Abstract

The nonlinear optical properties of single, double and multiple ZnO nanorods (NRs) were investigated by using a focused femtosecond (fs) laser beam. The excitation wavelength of the fs laser was intentionally chosen to be 754 nm at which the energy of two photons is slightly larger than that of the exciton ground state but smaller than the bandgap energy of ZnO. Second harmonic generation (SHG) or/and two-photon-induced luminescence (TPL) were observed and their dependences on excitation density were examined. For single ZnO NRs, only SHG was observed even at the highest excitation density we used in the experiments. The situation was changed when the joint point of two ZnO NRs perpendicular to each other was excited. In this case, TPL could be detected at low excitation densities and it increased rapidly with increasing excitation density. At the highest excitation density of ~15 MW/cm2, the intensity of the TPL became comparable to that of the SHG. For an ensemble of ZnO NRs packed closely, a rapid increase of TPL with a slope of more than 7.0 and a gradual saturation of SHG with a slope of ~0.34 were found at high excitation densities. Consequently, the nonlinear response spectrum was eventually dominated by the TPL at high excitation densities and the SHG appeared to be very weak. We interpret this phenomenon by considering both the difference in electric field distribution and the effect of heat accumulation. It is suggested that the electric field enhancement in double and multiple NRs plays a crucial role in determining the nonlinear response of the NRs. In addition, the reduction in the bandgap energy induced by the heat accumulation effect also leads to the significant change in nonlinear response. This explanation is supported by the calculation of the electric field distribution using the discrete dipole approximation method and the simulation of temperature rise in different ZnO NRs based on the finite element method.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Service, “Will UV lasers beat the blues?” Science276(5314), 895 (1997).
    [CrossRef]
  2. M. C. Newton, S. J. Leake, R. Harder, and I. K. Robinson, “Three-dimensional imaging of strain in a single ZnO nanorod,” Nat. Mater.9(2), 120–124 (2010).
    [CrossRef] [PubMed]
  3. P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun.103(8), 459–463 (1997).
    [CrossRef]
  4. O. Mondal and M. Pal, “Strong and unusual violet-blue emission in ring shaped ZnO nanocrystals,” J. Mater. Chem.21(45), 18354–18358 (2011).
    [CrossRef]
  5. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett.70(17), 2230–2232 (1997).
    [CrossRef]
  6. D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett.82(12), 2552–2555 (1999).
    [CrossRef]
  7. B. S. Zou, V. V. Volkov, and Z. L. Wang, “Optical properties of amorphous ZnO, CdO, and PbO nanoclusters in solution,” Chem. Mater.11(11), 3037–3043 (1999).
    [CrossRef]
  8. J. Shi, J. Chen, Z. Feng, T. Chen, X. Wang, P. Ying, and C. Li, “Time-resolved photoluminescence characteristics of subnanometer ZnO clusters confined in the micropores of zeolites,” J. Phys. Chem. B110(51), 25612–25618 (2006).
    [CrossRef] [PubMed]
  9. S. Wu, N. Yuan, H. Xu, X. Wang, and Z. A. Schelly, “Synthesis and bandgap oscillation of uncapped, ZnO clusters by electroporation of vesicles,” Nanotechnology17(18), 4713–4718 (2006).
    [CrossRef] [PubMed]
  10. D. Tainoff, B. Masenelli, O. Boisron, G. Guiraud, and P. Mélinon, “Crystallinity, stoichiometry, and luminescence of high quality ZnO nanoclusters,” J. Phys. Chem. C112(33), 12623–12627 (2008).
    [CrossRef]
  11. B. Jin and D. Wang, “Strong violet emission from zinc oxide dumbbell-like microrods and nanowires,” J. Lumin.132(8), 1879–1884 (2012).
    [CrossRef]
  12. Y. Yang, W. Guo, X. Wang, Z. Wang, J. Qi, and Y. Zhang, “Size dependence of dielectric constant in a single pencil-like ZnO nanowire,” Nano Lett.12(4), 1919–1922 (2012).
    [CrossRef] [PubMed]
  13. G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett.6(1), 501 (2011).
    [CrossRef] [PubMed]
  14. J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. D. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett.2(4), 279–283 (2002).
    [CrossRef]
  15. J. Zhang, A. Thurber, D. A. Tenne, J. W. Rasmussen, D. Wingett, C. Hanna, and A. Punnoose, “Enhanced dye fluorescence in novel dye–ZnO nanocomposites,” Adv. Funct. Mater.20(24), 4358–4363 (2010).
    [CrossRef]
  16. H. Guo, Z. Lin, Z. Feng, L. Lin, and J. Zhou, “White-light-emitting diode based on ZnO nanotubes,” J. Phys. Chem. C113(28), 12546–12550 (2009).
    [CrossRef]
  17. C. T. Chien, M. C. Wu, C. W. Chen, H. H. Yang, J. J. Wu, W. F. Su, C. S. Lin, and Y. F. Chen, “Polarization-dependent confocal Raman microscopy of an individual ZnO nanorod,” Appl. Phys. Lett.92(22), 223102 (2008).
    [CrossRef]
  18. J. Dai, Z. Fu, S. Lan, X. Wan, S. Tie, V. A. Trofimov, and T. M. Lysak, “Modified threshold of two-photon-pumped random lasing of ZnO nanorods by femtosecond laser ablation,” J. Appl. Phys.112(6), 063102 (2012).
    [CrossRef]
  19. S. Baskoutas and G. Bester, “Transition in the optical emission polarization of ZnO nanorods,” J. Phys. Chem. A115, 15862–15867 (2011).
    [PubMed]
  20. Z. Wang, X. F. Qian, J. Yin, and Z. K. Zhu, “Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route,” Langmuir20(8), 3441–3448 (2004).
    [CrossRef] [PubMed]
  21. J. W. Zhao, L. R. Qin, Z. D. Xiao, and L. D. Zhang, “Synthesis and characterization of novel flower-shaped ZnO nanostructures,” Mater. Chem. Phys.105(2-3), 194–198 (2007).
    [CrossRef]
  22. X. D. Gao, X. M. Li, and W. D. Yu, “Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex,” J. Phys. Chem. B109(3), 1155–1161 (2005).
    [CrossRef] [PubMed]
  23. B. E. Urban, P. B. Neogi, S. J. Butler, Y. Fujita, and A. Neogi, “Second harmonic imaging of plants tissues and cell implosion using two-photon process in ZnO nanoparticles,” J Biophotonics5(3), 283–291 (2012).
    [CrossRef] [PubMed]
  24. B. E. Urban, J. Lin, O. Kumar, K. Senthilkumar, Y. Fujita, and A. Neogi, “Optimization of nonlinear optical properties of ZnO micro and nanocrystals for biophotonics,” Opt. Mater. Express1(4), 658–669 (2011).
    [CrossRef]
  25. Y. L. Wu, S. Fu, A. I. Y. Tok, X. T. Zeng, C. S. Lim, L. C. Kwek, and F. C. Y. Boey, “A dual-colored bio-marker made of doped ZnO nanocrystals,” Nanotechnology19(34), 345605 (2008).
    [CrossRef] [PubMed]
  26. S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B77(11), 113311 (2008).
    [CrossRef]
  27. M. Chattopadhyay, P. Kumbhakar, C. S. Tiwary, A. K. Mitra, U. Chatterjee, and T. Kobayashi, “Three-photon-induced four-photon absorption and nonlinear refraction in ZnO quantum dots,” Opt. Lett.34(23), 3644–3646 (2009).
    [CrossRef] [PubMed]
  28. J. H. Lin, Y. J. Chen, H. Y. Lin, and W. F. Hsieh, “Two-photon resonance assisted huge nonlinear refraction and absorption in ZnO thin films,” J. Appl. Phys.97(3), 033526 (2005).
    [CrossRef]
  29. D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature,” Opt. Lett.30(24), 3377–3379 (2005).
    [CrossRef] [PubMed]
  30. G. P. Zhu, J. Zhu, C. X. Xu, X. Li, J. P. Liu, and Y. P. Cui, “Multi-photon induced ultraviolet emission from hexagram-shaped ZnO nanorods,” Appl. Phys., A Mater. Sci. Process.95(2), 381–385 (2009).
    [CrossRef]
  31. U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett.84(2), 170–172 (2004).
    [CrossRef]
  32. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008).
  33. H. D. Deng, G. C. Li, Q. F. Dai, M. Ouyang, S. Lan, V. A. Trofimov, and T. M. Lysak, “Size dependent competition between second harmonic generation and two-photon luminescence observed in gold nanoparticles,” Nanotechnology24(7), 075201 (2013).
    [CrossRef] [PubMed]
  34. R. Xie, D. Li, H. Zhang, D. Yang, M. Jiang, T. Sekiguchi, B. Liu, and Y. Bando, “Low-temperature growth of uniform ZnO particles with controllable ellipsoidal morphologies and characteristic luminescence patterns,” J. Phys. Chem. B110(39), 19147–19153 (2006).
    [CrossRef] [PubMed]
  35. R. Prasanth, L. K. van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, “Resonance enhancement of optical second harmonic generation in a ZnO nanowire,” Appl. Phys. Lett.88(18), 181501 (2006).
    [CrossRef]
  36. D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Observation of both second-harmonic and multiphoton-absorption-induced luminescence in ZnO,” IEEE Photon. Technol. Lett.18(14), 1533–1535 (2006).
    [CrossRef]
  37. B. T. Draine and P. J. Flatau, User guide for the discrete dipole approximation code DDSCAT 7.2, arXiv: 1202.3424 (2012).
  38. B. Cao, W. Cai, and H. Zeng, “Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays,” Appl. Phys. Lett.88(16), 161101 (2006).
    [CrossRef]
  39. T. Y. Hou and X. H. Wu, “A multiscale finite element method for elliptic problems in composite materials and porous media,” J. Comput. Phys.134(1), 169–189 (1997).
    [CrossRef]
  40. S. G. S. Beirão, A. P. C. Ribeiro, M. J. V. Lourenço, F. J. V. Santos, and C. A. Nieto de Castro, “Thermal conductivity of humid air,” Int. J. Thermophys.33(8-9), 1686–1703 (2012).
    [CrossRef]
  41. J. Alvarez-Quintana, E. Martínez, E. Pérez-Tijerina, S. A. Pérez-García, and J. Rodríguez-Viejo, “Temperature dependent thermal conductivity of polycrystalline ZnO films,” J. Appl. Phys.107(6), 063713 (2010).
    [CrossRef]

