Abstract

A novel laser feedback interferometry based on high-order feedback is presented and realized for the first time. The interferometer uses a birefringence dual frequency laser and a tilted feedback mirror with high amplitude reflectivity to generate high density cosine-like optical fringes. These optical fringes have nanoscale resolution. Particularly, phase quasi-quadrature between the dual frequency fringes is obtained because of the phase shift caused by the changes of external optical path length. This phase characteristic can be used to distinguish the direction of movement easily. Under typical room conditions, the system’s resolution is 0.51nm in 850μm range, and its 2 min displacement accuracy is 5nm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol.12(9), 1577–1587 (1994).
    [CrossRef]
  2. S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron.31(1), 113–119 (1995).
    [CrossRef]
  3. B. Ovryn and J. H. Andrews, “Phase-shifted laser feedback interferometry,” Opt. Lett.23(14), 1078–1080 (1998).
    [CrossRef] [PubMed]
  4. T. Suzuki, T. Takahashi, and O. Sasaki, “Disturbance-free phase-shifting laser diode interferometer using adaptive feedback control,” Appl. Opt.48(29), 5561–5566 (2009).
    [CrossRef] [PubMed]
  5. T. Suzuki, S. Hirabayashi, O. Sasaki, and T. Maruyama, “Self-mixing type of phase-locked llaser diode interferometer,” Opt. Eng.38(3), 543–548 (1999).
    [CrossRef]
  6. J. Liu and I. Yamaguchi, “Fringe locking in a laser diode interferometer by optical feedback during modulation of injection current,” Opt. Rev.6(2), 100–103 (1999).
    [CrossRef]
  7. N. Takahashi, S. Kakuma, and R. Ohba, “Active heterodyne interferometric displacement measurement using optical feedback,” Opt. Eng.35(3), 802–807 (1996).
    [CrossRef]
  8. O. Sasaki, K. Takahashi, and T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with a feedback control system to eliminate external disturbance,” Opt. Eng.29(12), 1511–1515 (1990).
    [CrossRef]
  9. D. Guo, M. Wang, and S. Tan, “Self-mixing interferometer based on sinusoidal phase modulating technique,” Opt. Express13(5), 1537–1543 (2005).
    [CrossRef] [PubMed]
  10. Z. Zeng, S. Zhang, Y. Wu, P. Zhang, Z. Zhao, and Y. Li, “High density fringes and phase behavior in birefringence dual frequency laser with multiple feedback,” Opt. Express20(4), 4747–4752 (2012).
    [CrossRef] [PubMed]

2012 (1)

2009 (1)

2005 (1)

1999 (2)

T. Suzuki, S. Hirabayashi, O. Sasaki, and T. Maruyama, “Self-mixing type of phase-locked llaser diode interferometer,” Opt. Eng.38(3), 543–548 (1999).
[CrossRef]

J. Liu and I. Yamaguchi, “Fringe locking in a laser diode interferometer by optical feedback during modulation of injection current,” Opt. Rev.6(2), 100–103 (1999).
[CrossRef]

1998 (1)

1996 (1)

N. Takahashi, S. Kakuma, and R. Ohba, “Active heterodyne interferometric displacement measurement using optical feedback,” Opt. Eng.35(3), 802–807 (1996).
[CrossRef]

1995 (1)

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron.31(1), 113–119 (1995).
[CrossRef]

1994 (1)

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol.12(9), 1577–1587 (1994).
[CrossRef]

1990 (1)

O. Sasaki, K. Takahashi, and T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with a feedback control system to eliminate external disturbance,” Opt. Eng.29(12), 1511–1515 (1990).
[CrossRef]

Andrews, J. H.

Boyle, W. J. O.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol.12(9), 1577–1587 (1994).
[CrossRef]

Donati, S.

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron.31(1), 113–119 (1995).
[CrossRef]

Giuliani, G.

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron.31(1), 113–119 (1995).
[CrossRef]

Grattan, K. T. V.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol.12(9), 1577–1587 (1994).
[CrossRef]

Guo, D.

Hirabayashi, S.

T. Suzuki, S. Hirabayashi, O. Sasaki, and T. Maruyama, “Self-mixing type of phase-locked llaser diode interferometer,” Opt. Eng.38(3), 543–548 (1999).
[CrossRef]

Kakuma, S.

N. Takahashi, S. Kakuma, and R. Ohba, “Active heterodyne interferometric displacement measurement using optical feedback,” Opt. Eng.35(3), 802–807 (1996).
[CrossRef]

Li, Y.

Liu, J.

J. Liu and I. Yamaguchi, “Fringe locking in a laser diode interferometer by optical feedback during modulation of injection current,” Opt. Rev.6(2), 100–103 (1999).
[CrossRef]

Maruyama, T.

T. Suzuki, S. Hirabayashi, O. Sasaki, and T. Maruyama, “Self-mixing type of phase-locked llaser diode interferometer,” Opt. Eng.38(3), 543–548 (1999).
[CrossRef]

Merlo, S.

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron.31(1), 113–119 (1995).
[CrossRef]

Ohba, R.

