Abstract

Focus tunable, adaptive lenses provide several advantages over traditional lens assemblies in terms of compactness, cost, efficiency, and flexibility. To further improve the simplicity and compact nature of adaptive lenses, we present an elastomer-liquid lens system which makes use of an inline, transparent electroactive polymer actuator. The lens requires only a minimal number of components: a frame, a passive membrane, a dielectric elastomer actuator membrane, and a clear liquid. The focal length variation was recorded to be greater than 100% with this system, responding in less than one second. Through the analysis of membrane deformation within geometrical constraints, it is shown that by selecting appropriate lens dimensions, even larger focusing dynamic ranges can be achieved.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ren and S.-T. Wu, Introduction to adaptive lenses (Hoboken, New Jersey: John Wiley & Sons, Inc., 2012).
  2. M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” in SPIE Proc. 8167, (2011).
    [CrossRef]
  3. G. C. Knollman, J. L. S. Bellin, and J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am.49(1B), 253–261 (1971).
    [CrossRef]
  4. N. Sugiura and S. Morita, “Variable-focus liquid-filled optical lens,” Appl. Opt.32(22), 4181–4186 (1993).
    [CrossRef] [PubMed]
  5. H. Ren and S.-T. Wu, “Variable-focus liquid lens,” Opt. Express15(10), 5931–5936 (2007).
    [CrossRef] [PubMed]
  6. F. Schneider, J. Draheim, C. Müller, and U. Wallrabe, “Optimization of an adaptive PDMS-membrane lens with an integrated actuator,” Sensor Actuat. A.154(2), 316–321 (2009).
    [CrossRef]
  7. H.-M. Son, M. Y. Kim, and Y.-J. Lee, “Tunable-focus liquid lens system controlled by antagonistic winding-type SMA actuator,” Opt. Express17(16), 14339–14350 (2009).
    [CrossRef] [PubMed]
  8. G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express16(16), 11847–11857 (2008).
    [CrossRef] [PubMed]
  9. F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater.21(21), 4152–4158 (2011).
    [CrossRef]
  10. S. Shian, R. M. Diebold, A. McNamara, and D. R. Clarke, “Highly compliant transparent electrodes,” Appl. Phys. Lett.101(6), 061101 (2012).
    [CrossRef]
  11. S. I. Son, D. Pugal, T. Hwang, H. R. Choi, J. C. Koo, Y. Lee, K. Kim, and J.-D. Nam, “Electromechanically driven variable-focus lens based on transparent dielectric elastomer,” Appl. Opt.51(15), 2987–2996 (2012).
    [CrossRef] [PubMed]
  12. H. Wang, S. Cai, F. Carpi, and Z. Suo, “Computational model of hydrostatically coupled dielectric elastomer actuators,” J. Appl. Mech.79(3), 031008 (2012).
    [CrossRef]
  13. P. Brochu and Q. Pei, “Advances in dielectric elastomers for actuators and artificial muscles,” Macromol. Rapid Commun.31(1), 10–36 (2010).
    [CrossRef] [PubMed]
  14. R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science287(5454), 836–839 (2000).
    [CrossRef] [PubMed]
  15. F. Carpi, G. Frediani, M. Nanni, and D. De Rossi, “Granularly coupled dielectric elastomer actuators,” IEEE/ASME Trans. Mechatronics16(1), 16–23 (2011).

2012 (3)

S. Shian, R. M. Diebold, A. McNamara, and D. R. Clarke, “Highly compliant transparent electrodes,” Appl. Phys. Lett.101(6), 061101 (2012).
[CrossRef]

S. I. Son, D. Pugal, T. Hwang, H. R. Choi, J. C. Koo, Y. Lee, K. Kim, and J.-D. Nam, “Electromechanically driven variable-focus lens based on transparent dielectric elastomer,” Appl. Opt.51(15), 2987–2996 (2012).
[CrossRef] [PubMed]

H. Wang, S. Cai, F. Carpi, and Z. Suo, “Computational model of hydrostatically coupled dielectric elastomer actuators,” J. Appl. Mech.79(3), 031008 (2012).
[CrossRef]

2011 (2)

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater.21(21), 4152–4158 (2011).
[CrossRef]

F. Carpi, G. Frediani, M. Nanni, and D. De Rossi, “Granularly coupled dielectric elastomer actuators,” IEEE/ASME Trans. Mechatronics16(1), 16–23 (2011).

2010 (1)

P. Brochu and Q. Pei, “Advances in dielectric elastomers for actuators and artificial muscles,” Macromol. Rapid Commun.31(1), 10–36 (2010).
[CrossRef] [PubMed]

2009 (2)

F. Schneider, J. Draheim, C. Müller, and U. Wallrabe, “Optimization of an adaptive PDMS-membrane lens with an integrated actuator,” Sensor Actuat. A.154(2), 316–321 (2009).
[CrossRef]

H.-M. Son, M. Y. Kim, and Y.-J. Lee, “Tunable-focus liquid lens system controlled by antagonistic winding-type SMA actuator,” Opt. Express17(16), 14339–14350 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

2000 (1)

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science287(5454), 836–839 (2000).
[CrossRef] [PubMed]

1993 (1)

1971 (1)

G. C. Knollman, J. L. S. Bellin, and J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am.49(1B), 253–261 (1971).
[CrossRef]

Baer, E.