2013 (1)

H. D. Deng, G. C. Li, Q. F. Dai, M. Ouyang, S. Lan, V. A. Trofimov, and T. M. Lysak, “Size dependent competition between second harmonic generation and two-photon luminescence observed in gold nanoparticles,” Nanotechnology24(7), 075201 (2013).
[CrossRef] [PubMed]

2012 (5)

J. Dai, Z. Fu, S. Lan, X. Wan, S. Tie, V. A. Trofimov, and T. M. Lysak, “Modified threshold of two-photon-pumped random lasing of ZnO nanorods by femtosecond laser ablation,” J. Appl. Phys.112(6), 063102 (2012).
[CrossRef]

B. E. Urban, P. B. Neogi, S. J. Butler, Y. Fujita, and A. Neogi, “Second harmonic imaging of plants tissues and cell implosion using two-photon process in ZnO nanoparticles,” J Biophotonics5(3), 283–291 (2012).
[CrossRef] [PubMed]

B. Jin and D. Wang, “Strong violet emission from zinc oxide dumbbell-like microrods and nanowires,” J. Lumin.132(8), 1879–1884 (2012).
[CrossRef]

Y. Yang, W. Guo, X. Wang, Z. Wang, J. Qi, and Y. Zhang, “Size dependence of dielectric constant in a single pencil-like ZnO nanowire,” Nano Lett.12(4), 1919–1922 (2012).
[CrossRef] [PubMed]

S. G. S. Beirão, A. P. C. Ribeiro, M. J. V. Lourenço, F. J. V. Santos, and C. A. Nieto de Castro, “Thermal conductivity of humid air,” Int. J. Thermophys.33(8-9), 1686–1703 (2012).
[CrossRef]

2011 (4)

G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett.6(1), 501 (2011).
[CrossRef] [PubMed]

O. Mondal and M. Pal, “Strong and unusual violet-blue emission in ring shaped ZnO nanocrystals,” J. Mater. Chem.21(45), 18354–18358 (2011).
[CrossRef]

B. E. Urban, J. Lin, O. Kumar, K. Senthilkumar, Y. Fujita, and A. Neogi, “Optimization of nonlinear optical properties of ZnO micro and nanocrystals for biophotonics,” Opt. Mater. Express1(4), 658–669 (2011).
[CrossRef]

S. Baskoutas and G. Bester, “Transition in the optical emission polarization of ZnO nanorods,” J. Phys. Chem. A115, 15862–15867 (2011).
[PubMed]

2010 (3)

M. C. Newton, S. J. Leake, R. Harder, and I. K. Robinson, “Three-dimensional imaging of strain in a single ZnO nanorod,” Nat. Mater.9(2), 120–124 (2010).
[CrossRef] [PubMed]

J. Zhang, A. Thurber, D. A. Tenne, J. W. Rasmussen, D. Wingett, C. Hanna, and A. Punnoose, “Enhanced dye fluorescence in novel dye–ZnO nanocomposites,” Adv. Funct. Mater.20(24), 4358–4363 (2010).
[CrossRef]

J. Alvarez-Quintana, E. Martínez, E. Pérez-Tijerina, S. A. Pérez-García, and J. Rodríguez-Viejo, “Temperature dependent thermal conductivity of polycrystalline ZnO films,” J. Appl. Phys.107(6), 063713 (2010).
[CrossRef]

2009 (3)

H. Guo, Z. Lin, Z. Feng, L. Lin, and J. Zhou, “White-light-emitting diode based on ZnO nanotubes,” J. Phys. Chem. C113(28), 12546–12550 (2009).
[CrossRef]

M. Chattopadhyay, P. Kumbhakar, C. S. Tiwary, A. K. Mitra, U. Chatterjee, and T. Kobayashi, “Three-photon-induced four-photon absorption and nonlinear refraction in ZnO quantum dots,” Opt. Lett.34(23), 3644–3646 (2009).
[CrossRef] [PubMed]

G. P. Zhu, J. Zhu, C. X. Xu, X. Li, J. P. Liu, and Y. P. Cui, “Multi-photon induced ultraviolet emission from hexagram-shaped ZnO nanorods,” Appl. Phys., A Mater. Sci. Process.95(2), 381–385 (2009).
[CrossRef]

2008 (4)

Y. L. Wu, S. Fu, A. I. Y. Tok, X. T. Zeng, C. S. Lim, L. C. Kwek, and F. C. Y. Boey, “A dual-colored bio-marker made of doped ZnO nanocrystals,” Nanotechnology19(34), 345605 (2008).
[CrossRef] [PubMed]

S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B77(11), 113311 (2008).
[CrossRef]

C. T. Chien, M. C. Wu, C. W. Chen, H. H. Yang, J. J. Wu, W. F. Su, C. S. Lin, and Y. F. Chen, “Polarization-dependent confocal Raman microscopy of an individual ZnO nanorod,” Appl. Phys. Lett.92(22), 223102 (2008).
[CrossRef]

D. Tainoff, B. Masenelli, O. Boisron, G. Guiraud, and P. Mélinon, “Crystallinity, stoichiometry, and luminescence of high quality ZnO nanoclusters,” J. Phys. Chem. C112(33), 12623–12627 (2008).
[CrossRef]

2007 (1)

J. W. Zhao, L. R. Qin, Z. D. Xiao, and L. D. Zhang, “Synthesis and characterization of novel flower-shaped ZnO nanostructures,” Mater. Chem. Phys.105(2-3), 194–198 (2007).
[CrossRef]

2006 (6)

R. Xie, D. Li, H. Zhang, D. Yang, M. Jiang, T. Sekiguchi, B. Liu, and Y. Bando, “Low-temperature growth of uniform ZnO particles with controllable ellipsoidal morphologies and characteristic luminescence patterns,” J. Phys. Chem. B110(39), 19147–19153 (2006).
[CrossRef] [PubMed]

R. Prasanth, L. K. van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, “Resonance enhancement of optical second harmonic generation in a ZnO nanowire,” Appl. Phys. Lett.88(18), 181501 (2006).
[CrossRef]

D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Observation of both second-harmonic and multiphoton-absorption-induced luminescence in ZnO,” IEEE Photon. Technol. Lett.18(14), 1533–1535 (2006).
[CrossRef]

B. Cao, W. Cai, and H. Zeng, “Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays,” Appl. Phys. Lett.88(16), 161101 (2006).
[CrossRef]

J. Shi, J. Chen, Z. Feng, T. Chen, X. Wang, P. Ying, and C. Li, “Time-resolved photoluminescence characteristics of subnanometer ZnO clusters confined in the micropores of zeolites,” J. Phys. Chem. B110(51), 25612–25618 (2006).
[CrossRef] [PubMed]

S. Wu, N. Yuan, H. Xu, X. Wang, and Z. A. Schelly, “Synthesis and bandgap oscillation of uncapped, ZnO clusters by electroporation of vesicles,” Nanotechnology17(18), 4713–4718 (2006).
[CrossRef] [PubMed]

2005 (3)

J. H. Lin, Y. J. Chen, H. Y. Lin, and W. F. Hsieh, “Two-photon resonance assisted huge nonlinear refraction and absorption in ZnO thin films,” J. Appl. Phys.97(3), 033526 (2005).
[CrossRef]

D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature,” Opt. Lett.30(24), 3377–3379 (2005).
[CrossRef] [PubMed]

X. D. Gao, X. M. Li, and W. D. Yu, “Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex,” J. Phys. Chem. B109(3), 1155–1161 (2005).
[CrossRef] [PubMed]

2004 (2)

Z. Wang, X. F. Qian, J. Yin, and Z. K. Zhu, “Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route,” Langmuir20(8), 3441–3448 (2004).
[CrossRef] [PubMed]

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett.84(2), 170–172 (2004).
[CrossRef]

2002 (1)

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. D. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett.2(4), 279–283 (2002).
[CrossRef]

1999 (2)

D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett.82(12), 2552–2555 (1999).
[CrossRef]

B. S. Zou, V. V. Volkov, and Z. L. Wang, “Optical properties of amorphous ZnO, CdO, and PbO nanoclusters in solution,” Chem. Mater.11(11), 3037–3043 (1999).
[CrossRef]

1997 (4)

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun.103(8), 459–463 (1997).
[CrossRef]

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett.70(17), 2230–2232 (1997).
[CrossRef]

R. F. Service, “Will UV lasers beat the blues?” Science276(5314), 895 (1997).
[CrossRef]

T. Y. Hou and X. H. Wu, “A multiscale finite element method for elliptic problems in composite materials and porous media,” J. Comput. Phys.134(1), 169–189 (1997).
[CrossRef]

Alvarez-Quintana, J.