N. Takahashi, S. Kakuma, and R. Ohba, “Active heterodyne interferometric displacement measurement using optical feedback,” Opt. Eng.35(3), 802–807 (1996).
[CrossRef]

Ovryn, B.

Palmer, A. W.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol.12(9), 1577–1587 (1994).
[CrossRef]

Sasaki, O.

T. Suzuki, T. Takahashi, and O. Sasaki, “Disturbance-free phase-shifting laser diode interferometer using adaptive feedback control,” Appl. Opt.48(29), 5561–5566 (2009).
[CrossRef] [PubMed]

T. Suzuki, S. Hirabayashi, O. Sasaki, and T. Maruyama, “Self-mixing type of phase-locked llaser diode interferometer,” Opt. Eng.38(3), 543–548 (1999).
[CrossRef]

O. Sasaki, K. Takahashi, and T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with a feedback control system to eliminate external disturbance,” Opt. Eng.29(12), 1511–1515 (1990).
[CrossRef]

Suzuki, T.

T. Suzuki, T. Takahashi, and O. Sasaki, “Disturbance-free phase-shifting laser diode interferometer using adaptive feedback control,” Appl. Opt.48(29), 5561–5566 (2009).
[CrossRef] [PubMed]

T. Suzuki, S. Hirabayashi, O. Sasaki, and T. Maruyama, “Self-mixing type of phase-locked llaser diode interferometer,” Opt. Eng.38(3), 543–548 (1999).
[CrossRef]

O. Sasaki, K. Takahashi, and T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with a feedback control system to eliminate external disturbance,” Opt. Eng.29(12), 1511–1515 (1990).
[CrossRef]

Takahashi, K.

O. Sasaki, K. Takahashi, and T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with a feedback control system to eliminate external disturbance,” Opt. Eng.29(12), 1511–1515 (1990).
[CrossRef]

Takahashi, N.

N. Takahashi, S. Kakuma, and R. Ohba, “Active heterodyne interferometric displacement measurement using optical feedback,” Opt. Eng.35(3), 802–807 (1996).
[CrossRef]

Takahashi, T.

Tan, S.

Wang, M.

Wang, W. M.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol.12(9), 1577–1587 (1994).
[CrossRef]

Wu, Y.

Yamaguchi, I.

J. Liu and I. Yamaguchi, “Fringe locking in a laser diode interferometer by optical feedback during modulation of injection current,” Opt. Rev.6(2), 100–103 (1999).
[CrossRef]

Zeng, Z.

Zhang, P.

Zhang, S.

Zhao, Z.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

S. Donati, G. Giuliani, and S. Merlo, “Laser diode feedback interferometer for measurement of displacements without ambiguity,” IEEE J. Quantum Electron.31(1), 113–119 (1995).
[CrossRef]

J. Lightwave Technol. (1)

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol.12(9), 1577–1587 (1994).
[CrossRef]

Opt. Eng. (3)

T. Suzuki, S. Hirabayashi, O. Sasaki, and T. Maruyama, “Self-mixing type of phase-locked llaser diode interferometer,” Opt. Eng.38(3), 543–548 (1999).
[CrossRef]

N. Takahashi, S. Kakuma, and R. Ohba, “Active heterodyne interferometric displacement measurement using optical feedback,” Opt. Eng.35(3), 802–807 (1996).
[CrossRef]

O. Sasaki, K. Takahashi, and T. Suzuki, “Sinusoidal phase modulating laser diode interferometer with a feedback control system to eliminate external disturbance,” Opt. Eng.29(12), 1511–1515 (1990).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Rev. (1)

J. Liu and I. Yamaguchi, “Fringe locking in a laser diode interferometer by optical feedback during modulation of injection current,” Opt. Rev.6(2), 100–103 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Laser high-order feedback interferometer: (a) Schematic diagram; PI: nanopositioning stage; PZT: piezoceramics; M3: external feedback mirror; M1: laser cavity mirror; Q: quartz crystal plate; T: laser capillary; M2: laser cavity mirror; W: Wollaston prism; D1 and D2: photoelectric detectors; S: instrument shell; C: signals processing circuits; (b) Instrument prototype.

Fig. 2
Fig. 2

Optical feedback signals, (a): high density fringes (b): the phase relationship of the e-light and o-light on the down-cycle of the PZT voltage (c): the phase relationship of the e-light and o-light on the up-cycle of the PZT voltage.

Fig. 3
Fig. 3

Flow chat of the signal processing for displacement sensor.

Fig. 4
Fig. 4

The contrast results between LHFI and PI nanopositioning system.

Fig. 5
Fig. 5

The displacement stability of the LHFI.

Tables (1)

Tables Icon

Table 1 The pulse numbers of LHFI in 100μm

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I e = I e0 + η e cos( 4π c n ν e l) I o = I o0 + η o cos( 4π c n ν o l)
Δϕ=2πn l L Δν Λ =4πΔνn l c
4πΔνn Δl c π 9
Δ u = λ 62×5 × π/9 π/2 =0.45nm
Δn=[0.00268ΔP0.929ΔT0.00042Δf]× 10 6
Δ= ( Δ u ) 2 + ( Δ d ) 2 + ( Δ λ ) 2 + ( Δ n ) 2 =1.3nm

Metrics