Beadie, G.

Bellin, J. L. S.

G. C. Knollman, J. L. S. Bellin, and J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am.49(1B), 253–261 (1971).
[CrossRef]

Brochu, P.

P. Brochu and Q. Pei, “Advances in dielectric elastomers for actuators and artificial muscles,” Macromol. Rapid Commun.31(1), 10–36 (2010).
[CrossRef] [PubMed]

Cai, S.

H. Wang, S. Cai, F. Carpi, and Z. Suo, “Computational model of hydrostatically coupled dielectric elastomer actuators,” J. Appl. Mech.79(3), 031008 (2012).
[CrossRef]

Carpi, F.

H. Wang, S. Cai, F. Carpi, and Z. Suo, “Computational model of hydrostatically coupled dielectric elastomer actuators,” J. Appl. Mech.79(3), 031008 (2012).
[CrossRef]

F. Carpi, G. Frediani, M. Nanni, and D. De Rossi, “Granularly coupled dielectric elastomer actuators,” IEEE/ASME Trans. Mechatronics16(1), 16–23 (2011).

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater.21(21), 4152–4158 (2011).
[CrossRef]

Choi, H. R.

Clarke, D. R.

S. Shian, R. M. Diebold, A. McNamara, and D. R. Clarke, “Highly compliant transparent electrodes,” Appl. Phys. Lett.101(6), 061101 (2012).
[CrossRef]

De Rossi, D.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater.21(21), 4152–4158 (2011).
[CrossRef]

F. Carpi, G. Frediani, M. Nanni, and D. De Rossi, “Granularly coupled dielectric elastomer actuators,” IEEE/ASME Trans. Mechatronics16(1), 16–23 (2011).

Diebold, R. M.

S. Shian, R. M. Diebold, A. McNamara, and D. R. Clarke, “Highly compliant transparent electrodes,” Appl. Phys. Lett.101(6), 061101 (2012).
[CrossRef]

Draheim, J.

F. Schneider, J. Draheim, C. Müller, and U. Wallrabe, “Optimization of an adaptive PDMS-membrane lens with an integrated actuator,” Sensor Actuat. A.154(2), 316–321 (2009).
[CrossRef]

Frediani, G.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater.21(21), 4152–4158 (2011).
[CrossRef]

F. Carpi, G. Frediani, M. Nanni, and D. De Rossi, “Granularly coupled dielectric elastomer actuators,” IEEE/ASME Trans. Mechatronics16(1), 16–23 (2011).

Hiltner, A.

Hwang, T.

Joseph, J.

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science287(5454), 836–839 (2000).
[CrossRef] [PubMed]

Kazmierczak, T.

Kim, K.

Kim, M. Y.

Knollman, G. C.

G. C. Knollman, J. L. S. Bellin, and J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am.49(1B), 253–261 (1971).
[CrossRef]

Koo, J. C.

Kornbluh, R.

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science287(5454), 836–839 (2000).
[CrossRef] [PubMed]

Lee, Y.

Lee, Y.-J.

Lepkowicz, R. S.

McNamara, A.

S. Shian, R. M. Diebold, A. McNamara, and D. R. Clarke, “Highly compliant transparent electrodes,” Appl. Phys. Lett.101(6), 061101 (2012).
[CrossRef]

Morita, S.

Müller, C.

F. Schneider, J. Draheim, C. Müller, and U. Wallrabe, “Optimization of an adaptive PDMS-membrane lens with an integrated actuator,” Sensor Actuat. A.154(2), 316–321 (2009).
[CrossRef]

Nam, J.-D.

Nanni, M.

F. Carpi, G. Frediani, M. Nanni, and D. De Rossi, “Granularly coupled dielectric elastomer actuators,” IEEE/ASME Trans. Mechatronics16(1), 16–23 (2011).

Pei, Q.

P. Brochu and Q. Pei, “Advances in dielectric elastomers for actuators and artificial muscles,” Macromol. Rapid Commun.31(1), 10–36 (2010).
[CrossRef] [PubMed]

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science287(5454), 836–839 (2000).
[CrossRef] [PubMed]

Pelrine, R.

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science287(5454), 836–839 (2000).
[CrossRef] [PubMed]

Ponting, M.

Pugal, D.

Ren, H.

Sandrock, M. L.

Schneider, F.

F. Schneider, J. Draheim, C. Müller, and U. Wallrabe, “Optimization of an adaptive PDMS-membrane lens with an integrated actuator,” Sensor Actuat. A.154(2), 316–321 (2009).
[CrossRef]

Shian, S.

S. Shian, R. M. Diebold, A. McNamara, and D. R. Clarke, “Highly compliant transparent electrodes,” Appl. Phys. Lett.101(6), 061101 (2012).
[CrossRef]

Shirk, J. S.