J. Alvarez-Quintana, E. Martínez, E. Pérez-Tijerina, S. A. Pérez-García, and J. Rodríguez-Viejo, “Temperature dependent thermal conductivity of polycrystalline ZnO films,” J. Appl. Phys.107(6), 063713 (2010).
[CrossRef]

Bagnall, D. M.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett.70(17), 2230–2232 (1997).
[CrossRef]

Bando, Y.

R. Xie, D. Li, H. Zhang, D. Yang, M. Jiang, T. Sekiguchi, B. Liu, and Y. Bando, “Low-temperature growth of uniform ZnO particles with controllable ellipsoidal morphologies and characteristic luminescence patterns,” J. Phys. Chem. B110(39), 19147–19153 (2006).
[CrossRef] [PubMed]

Baratto, C.

G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett.6(1), 501 (2011).
[CrossRef] [PubMed]

Baskoutas, S.

S. Baskoutas and G. Bester, “Transition in the optical emission polarization of ZnO nanorods,” J. Phys. Chem. A115, 15862–15867 (2011).
[PubMed]

Beirão, S. G. S.

S. G. S. Beirão, A. P. C. Ribeiro, M. J. V. Lourenço, F. J. V. Santos, and C. A. Nieto de Castro, “Thermal conductivity of humid air,” Int. J. Thermophys.33(8-9), 1686–1703 (2012).
[CrossRef]

Bester, G.

S. Baskoutas and G. Bester, “Transition in the optical emission polarization of ZnO nanorods,” J. Phys. Chem. A115, 15862–15867 (2011).
[PubMed]

Boey, F. C. Y.

Y. L. Wu, S. Fu, A. I. Y. Tok, X. T. Zeng, C. S. Lim, L. C. Kwek, and F. C. Y. Boey, “A dual-colored bio-marker made of doped ZnO nanocrystals,” Nanotechnology19(34), 345605 (2008).
[CrossRef] [PubMed]

Boisron, O.

D. Tainoff, B. Masenelli, O. Boisron, G. Guiraud, and P. Mélinon, “Crystallinity, stoichiometry, and luminescence of high quality ZnO nanoclusters,” J. Phys. Chem. C112(33), 12623–12627 (2008).
[CrossRef]

Bugallo, A. L.

G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett.6(1), 501 (2011).
[CrossRef] [PubMed]

Butler, S. J.

B. E. Urban, P. B. Neogi, S. J. Butler, Y. Fujita, and A. Neogi, “Second harmonic imaging of plants tissues and cell implosion using two-photon process in ZnO nanoparticles,” J Biophotonics5(3), 283–291 (2012).
[CrossRef] [PubMed]

Cai, W.

B. Cao, W. Cai, and H. Zeng, “Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays,” Appl. Phys. Lett.88(16), 161101 (2006).
[CrossRef]

Cao, B.

B. Cao, W. Cai, and H. Zeng, “Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays,” Appl. Phys. Lett.88(16), 161101 (2006).
[CrossRef]

Chatterjee, U.

Chattopadhyay, M.

Che, C. M.

D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Observation of both second-harmonic and multiphoton-absorption-induced luminescence in ZnO,” IEEE Photon. Technol. Lett.18(14), 1533–1535 (2006).
[CrossRef]

D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature,” Opt. Lett.30(24), 3377–3379 (2005).
[CrossRef] [PubMed]

Chen, C. W.

C. T. Chien, M. C. Wu, C. W. Chen, H. H. Yang, J. J. Wu, W. F. Su, C. S. Lin, and Y. F. Chen, “Polarization-dependent confocal Raman microscopy of an individual ZnO nanorod,” Appl. Phys. Lett.92(22), 223102 (2008).
[CrossRef]

Chen, J.

J. Shi, J. Chen, Z. Feng, T. Chen, X. Wang, P. Ying, and C. Li, “Time-resolved photoluminescence characteristics of subnanometer ZnO clusters confined in the micropores of zeolites,” J. Phys. Chem. B110(51), 25612–25618 (2006).
[CrossRef] [PubMed]

Chen, T.

J. Shi, J. Chen, Z. Feng, T. Chen, X. Wang, P. Ying, and C. Li, “Time-resolved photoluminescence characteristics of subnanometer ZnO clusters confined in the micropores of zeolites,” J. Phys. Chem. B110(51), 25612–25618 (2006).
[CrossRef] [PubMed]

Chen, Y. F.

C. T. Chien, M. C. Wu, C. W. Chen, H. H. Yang, J. J. Wu, W. F. Su, C. S. Lin, and Y. F. Chen, “Polarization-dependent confocal Raman microscopy of an individual ZnO nanorod,” Appl. Phys. Lett.92(22), 223102 (2008).
[CrossRef]

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett.70(17), 2230–2232 (1997).
[CrossRef]

Chen, Y. J.

J. H. Lin, Y. J. Chen, H. Y. Lin, and W. F. Hsieh, “Two-photon resonance assisted huge nonlinear refraction and absorption in ZnO thin films,” J. Appl. Phys.97(3), 033526 (2005).
[CrossRef]

Chien, C. T.

C. T. Chien, M. C. Wu, C. W. Chen, H. H. Yang, J. J. Wu, W. F. Su, C. S. Lin, and Y. F. Chen, “Polarization-dependent confocal Raman microscopy of an individual ZnO nanorod,” Appl. Phys. Lett.92(22), 223102 (2008).
[CrossRef]

Comini, E.

G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett.6(1), 501 (2011).
[CrossRef] [PubMed]

Cui, Y. P.

G. P. Zhu, J. Zhu, C. X. Xu, X. Li, J. P. Liu, and Y. P. Cui, “Multi-photon induced ultraviolet emission from hexagram-shaped ZnO nanorods,” Appl. Phys., A Mater. Sci. Process.95(2), 381–385 (2009).
[CrossRef]

Dai, D. C.

D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Observation of both second-harmonic and multiphoton-absorption-induced luminescence in ZnO,” IEEE Photon. Technol. Lett.18(14), 1533–1535 (2006).
[CrossRef]

D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature,” Opt. Lett.30(24), 3377–3379 (2005).
[CrossRef] [PubMed]

Dai, J.

J. Dai, Z. Fu, S. Lan, X. Wan, S. Tie, V. A. Trofimov, and T. M. Lysak, “Modified threshold of two-photon-pumped random lasing of ZnO nanorods by femtosecond laser ablation,” J. Appl. Phys.112(6), 063102 (2012).
[CrossRef]

Dai, Q. F.

H. D. Deng, G. C. Li, Q. F. Dai, M. Ouyang, S. Lan, V. A. Trofimov, and T. M. Lysak, “Size dependent competition between second harmonic generation and two-photon luminescence observed in gold nanoparticles,” Nanotechnology24(7), 075201 (2013).
[CrossRef] [PubMed]

Deng, H. D.

H. D. Deng, G. C. Li, Q. F. Dai, M. Ouyang, S. Lan, V. A. Trofimov, and T. M. Lysak, “Size dependent competition between second harmonic generation and two-photon luminescence observed in gold nanoparticles,” Nanotechnology24(7), 075201 (2013).
[CrossRef] [PubMed]

Feng, Z.

H. Guo, Z. Lin, Z. Feng, L. Lin, and J. Zhou, “White-light-emitting diode based on ZnO nanotubes,” J. Phys. Chem. C113(28), 12546–12550 (2009).
[CrossRef]

J. Shi, J. Chen, Z. Feng, T. Chen, X. Wang, P. Ying, and C. Li, “Time-resolved photoluminescence characteristics of subnanometer ZnO clusters confined in the micropores of zeolites,” J. Phys. Chem. B110(51), 25612–25618 (2006).
[CrossRef] [PubMed]

Ferroni, M.

G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett.6(1), 501 (2011).
[CrossRef] [PubMed]

Fu, S.

Y. L. Wu, S. Fu, A. I. Y. Tok, X. T. Zeng, C. S. Lim, L. C. Kwek, and F. C. Y. Boey, “A dual-colored bio-marker made of doped ZnO nanocrystals,” Nanotechnology19(34), 345605 (2008).
[CrossRef] [PubMed]

Fu, Z.

J. Dai, Z. Fu, S. Lan, X. Wan, S. Tie, V. A. Trofimov, and T. M. Lysak, “Modified threshold of two-photon-pumped random lasing of ZnO nanorods by femtosecond laser ablation,” J. Appl. Phys.112(6), 063102 (2012).
[CrossRef]

Fujita, Y.

B. E. Urban, P. B. Neogi, S. J. Butler, Y. Fujita, and A. Neogi, “Second harmonic imaging of plants tissues and cell implosion using two-photon process in ZnO nanoparticles,” J Biophotonics5(3), 283–291 (2012).
[CrossRef] [PubMed]

B. E. Urban, J. Lin, O. Kumar, K. Senthilkumar, Y. Fujita, and A. Neogi, “Optimization of nonlinear optical properties of ZnO micro and nanocrystals for biophotonics,” Opt. Mater. Express1(4), 658–669 (2011).
[CrossRef]

Gao, X. D.

