 2 A eff Q ˜ A 2 ,
A 2 z + n c A 2 t = g B 2 A eff Q ˜ A 1 ,
2 τ B Q ˜ t + Q ˜ = A 1 A 2 .
ΔK(z)=dϕ/dz,
ΔΛ(z) Λ = ΔK(z) K ,
A 1 z + n c A 1 t =i κ 1 Q A 2 α 2 A 1 +iγ( | A 1 | 2 +2 | A 2 | 2 ) A 1 ,
A 2 z + n c A 2 t =i κ 1 Q A 1 α 2 A 2 +iγ( | A 2 | 2 +2 | A 1 | 2 ) A 2 ,
Q t + v A Q z =[ 1 2 Γ B +i( Ω B Ω ) ]+i κ 2 A 1 A 2 ,
κ 1 = ω 0 γ e F p 2 F A 2nc ρ 0 F p 2 and κ 2 = ω 0 γ e F p 2 F A 2 c 2 v A F A 2 A eff

Metrics