Son, H.-M.

Son, S. I.

Sugiura, N.

Suo, Z.

H. Wang, S. Cai, F. Carpi, and Z. Suo, “Computational model of hydrostatically coupled dielectric elastomer actuators,” J. Appl. Mech.79(3), 031008 (2012).
[CrossRef]

Turco, S.

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater.21(21), 4152–4158 (2011).
[CrossRef]

Wallrabe, U.

F. Schneider, J. Draheim, C. Müller, and U. Wallrabe, “Optimization of an adaptive PDMS-membrane lens with an integrated actuator,” Sensor Actuat. A.154(2), 316–321 (2009).
[CrossRef]

Wang, H.

H. Wang, S. Cai, F. Carpi, and Z. Suo, “Computational model of hydrostatically coupled dielectric elastomer actuators,” J. Appl. Mech.79(3), 031008 (2012).
[CrossRef]

Weaver, J. L.

G. C. Knollman, J. L. S. Bellin, and J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am.49(1B), 253–261 (1971).
[CrossRef]

Wiggins, M. J.

Wu, S.-T.

Yang, Y.

Adv. Funct. Mater. (1)

F. Carpi, G. Frediani, S. Turco, and D. De Rossi, “Bioinspired tunable lens with muscle-like electroactive elastomers,” Adv. Funct. Mater.21(21), 4152–4158 (2011).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

S. Shian, R. M. Diebold, A. McNamara, and D. R. Clarke, “Highly compliant transparent electrodes,” Appl. Phys. Lett.101(6), 061101 (2012).
[CrossRef]

IEEE/ASME Trans. Mechatronics (1)

F. Carpi, G. Frediani, M. Nanni, and D. De Rossi, “Granularly coupled dielectric elastomer actuators,” IEEE/ASME Trans. Mechatronics16(1), 16–23 (2011).

J. Acoust. Soc. Am. (1)

G. C. Knollman, J. L. S. Bellin, and J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am.49(1B), 253–261 (1971).
[CrossRef]

J. Appl. Mech. (1)

H. Wang, S. Cai, F. Carpi, and Z. Suo, “Computational model of hydrostatically coupled dielectric elastomer actuators,” J. Appl. Mech.79(3), 031008 (2012).
[CrossRef]

Macromol. Rapid Commun. (1)

P. Brochu and Q. Pei, “Advances in dielectric elastomers for actuators and artificial muscles,” Macromol. Rapid Commun.31(1), 10–36 (2010).
[CrossRef] [PubMed]

Opt. Express (3)

Science (1)

R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-speed electrically actuated elastomers with strain greater than 100%,” Science287(5454), 836–839 (2000).
[CrossRef] [PubMed]

Sensor Actuat. A. (1)

F. Schneider, J. Draheim, C. Müller, and U. Wallrabe, “Optimization of an adaptive PDMS-membrane lens with an integrated actuator,” Sensor Actuat. A.154(2), 316–321 (2009).
[CrossRef]

Other (2)

H. Ren and S.-T. Wu, Introduction to adaptive lenses (Hoboken, New Jersey: John Wiley & Sons, Inc., 2012).

M. Blum, M. Büeler, C. Grätzel, and M. Aschwanden, “Compact optical design solutions using focus tunable lenses,” in SPIE Proc. 8167, (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Construction of the tunable lens, consisting of 3 main parts: dielectric elastomer actuator membrane (part 1), frame (parts 2 and 3), and passive elastomer membrane (part 4). The aperture of the lens is defined by the smallest diameter of the frame cavity or D1. (b) 3-D cross-section of a fully assembled lens. (c) Optical photograph of the tunable lens as viewed along the optical axis and against a black background grid (1 mm grid spacing). The lens aperture (A) and transparent electrode terminals (E) are shown; electrode terminals are identified by blue circles drawn in marker on the device. (d) Schematic of the lens at the rest state (subscripted as ‘o’) and (e) during actuation (subscripted as ‘a’), showing a change in focal length. D, h, and R are the diameter, height, membrane curvature, respectively. Suffix 1 and 2 refer to the passive and the electroactive membranes, respectively. The frame thickness, t, and the lens focal length, f, are also depicted.

Fig. 2
Fig. 2

Calculated maximum focal length change (color coded) with respect to the initial focal length, as a function of the membrane diameter ratio, D2/D1, and initial membrane 1 height, h1o/D1. Black dots represent lens prototypes whose actuation is characterized in Fig. 4.

Fig. 3
Fig. 3

(a) Photographic images at various focal lengths as captured by a CMOS image sensor demonstrating of the focusing capability of the lens. (b) A schematic of the measurement setup used for image acquisition.

Fig. 4
Fig. 4

Focal length variation as function of actuation voltage and initial focal length, fo. A and B refer to the fabricated lenses with dimensions shown in Fig. 2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ M =ε ( V t ) 2 ,
1 f =( n1 )[ 1 R 1 1 R 2 + ( n1 )d n R 1 R 2 ].

Metrics