X. D. Gao, X. M. Li, and W. D. Yu, “Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex,” J. Phys. Chem. B109(3), 1155–1161 (2005).
[CrossRef] [PubMed]

Gerritsen, H. C.

R. Prasanth, L. K. van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, “Resonance enhancement of optical second harmonic generation in a ZnO nanowire,” Appl. Phys. Lett.88(18), 181501 (2006).
[CrossRef]

Goto, T.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett.70(17), 2230–2232 (1997).
[CrossRef]

Griebner, U.

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett.84(2), 170–172 (2004).
[CrossRef]

Grunwald, R.

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett.84(2), 170–172 (2004).
[CrossRef]

Guiraud, G.

D. Tainoff, B. Masenelli, O. Boisron, G. Guiraud, and P. Mélinon, “Crystallinity, stoichiometry, and luminescence of high quality ZnO nanoclusters,” J. Phys. Chem. C112(33), 12623–12627 (2008).
[CrossRef]

Guo, H.

H. Guo, Z. Lin, Z. Feng, L. Lin, and J. Zhou, “White-light-emitting diode based on ZnO nanotubes,” J. Phys. Chem. C113(28), 12546–12550 (2009).
[CrossRef]

Guo, W.

Y. Yang, W. Guo, X. Wang, Z. Wang, J. Qi, and Y. Zhang, “Size dependence of dielectric constant in a single pencil-like ZnO nanowire,” Nano Lett.12(4), 1919–1922 (2012).
[CrossRef] [PubMed]

Hanna, C.

J. Zhang, A. Thurber, D. A. Tenne, J. W. Rasmussen, D. Wingett, C. Hanna, and A. Punnoose, “Enhanced dye fluorescence in novel dye–ZnO nanocomposites,” Adv. Funct. Mater.20(24), 4358–4363 (2010).
[CrossRef]

Harder, R.

M. C. Newton, S. J. Leake, R. Harder, and I. K. Robinson, “Three-dimensional imaging of strain in a single ZnO nanorod,” Nat. Mater.9(2), 120–124 (2010).
[CrossRef] [PubMed]

Hemsky, J. W.

D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett.82(12), 2552–2555 (1999).
[CrossRef]

Hou, T. Y.

T. Y. Hou and X. H. Wu, “A multiscale finite element method for elliptic problems in composite materials and porous media,” J. Comput. Phys.134(1), 169–189 (1997).
[CrossRef]

Hsieh, W. F.

J. H. Lin, Y. J. Chen, H. Y. Lin, and W. F. Hsieh, “Two-photon resonance assisted huge nonlinear refraction and absorption in ZnO thin films,” J. Appl. Phys.97(3), 033526 (2005).
[CrossRef]

Jacopin, G.

G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett.6(1), 501 (2011).
[CrossRef] [PubMed]

Jiang, M.

R. Xie, D. Li, H. Zhang, D. Yang, M. Jiang, T. Sekiguchi, B. Liu, and Y. Bando, “Low-temperature growth of uniform ZnO particles with controllable ellipsoidal morphologies and characteristic luminescence patterns,” J. Phys. Chem. B110(39), 19147–19153 (2006).
[CrossRef] [PubMed]

Jin, B.

B. Jin and D. Wang, “Strong violet emission from zinc oxide dumbbell-like microrods and nanowires,” J. Lumin.132(8), 1879–1884 (2012).
[CrossRef]

Johnson, J. C.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. D. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett.2(4), 279–283 (2002).
[CrossRef]

Julien, F. H.

G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett.6(1), 501 (2011).
[CrossRef] [PubMed]

Kawasaki, M.

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun.103(8), 459–463 (1997).
[CrossRef]

Kobayashi, T.

Koinuma, H.

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun.103(8), 459–463 (1997).
[CrossRef]

Koyama, S.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett.70(17), 2230–2232 (1997).
[CrossRef]

Kumar, O.

Kumbhakar, P.

Kwek, L. C.

Y. L. Wu, S. Fu, A. I. Y. Tok, X. T. Zeng, C. S. Lim, L. C. Kwek, and F. C. Y. Boey, “A dual-colored bio-marker made of doped ZnO nanocrystals,” Nanotechnology19(34), 345605 (2008).
[CrossRef] [PubMed]

Lan, S.

H. D. Deng, G. C. Li, Q. F. Dai, M. Ouyang, S. Lan, V. A. Trofimov, and T. M. Lysak, “Size dependent competition between second harmonic generation and two-photon luminescence observed in gold nanoparticles,” Nanotechnology24(7), 075201 (2013).
[CrossRef] [PubMed]

J. Dai, Z. Fu, S. Lan, X. Wan, S. Tie, V. A. Trofimov, and T. M. Lysak, “Modified threshold of two-photon-pumped random lasing of ZnO nanorods by femtosecond laser ablation,” J. Appl. Phys.112(6), 063102 (2012).
[CrossRef]

Leake, S. J.

M. C. Newton, S. J. Leake, R. Harder, and I. K. Robinson, “Three-dimensional imaging of strain in a single ZnO nanorod,” Nat. Mater.9(2), 120–124 (2010).
[CrossRef] [PubMed]

Li, C.

J. Shi, J. Chen, Z. Feng, T. Chen, X. Wang, P. Ying, and C. Li, “Time-resolved photoluminescence characteristics of subnanometer ZnO clusters confined in the micropores of zeolites,” J. Phys. Chem. B110(51), 25612–25618 (2006).
[CrossRef] [PubMed]

Li, D.

R. Xie, D. Li, H. Zhang, D. Yang, M. Jiang, T. Sekiguchi, B. Liu, and Y. Bando, “Low-temperature growth of uniform ZnO particles with controllable ellipsoidal morphologies and characteristic luminescence patterns,” J. Phys. Chem. B110(39), 19147–19153 (2006).
[CrossRef] [PubMed]

Li, G. C.

H. D. Deng, G. C. Li, Q. F. Dai, M. Ouyang, S. Lan, V. A. Trofimov, and T. M. Lysak, “Size dependent competition between second harmonic generation and two-photon luminescence observed in gold nanoparticles,” Nanotechnology24(7), 075201 (2013).
[CrossRef] [PubMed]

Li, X.

G. P. Zhu, J. Zhu, C. X. Xu, X. Li, J. P. Liu, and Y. P. Cui, “Multi-photon induced ultraviolet emission from hexagram-shaped ZnO nanorods,” Appl. Phys., A Mater. Sci. Process.95(2), 381–385 (2009).
[CrossRef]

Li, X. M.

X. D. Gao, X. M. Li, and W. D. Yu, “Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex,” J. Phys. Chem. B109(3), 1155–1161 (2005).
[CrossRef] [PubMed]

Lim, C. S.

Y. L. Wu, S. Fu, A. I. Y. Tok, X. T. Zeng, C. S. Lim, L. C. Kwek, and F. C. Y. Boey, “A dual-colored bio-marker made of doped ZnO nanocrystals,” Nanotechnology19(34), 345605 (2008).
[CrossRef] [PubMed]

Lin, C. S.

C. T. Chien, M. C. Wu, C. W. Chen, H. H. Yang, J. J. Wu, W. F. Su, C. S. Lin, and Y. F. Chen, “Polarization-dependent confocal Raman microscopy of an individual ZnO nanorod,” Appl. Phys. Lett.92(22), 223102 (2008).
[CrossRef]

Lin, H. Y.

J. H. Lin, Y. J. Chen, H. Y. Lin, and W. F. Hsieh, “Two-photon resonance assisted huge nonlinear refraction and absorption in ZnO thin films,” J. Appl. Phys.97(3), 033526 (2005).
[CrossRef]

Lin, J.

Lin, J. H.

J. H. Lin, Y. J. Chen, H. Y. Lin, and W. F. Hsieh, “Two-photon resonance assisted huge nonlinear refraction and absorption in ZnO thin films,” J. Appl. Phys.97(3), 033526 (2005).
[CrossRef]

Lin, L.

H. Guo, Z. Lin, Z. Feng, L. Lin, and J. Zhou, “White-light-emitting diode based on ZnO nanotubes,” J. Phys. Chem. C113(28), 12546–12550 (2009).
[CrossRef]

Lin, Z.

H. Guo, Z. Lin, Z. Feng, L. Lin, and J. Zhou, “White-light-emitting diode based on ZnO nanotubes,” J. Phys. Chem. C113(28), 12546–12550 (2009).
[CrossRef]

Liu, B.

R. Xie, D. Li, H. Zhang, D. Yang, M. Jiang, T. Sekiguchi, B. Liu, and Y. Bando, “Low-temperature growth of uniform ZnO particles with controllable ellipsoidal morphologies and characteristic luminescence patterns,” J. Phys. Chem. B110(39), 19147–19153 (2006).
[CrossRef] [PubMed]

Liu, J. P.

G. P. Zhu, J. Zhu, C. X. Xu, X. Li, J. P. Liu, and Y. P. Cui, “Multi-photon induced ultraviolet emission from hexagram-shaped ZnO nanorods,” Appl. Phys., A Mater. Sci. Process.95(2), 381–385 (2009).
[CrossRef]

Liu, S. W.

S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B77(11), 113311 (2008).
[CrossRef]

Look, D. C.

D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett.82(12), 2552–2555 (1999).
[CrossRef]

Lourenço, M. J. V.

S. G. S. Beirão, A. P. C. Ribeiro, M. J. V. Lourenço, F. J. V. Santos, and C. A. Nieto de Castro, “Thermal conductivity of humid air,” Int. J. Thermophys.33(8-9), 1686–1703 (2012).
[CrossRef]

Lysak, T. M.

H. D. Deng, G. C. Li, Q. F. Dai, M. Ouyang, S. Lan, V. A. Trofimov, and T. M. Lysak, “Size dependent competition between second harmonic generation and two-photon luminescence observed in gold nanoparticles,” Nanotechnology24(7), 075201 (2013).
[CrossRef] [PubMed]

J. Dai, Z. Fu, S. Lan, X. Wan, S. Tie, V. A. Trofimov, and T. M. Lysak, “Modified threshold of two-photon-pumped random lasing of ZnO nanorods by femtosecond laser ablation,” J. Appl. Phys.112(6), 063102 (2012).
[CrossRef]

Martínez, E.

J. Alvarez-Quintana, E. Martínez, E. Pérez-Tijerina, S. A. Pérez-García, and J. Rodríguez-Viejo, “Temperature dependent thermal conductivity of polycrystalline ZnO films,” J. Appl. Phys.107(6), 063713 (2010).
[CrossRef]

Masenelli, B.

D. Tainoff, B. Masenelli, O. Boisron, G. Guiraud, and P. Mélinon, “Crystallinity, stoichiometry, and luminescence of high quality ZnO nanoclusters,” J. Phys. Chem. C112(33), 12623–12627 (2008).
[CrossRef]

Mélinon, P.

D. Tainoff, B. Masenelli, O. Boisron, G. Guiraud, and P. Mélinon, “Crystallinity, stoichiometry, and luminescence of high quality ZnO nanoclusters,” J. Phys. Chem. C112(33), 12623–12627 (2008).
[CrossRef]

Mitra, A. K.

Mondal, O.

O. Mondal and M. Pal, “Strong and unusual violet-blue emission in ring shaped ZnO nanocrystals,” J. Mater. Chem.21(45), 18354–18358 (2011).
[CrossRef]

Neogi, A.

B. E. Urban, P. B. Neogi, S. J. Butler, Y. Fujita, and A. Neogi, “Second harmonic imaging of plants tissues and cell implosion using two-photon process in ZnO nanoparticles,” J Biophotonics5(3), 283–291 (2012).
[CrossRef] [PubMed]

B. E. Urban, J. Lin, O. Kumar, K. Senthilkumar, Y. Fujita, and A. Neogi, “Optimization of nonlinear optical properties of ZnO micro and nanocrystals for biophotonics,” Opt. Mater. Express1(4), 658–669 (2011).
[CrossRef]

Neogi, P. B.

B. E. Urban, P. B. Neogi, S. J. Butler, Y. Fujita, and A. Neogi, “Second harmonic imaging of plants tissues and cell implosion using two-photon process in ZnO nanoparticles,” J Biophotonics5(3), 283–291 (2012).
[CrossRef] [PubMed]

Neumann, U.

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett.84(2), 170–172 (2004).
[CrossRef]

Newton, M. C.

M. C. Newton, S. J. Leake, R. Harder, and I. K. Robinson, “Three-dimensional imaging of strain in a single ZnO nanorod,” Nat. Mater.9(2), 120–124 (2010).
[CrossRef] [PubMed]

Nieto de Castro, C. A.

S. G. S. Beirão, A. P. C. Ribeiro, M. J. V. Lourenço, F. J. V. Santos, and C. A. Nieto de Castro, “Thermal conductivity of humid air,” Int. J. Thermophys.33(8-9), 1686–1703 (2012).
[CrossRef]

Ohtomo, A.

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun.103(8), 459–463 (1997).
[CrossRef]

Ouyang, M.

H. D. Deng, G. C. Li, Q. F. Dai, M. Ouyang, S. Lan, V. A. Trofimov, and T. M. Lysak, “Size dependent competition between second harmonic generation and two-photon luminescence observed in gold nanoparticles,” Nanotechnology24(7), 075201 (2013).
[CrossRef] [PubMed]

Pal, M.

O. Mondal and M. Pal, “Strong and unusual violet-blue emission in ring shaped ZnO nanocrystals,” J. Mater. Chem.21(45), 18354–18358 (2011).
[CrossRef]

Pérez-García, S. A.

J. Alvarez-Quintana, E. Martínez, E. Pérez-Tijerina, S. A. Pérez-García, and J. Rodríguez-Viejo, “Temperature dependent thermal conductivity of polycrystalline ZnO films,” J. Appl. Phys.107(6), 063713 (2010).
[CrossRef]

Pérez-Tijerina, E.

J. Alvarez-Quintana, E. Martínez, E. Pérez-Tijerina, S. A. Pérez-García, and J. Rodríguez-Viejo, “Temperature dependent thermal conductivity of polycrystalline ZnO films,” J. Appl. Phys.107(6), 063713 (2010).
[CrossRef]

Petersen, P. B.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. D. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett.2(4), 279–283 (2002).
[CrossRef]

Prasanth, R.

R. Prasanth, L. K. van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, “Resonance enhancement of optical second harmonic generation in a ZnO nanowire,” Appl. Phys. Lett.88(18), 181501 (2006).
[CrossRef]

Punnoose, A.

J. Zhang, A. Thurber, D. A. Tenne, J. W. Rasmussen, D. Wingett, C. Hanna, and A. Punnoose, “Enhanced dye fluorescence in novel dye–ZnO nanocomposites,” Adv. Funct. Mater.20(24), 4358–4363 (2010).
[CrossRef]

Qi, J.

Y. Yang, W. Guo, X. Wang, Z. Wang, J. Qi, and Y. Zhang, “Size dependence of dielectric constant in a single pencil-like ZnO nanowire,” Nano Lett.12(4), 1919–1922 (2012).
[CrossRef] [PubMed]

Qian, X. F.

Z. Wang, X. F. Qian, J. Yin, and Z. K. Zhu, “Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route,” Langmuir20(8), 3441–3448 (2004).
[CrossRef] [PubMed]

Qin, L. R.

J. W. Zhao, L. R. Qin, Z. D. Xiao, and L. D. Zhang, “Synthesis and characterization of novel flower-shaped ZnO nanostructures,” Mater. Chem. Phys.105(2-3), 194–198 (2007).
[CrossRef]

Rasmussen, J. W.

J. Zhang, A. Thurber, D. A. Tenne, J. W. Rasmussen, D. Wingett, C. Hanna, and A. Punnoose, “Enhanced dye fluorescence in novel dye–ZnO nanocomposites,” Adv. Funct. Mater.20(24), 4358–4363 (2010).
[CrossRef]

Ribeiro, A. P. C.

S. G. S. Beirão, A. P. C. Ribeiro, M. J. V. Lourenço, F. J. V. Santos, and C. A. Nieto de Castro, “Thermal conductivity of humid air,” Int. J. Thermophys.33(8-9), 1686–1703 (2012).
[CrossRef]

Ricca, A.

S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B77(11), 113311 (2008).
[CrossRef]

Rigutti, L.

G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett.6(1), 501 (2011).
[CrossRef] [PubMed]

Robinson, I. K.

M. C. Newton, S. J. Leake, R. Harder, and I. K. Robinson, “Three-dimensional imaging of strain in a single ZnO nanorod,” Nat. Mater.9(2), 120–124 (2010).
[CrossRef] [PubMed]

Rodríguez-Viejo, J.

J. Alvarez-Quintana, E. Martínez, E. Pérez-Tijerina, S. A. Pérez-García, and J. Rodríguez-Viejo, “Temperature dependent thermal conductivity of polycrystalline ZnO films,” J. Appl. Phys.107(6), 063713 (2010).
[CrossRef]

Santos, F. J. V.

S. G. S. Beirão, A. P. C. Ribeiro, M. J. V. Lourenço, F. J. V. Santos, and C. A. Nieto de Castro, “Thermal conductivity of humid air,” Int. J. Thermophys.33(8-9), 1686–1703 (2012).
[CrossRef]

Saykally, R. J.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. D. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett.2(4), 279–283 (2002).
[CrossRef]

Schaller, R. D.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. D. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett.2(4), 279–283 (2002).
[CrossRef]

Schelly, Z. A.

S. Wu, N. Yuan, H. Xu, X. Wang, and Z. A. Schelly, “Synthesis and bandgap oscillation of uncapped, ZnO clusters by electroporation of vesicles,” Nanotechnology17(18), 4713–4718 (2006).
[CrossRef] [PubMed]

Seeber, W.

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett.84(2), 170–172 (2004).
[CrossRef]

Segawa, Y.

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun.103(8), 459–463 (1997).
[CrossRef]

Sekiguchi, T.

R. Xie, D. Li, H. Zhang, D. Yang, M. Jiang, T. Sekiguchi, B. Liu, and Y. Bando, “Low-temperature growth of uniform ZnO particles with controllable ellipsoidal morphologies and characteristic luminescence patterns,” J. Phys. Chem. B110(39), 19147–19153 (2006).
[CrossRef] [PubMed]

Senthilkumar, K.

Service, R. F.

R. F. Service, “Will UV lasers beat the blues?” Science276(5314), 895 (1997).
[CrossRef]

Shen, M. Y.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett.70(17), 2230–2232 (1997).
[CrossRef]

Shi, J.

J. Shi, J. Chen, Z. Feng, T. Chen, X. Wang, P. Ying, and C. Li, “Time-resolved photoluminescence characteristics of subnanometer ZnO clusters confined in the micropores of zeolites,” J. Phys. Chem. B110(51), 25612–25618 (2006).
[CrossRef] [PubMed]

Shi, S. L.

D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Observation of both second-harmonic and multiphoton-absorption-induced luminescence in ZnO,” IEEE Photon. Technol. Lett.18(14), 1533–1535 (2006).
[CrossRef]

D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature,” Opt. Lett.30(24), 3377–3379 (2005).
[CrossRef] [PubMed]

Sizelove, J. R.

D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett.82(12), 2552–2555 (1999).
[CrossRef]

Steinmeyer, G.

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett.84(2), 170–172 (2004).
[CrossRef]

Su, W. F.

C. T. Chien, M. C. Wu, C. W. Chen, H. H. Yang, J. J. Wu, W. F. Su, C. S. Lin, and Y. F. Chen, “Polarization-dependent confocal Raman microscopy of an individual ZnO nanorod,” Appl. Phys. Lett.92(22), 223102 (2008).
[CrossRef]

Tainoff, D.

D. Tainoff, B. Masenelli, O. Boisron, G. Guiraud, and P. Mélinon, “Crystallinity, stoichiometry, and luminescence of high quality ZnO nanoclusters,” J. Phys. Chem. C112(33), 12623–12627 (2008).
[CrossRef]

Tang, Z. K.

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun.103(8), 459–463 (1997).
[CrossRef]

Tchernycheva, M.

G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett.6(1), 501 (2011).
[CrossRef] [PubMed]

Tenne, D. A.

J. Zhang, A. Thurber, D. A. Tenne, J. W. Rasmussen, D. Wingett, C. Hanna, and A. Punnoose, “Enhanced dye fluorescence in novel dye–ZnO nanocomposites,” Adv. Funct. Mater.20(24), 4358–4363 (2010).
[CrossRef]

Thurber, A.

J. Zhang, A. Thurber, D. A. Tenne, J. W. Rasmussen, D. Wingett, C. Hanna, and A. Punnoose, “Enhanced dye fluorescence in novel dye–ZnO nanocomposites,” Adv. Funct. Mater.20(24), 4358–4363 (2010).
[CrossRef]

Tian, R.

S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B77(11), 113311 (2008).
[CrossRef]

Tie, S.

J. Dai, Z. Fu, S. Lan, X. Wan, S. Tie, V. A. Trofimov, and T. M. Lysak, “Modified threshold of two-photon-pumped random lasing of ZnO nanorods by femtosecond laser ablation,” J. Appl. Phys.112(6), 063102 (2012).
[CrossRef]

Tiwary, C. S.

Tok, A. I. Y.

Y. L. Wu, S. Fu, A. I. Y. Tok, X. T. Zeng, C. S. Lim, L. C. Kwek, and F. C. Y. Boey, “A dual-colored bio-marker made of doped ZnO nanocrystals,” Nanotechnology19(34), 345605 (2008).
[CrossRef] [PubMed]

Trofimov, V. A.

H. D. Deng, G. C. Li, Q. F. Dai, M. Ouyang, S. Lan, V. A. Trofimov, and T. M. Lysak, “Size dependent competition between second harmonic generation and two-photon luminescence observed in gold nanoparticles,” Nanotechnology24(7), 075201 (2013).
[CrossRef] [PubMed]

J. Dai, Z. Fu, S. Lan, X. Wan, S. Tie, V. A. Trofimov, and T. M. Lysak, “Modified threshold of two-photon-pumped random lasing of ZnO nanorods by femtosecond laser ablation,” J. Appl. Phys.112(6), 063102 (2012).
[CrossRef]

Urban, B. E.

B. E. Urban, P. B. Neogi, S. J. Butler, Y. Fujita, and A. Neogi, “Second harmonic imaging of plants tissues and cell implosion using two-photon process in ZnO nanoparticles,” J Biophotonics5(3), 283–291 (2012).
[CrossRef] [PubMed]

B. E. Urban, J. Lin, O. Kumar, K. Senthilkumar, Y. Fujita, and A. Neogi, “Optimization of nonlinear optical properties of ZnO micro and nanocrystals for biophotonics,” Opt. Mater. Express1(4), 658–669 (2011).
[CrossRef]

van Vugt, L. K.

R. Prasanth, L. K. van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, “Resonance enhancement of optical second harmonic generation in a ZnO nanowire,” Appl. Phys. Lett.88(18), 181501 (2006).
[CrossRef]

Vanmaekelbergh, D. A. M.

R. Prasanth, L. K. van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, “Resonance enhancement of optical second harmonic generation in a ZnO nanowire,” Appl. Phys. Lett.88(18), 181501 (2006).
[CrossRef]

Volkov, V. V.

B. S. Zou, V. V. Volkov, and Z. L. Wang, “Optical properties of amorphous ZnO, CdO, and PbO nanoclusters in solution,” Chem. Mater.11(11), 3037–3043 (1999).
[CrossRef]

Wan, X.

J. Dai, Z. Fu, S. Lan, X. Wan, S. Tie, V. A. Trofimov, and T. M. Lysak, “Modified threshold of two-photon-pumped random lasing of ZnO nanorods by femtosecond laser ablation,” J. Appl. Phys.112(6), 063102 (2012).
[CrossRef]

Wang, D.

B. Jin and D. Wang, “Strong violet emission from zinc oxide dumbbell-like microrods and nanowires,” J. Lumin.132(8), 1879–1884 (2012).
[CrossRef]

Wang, X.

Y. Yang, W. Guo, X. Wang, Z. Wang, J. Qi, and Y. Zhang, “Size dependence of dielectric constant in a single pencil-like ZnO nanowire,” Nano Lett.12(4), 1919–1922 (2012).
[CrossRef] [PubMed]

J. Shi, J. Chen, Z. Feng, T. Chen, X. Wang, P. Ying, and C. Li, “Time-resolved photoluminescence characteristics of subnanometer ZnO clusters confined in the micropores of zeolites,” J. Phys. Chem. B110(51), 25612–25618 (2006).
[CrossRef] [PubMed]

S. Wu, N. Yuan, H. Xu, X. Wang, and Z. A. Schelly, “Synthesis and bandgap oscillation of uncapped, ZnO clusters by electroporation of vesicles,” Nanotechnology17(18), 4713–4718 (2006).
[CrossRef] [PubMed]

Wang, Z.

Y. Yang, W. Guo, X. Wang, Z. Wang, J. Qi, and Y. Zhang, “Size dependence of dielectric constant in a single pencil-like ZnO nanowire,” Nano Lett.12(4), 1919–1922 (2012).
[CrossRef] [PubMed]

Z. Wang, X. F. Qian, J. Yin, and Z. K. Zhu, “Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route,” Langmuir20(8), 3441–3448 (2004).
[CrossRef] [PubMed]

Wang, Z. L.

B. S. Zou, V. V. Volkov, and Z. L. Wang, “Optical properties of amorphous ZnO, CdO, and PbO nanoclusters in solution,” Chem. Mater.11(11), 3037–3043 (1999).
[CrossRef]

Wingett, D.

J. Zhang, A. Thurber, D. A. Tenne, J. W. Rasmussen, D. Wingett, C. Hanna, and A. Punnoose, “Enhanced dye fluorescence in novel dye–ZnO nanocomposites,” Adv. Funct. Mater.20(24), 4358–4363 (2010).
[CrossRef]

Wong, G. K. L.

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun.103(8), 459–463 (1997).
[CrossRef]

Wu, J. J.

C. T. Chien, M. C. Wu, C. W. Chen, H. H. Yang, J. J. Wu, W. F. Su, C. S. Lin, and Y. F. Chen, “Polarization-dependent confocal Raman microscopy of an individual ZnO nanorod,” Appl. Phys. Lett.92(22), 223102 (2008).
[CrossRef]

Wu, M. C.

C. T. Chien, M. C. Wu, C. W. Chen, H. H. Yang, J. J. Wu, W. F. Su, C. S. Lin, and Y. F. Chen, “Polarization-dependent confocal Raman microscopy of an individual ZnO nanorod,” Appl. Phys. Lett.92(22), 223102 (2008).
[CrossRef]

Wu, S.

S. Wu, N. Yuan, H. Xu, X. Wang, and Z. A. Schelly, “Synthesis and bandgap oscillation of uncapped, ZnO clusters by electroporation of vesicles,” Nanotechnology17(18), 4713–4718 (2006).
[CrossRef] [PubMed]

Wu, X. H.

T. Y. Hou and X. H. Wu, “A multiscale finite element method for elliptic problems in composite materials and porous media,” J. Comput. Phys.134(1), 169–189 (1997).
[CrossRef]

Wu, Y. L.

Y. L. Wu, S. Fu, A. I. Y. Tok, X. T. Zeng, C. S. Lim, L. C. Kwek, and F. C. Y. Boey, “A dual-colored bio-marker made of doped ZnO nanocrystals,” Nanotechnology19(34), 345605 (2008).
[CrossRef] [PubMed]

Xiao, M.

S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B77(11), 113311 (2008).
[CrossRef]

Xiao, Z. D.

J. W. Zhao, L. R. Qin, Z. D. Xiao, and L. D. Zhang, “Synthesis and characterization of novel flower-shaped ZnO nanostructures,” Mater. Chem. Phys.105(2-3), 194–198 (2007).
[CrossRef]

Xie, M. H.

D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Observation of both second-harmonic and multiphoton-absorption-induced luminescence in ZnO,” IEEE Photon. Technol. Lett.18(14), 1533–1535 (2006).
[CrossRef]

D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature,” Opt. Lett.30(24), 3377–3379 (2005).
[CrossRef] [PubMed]

Xie, R.

R. Xie, D. Li, H. Zhang, D. Yang, M. Jiang, T. Sekiguchi, B. Liu, and Y. Bando, “Low-temperature growth of uniform ZnO particles with controllable ellipsoidal morphologies and characteristic luminescence patterns,” J. Phys. Chem. B110(39), 19147–19153 (2006).
[CrossRef] [PubMed]

Xu, C. X.

G. P. Zhu, J. Zhu, C. X. Xu, X. Li, J. P. Liu, and Y. P. Cui, “Multi-photon induced ultraviolet emission from hexagram-shaped ZnO nanorods,” Appl. Phys., A Mater. Sci. Process.95(2), 381–385 (2009).
[CrossRef]

Xu, H.

S. Wu, N. Yuan, H. Xu, X. Wang, and Z. A. Schelly, “Synthesis and bandgap oscillation of uncapped, ZnO clusters by electroporation of vesicles,” Nanotechnology17(18), 4713–4718 (2006).
[CrossRef] [PubMed]

Xu, S. J.

D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Observation of both second-harmonic and multiphoton-absorption-induced luminescence in ZnO,” IEEE Photon. Technol. Lett.18(14), 1533–1535 (2006).
[CrossRef]

D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature,” Opt. Lett.30(24), 3377–3379 (2005).
[CrossRef] [PubMed]

Yan, H.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. D. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett.2(4), 279–283 (2002).
[CrossRef]

Yang, D.

R. Xie, D. Li, H. Zhang, D. Yang, M. Jiang, T. Sekiguchi, B. Liu, and Y. Bando, “Low-temperature growth of uniform ZnO particles with controllable ellipsoidal morphologies and characteristic luminescence patterns,” J. Phys. Chem. B110(39), 19147–19153 (2006).
[CrossRef] [PubMed]

Yang, H. H.

C. T. Chien, M. C. Wu, C. W. Chen, H. H. Yang, J. J. Wu, W. F. Su, C. S. Lin, and Y. F. Chen, “Polarization-dependent confocal Raman microscopy of an individual ZnO nanorod,” Appl. Phys. Lett.92(22), 223102 (2008).
[CrossRef]

Yang, P. D.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. D. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett.2(4), 279–283 (2002).
[CrossRef]

Yang, Y.

Y. Yang, W. Guo, X. Wang, Z. Wang, J. Qi, and Y. Zhang, “Size dependence of dielectric constant in a single pencil-like ZnO nanowire,” Nano Lett.12(4), 1919–1922 (2012).
[CrossRef] [PubMed]

Yao, T.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett.70(17), 2230–2232 (1997).
[CrossRef]

Yin, J.

Z. Wang, X. F. Qian, J. Yin, and Z. K. Zhu, “Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route,” Langmuir20(8), 3441–3448 (2004).
[CrossRef] [PubMed]

Ying, P.

J. Shi, J. Chen, Z. Feng, T. Chen, X. Wang, P. Ying, and C. Li, “Time-resolved photoluminescence characteristics of subnanometer ZnO clusters confined in the micropores of zeolites,” J. Phys. Chem. B110(51), 25612–25618 (2006).
[CrossRef] [PubMed]

Yu, W. D.

X. D. Gao, X. M. Li, and W. D. Yu, “Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex,” J. Phys. Chem. B109(3), 1155–1161 (2005).
[CrossRef] [PubMed]

Yuan, N.

S. Wu, N. Yuan, H. Xu, X. Wang, and Z. A. Schelly, “Synthesis and bandgap oscillation of uncapped, ZnO clusters by electroporation of vesicles,” Nanotechnology17(18), 4713–4718 (2006).
[CrossRef] [PubMed]

Zeng, H.

B. Cao, W. Cai, and H. Zeng, “Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays,” Appl. Phys. Lett.88(16), 161101 (2006).
[CrossRef]

Zeng, X. T.

Y. L. Wu, S. Fu, A. I. Y. Tok, X. T. Zeng, C. S. Lim, L. C. Kwek, and F. C. Y. Boey, “A dual-colored bio-marker made of doped ZnO nanocrystals,” Nanotechnology19(34), 345605 (2008).
[CrossRef] [PubMed]

Zhang, H.

R. Xie, D. Li, H. Zhang, D. Yang, M. Jiang, T. Sekiguchi, B. Liu, and Y. Bando, “Low-temperature growth of uniform ZnO particles with controllable ellipsoidal morphologies and characteristic luminescence patterns,” J. Phys. Chem. B110(39), 19147–19153 (2006).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, A. Thurber, D. A. Tenne, J. W. Rasmussen, D. Wingett, C. Hanna, and A. Punnoose, “Enhanced dye fluorescence in novel dye–ZnO nanocomposites,” Adv. Funct. Mater.20(24), 4358–4363 (2010).
[CrossRef]

Zhang, L. D.

J. W. Zhao, L. R. Qin, Z. D. Xiao, and L. D. Zhang, “Synthesis and characterization of novel flower-shaped ZnO nanostructures,” Mater. Chem. Phys.105(2-3), 194–198 (2007).
[CrossRef]

Zhang, Y.

Y. Yang, W. Guo, X. Wang, Z. Wang, J. Qi, and Y. Zhang, “Size dependence of dielectric constant in a single pencil-like ZnO nanowire,” Nano Lett.12(4), 1919–1922 (2012).
[CrossRef] [PubMed]

Zhao, J. W.

J. W. Zhao, L. R. Qin, Z. D. Xiao, and L. D. Zhang, “Synthesis and characterization of novel flower-shaped ZnO nanostructures,” Mater. Chem. Phys.105(2-3), 194–198 (2007).
[CrossRef]

Zhou, H. J.

S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B77(11), 113311 (2008).
[CrossRef]

Zhou, J.

H. Guo, Z. Lin, Z. Feng, L. Lin, and J. Zhou, “White-light-emitting diode based on ZnO nanotubes,” J. Phys. Chem. C113(28), 12546–12550 (2009).
[CrossRef]

Zhu, G. P.

G. P. Zhu, J. Zhu, C. X. Xu, X. Li, J. P. Liu, and Y. P. Cui, “Multi-photon induced ultraviolet emission from hexagram-shaped ZnO nanorods,” Appl. Phys., A Mater. Sci. Process.95(2), 381–385 (2009).
[CrossRef]

Zhu, J.

G. P. Zhu, J. Zhu, C. X. Xu, X. Li, J. P. Liu, and Y. P. Cui, “Multi-photon induced ultraviolet emission from hexagram-shaped ZnO nanorods,” Appl. Phys., A Mater. Sci. Process.95(2), 381–385 (2009).
[CrossRef]

Zhu, Z.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett.70(17), 2230–2232 (1997).
[CrossRef]

Zhu, Z. K.

Z. Wang, X. F. Qian, J. Yin, and Z. K. Zhu, “Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route,” Langmuir20(8), 3441–3448 (2004).
[CrossRef] [PubMed]

Zou, B. S.

B. S. Zou, V. V. Volkov, and Z. L. Wang, “Optical properties of amorphous ZnO, CdO, and PbO nanoclusters in solution,” Chem. Mater.11(11), 3037–3043 (1999).
[CrossRef]

Zu, P.

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun.103(8), 459–463 (1997).
[CrossRef]

Adv. Funct. Mater. (1)

J. Zhang, A. Thurber, D. A. Tenne, J. W. Rasmussen, D. Wingett, C. Hanna, and A. Punnoose, “Enhanced dye fluorescence in novel dye–ZnO nanocomposites,” Adv. Funct. Mater.20(24), 4358–4363 (2010).
[CrossRef]

Appl. Phys. Lett. (5)

U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, “Second-harmonic efficiency of ZnO nanolayers,” Appl. Phys. Lett.84(2), 170–172 (2004).
[CrossRef]

R. Prasanth, L. K. van Vugt, D. A. M. Vanmaekelbergh, and H. C. Gerritsen, “Resonance enhancement of optical second harmonic generation in a ZnO nanowire,” Appl. Phys. Lett.88(18), 181501 (2006).
[CrossRef]

B. Cao, W. Cai, and H. Zeng, “Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays,” Appl. Phys. Lett.88(16), 161101 (2006).
[CrossRef]

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett.70(17), 2230–2232 (1997).
[CrossRef]

C. T. Chien, M. C. Wu, C. W. Chen, H. H. Yang, J. J. Wu, W. F. Su, C. S. Lin, and Y. F. Chen, “Polarization-dependent confocal Raman microscopy of an individual ZnO nanorod,” Appl. Phys. Lett.92(22), 223102 (2008).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

G. P. Zhu, J. Zhu, C. X. Xu, X. Li, J. P. Liu, and Y. P. Cui, “Multi-photon induced ultraviolet emission from hexagram-shaped ZnO nanorods,” Appl. Phys., A Mater. Sci. Process.95(2), 381–385 (2009).
[CrossRef]

Chem. Mater. (1)

B. S. Zou, V. V. Volkov, and Z. L. Wang, “Optical properties of amorphous ZnO, CdO, and PbO nanoclusters in solution,” Chem. Mater.11(11), 3037–3043 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Observation of both second-harmonic and multiphoton-absorption-induced luminescence in ZnO,” IEEE Photon. Technol. Lett.18(14), 1533–1535 (2006).
[CrossRef]

Int. J. Thermophys. (1)

S. G. S. Beirão, A. P. C. Ribeiro, M. J. V. Lourenço, F. J. V. Santos, and C. A. Nieto de Castro, “Thermal conductivity of humid air,” Int. J. Thermophys.33(8-9), 1686–1703 (2012).
[CrossRef]

J Biophotonics (1)

B. E. Urban, P. B. Neogi, S. J. Butler, Y. Fujita, and A. Neogi, “Second harmonic imaging of plants tissues and cell implosion using two-photon process in ZnO nanoparticles,” J Biophotonics5(3), 283–291 (2012).
[CrossRef] [PubMed]

J. Appl. Phys. (3)

J. Alvarez-Quintana, E. Martínez, E. Pérez-Tijerina, S. A. Pérez-García, and J. Rodríguez-Viejo, “Temperature dependent thermal conductivity of polycrystalline ZnO films,” J. Appl. Phys.107(6), 063713 (2010).
[CrossRef]

J. Dai, Z. Fu, S. Lan, X. Wan, S. Tie, V. A. Trofimov, and T. M. Lysak, “Modified threshold of two-photon-pumped random lasing of ZnO nanorods by femtosecond laser ablation,” J. Appl. Phys.112(6), 063102 (2012).
[CrossRef]

J. H. Lin, Y. J. Chen, H. Y. Lin, and W. F. Hsieh, “Two-photon resonance assisted huge nonlinear refraction and absorption in ZnO thin films,” J. Appl. Phys.97(3), 033526 (2005).
[CrossRef]

J. Comput. Phys. (1)

T. Y. Hou and X. H. Wu, “A multiscale finite element method for elliptic problems in composite materials and porous media,” J. Comput. Phys.134(1), 169–189 (1997).
[CrossRef]

J. Lumin. (1)

B. Jin and D. Wang, “Strong violet emission from zinc oxide dumbbell-like microrods and nanowires,” J. Lumin.132(8), 1879–1884 (2012).
[CrossRef]

J. Mater. Chem. (1)

O. Mondal and M. Pal, “Strong and unusual violet-blue emission in ring shaped ZnO nanocrystals,” J. Mater. Chem.21(45), 18354–18358 (2011).
[CrossRef]

J. Phys. Chem. A (1)

S. Baskoutas and G. Bester, “Transition in the optical emission polarization of ZnO nanorods,” J. Phys. Chem. A115, 15862–15867 (2011).
[PubMed]

J. Phys. Chem. B (3)

J. Shi, J. Chen, Z. Feng, T. Chen, X. Wang, P. Ying, and C. Li, “Time-resolved photoluminescence characteristics of subnanometer ZnO clusters confined in the micropores of zeolites,” J. Phys. Chem. B110(51), 25612–25618 (2006).
[CrossRef] [PubMed]

X. D. Gao, X. M. Li, and W. D. Yu, “Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex,” J. Phys. Chem. B109(3), 1155–1161 (2005).
[CrossRef] [PubMed]

R. Xie, D. Li, H. Zhang, D. Yang, M. Jiang, T. Sekiguchi, B. Liu, and Y. Bando, “Low-temperature growth of uniform ZnO particles with controllable ellipsoidal morphologies and characteristic luminescence patterns,” J. Phys. Chem. B110(39), 19147–19153 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C (2)

H. Guo, Z. Lin, Z. Feng, L. Lin, and J. Zhou, “White-light-emitting diode based on ZnO nanotubes,” J. Phys. Chem. C113(28), 12546–12550 (2009).
[CrossRef]

D. Tainoff, B. Masenelli, O. Boisron, G. Guiraud, and P. Mélinon, “Crystallinity, stoichiometry, and luminescence of high quality ZnO nanoclusters,” J. Phys. Chem. C112(33), 12623–12627 (2008).
[CrossRef]

Langmuir (1)

Z. Wang, X. F. Qian, J. Yin, and Z. K. Zhu, “Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route,” Langmuir20(8), 3441–3448 (2004).
[CrossRef] [PubMed]

Mater. Chem. Phys. (1)

J. W. Zhao, L. R. Qin, Z. D. Xiao, and L. D. Zhang, “Synthesis and characterization of novel flower-shaped ZnO nanostructures,” Mater. Chem. Phys.105(2-3), 194–198 (2007).
[CrossRef]

Nano Lett. (2)

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. D. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett.2(4), 279–283 (2002).
[CrossRef]

Y. Yang, W. Guo, X. Wang, Z. Wang, J. Qi, and Y. Zhang, “Size dependence of dielectric constant in a single pencil-like ZnO nanowire,” Nano Lett.12(4), 1919–1922 (2012).
[CrossRef] [PubMed]

Nanoscale Res. Lett. (1)

G. Jacopin, L. Rigutti, A. L. Bugallo, F. H. Julien, C. Baratto, E. Comini, M. Ferroni, and M. Tchernycheva, “High degree of polarization of the near-band-edge photoluminescence in ZnO nanowires,” Nanoscale Res. Lett.6(1), 501 (2011).
[CrossRef] [PubMed]

Nanotechnology (3)

S. Wu, N. Yuan, H. Xu, X. Wang, and Z. A. Schelly, “Synthesis and bandgap oscillation of uncapped, ZnO clusters by electroporation of vesicles,” Nanotechnology17(18), 4713–4718 (2006).
[CrossRef] [PubMed]

H. D. Deng, G. C. Li, Q. F. Dai, M. Ouyang, S. Lan, V. A. Trofimov, and T. M. Lysak, “Size dependent competition between second harmonic generation and two-photon luminescence observed in gold nanoparticles,” Nanotechnology24(7), 075201 (2013).
[CrossRef] [PubMed]

Y. L. Wu, S. Fu, A. I. Y. Tok, X. T. Zeng, C. S. Lim, L. C. Kwek, and F. C. Y. Boey, “A dual-colored bio-marker made of doped ZnO nanocrystals,” Nanotechnology19(34), 345605 (2008).
[CrossRef] [PubMed]

Nat. Mater. (1)

M. C. Newton, S. J. Leake, R. Harder, and I. K. Robinson, “Three-dimensional imaging of strain in a single ZnO nanorod,” Nat. Mater.9(2), 120–124 (2010).
[CrossRef] [PubMed]

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. B (1)

S. W. Liu, H. J. Zhou, A. Ricca, R. Tian, and M. Xiao, “Far-field second-harmonic fingerprint of twinning in single ZnO rods,” Phys. Rev. B77(11), 113311 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

D. C. Look, J. W. Hemsky, and J. R. Sizelove, “Residual native shallow donor in ZnO,” Phys. Rev. Lett.82(12), 2552–2555 (1999).
[CrossRef]

Science (1)

R. F. Service, “Will UV lasers beat the blues?” Science276(5314), 895 (1997).
[CrossRef]

Solid State Commun. (1)

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature,” Solid State Commun.103(8), 459–463 (1997).
[CrossRef]

Other (2)

B. T. Draine and P. J. Flatau, User guide for the discrete dipole approximation code DDSCAT 7.2, arXiv: 1202.3424 (2012).

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

SEM image of an ensemble of ZnO NRs (a) and TEM image of a single ZnO NR (b).

Fig. 2
Fig. 2

SEM images of typical single (a), double (b) and multiple (c) ZnO NRs.

Fig. 3
Fig. 3

CCD image of the single ZnO NR we studied. The inset shows the magnified image in which the bright spot (indicated by the arrow) gives the center of the excitation spot where the strongest nonlinear signal was generated.

Fig. 4
Fig. 4

Evolution of the nonlinear response spectrum of the single ZnO NR with increasing excitation density.

Fig. 5
Fig. 5

Excitation density dependent SHG for the single ZnO NR.

Fig. 6
Fig. 6

CCD image of the double ZnO NRs we studied. The inset shows the magnified image in which the bright spot (indicated by the arrow) gives the center of the excitation spot where the strongest nonlinear signal was generated.

Fig. 7
Fig. 7

Evolution of the nonlinear response spectrum of the double ZnO NRs with increasing excitation density.

Fig. 8
Fig. 8

Excitation density dependent SHG (a) and TPL (b) for the double ZnO NRs.

Fig. 9
Fig. 9

Evolution of the ratio of the integrated intensity of the TPL to that of the SHG with increasing excitation density for the double ZnO NRs.

Fig. 10
Fig. 10

CCD image of the multiple ZnO NRs we studied. The inset shows the magnified image in which the bright spot (indicated by the arrow) gives the center of the excitation spot where the strongest nonlinear signal was generated.

Fig. 11
Fig. 11

Evolution of the nonlinear response spectrum of the multiple ZnO NRs with increasing excitation density.

Fig. 12
Fig. 12

Excitation density dependent SHG (a) and TPL (b) for the multiple ZnO NRs.

Fig. 13
Fig. 13

Evolution of the ratio of the integrated intensity of the TPL to that of the SHG with increasing excitation density for the multiple ZnO NRs.

Fig. 14
Fig. 14

Calculated electric field intensity distributions in the single, double and multiple ZnO NRs.

Fig. 15
Fig. 15

Heat diffusion and temperature distribution calculated for the single (a), double (b) and multiple (c) ZnO NRs at an excitation density of 15 MW/cm2.

Fig. 16
Fig. 16

Excitation density dependent temperature rise induced by the heat accumulation effect for the single, double and multiple ZnO NRs.

Metrics