Abstract

Vibrational spectroscopy has been widely applied in different fields due to its label-free chemical-sensing capability. Coherent anti-Stokes Raman scattering (CARS) provides stronger signal and faster acquisition than spontaneous Raman scattering, making it especially suitable for molecular imaging. Coherently-controlled single-beam CARS simplifies the conventional multi-beam setup, but the vibrational bandwidth and non-trivial spectrum retrieval have been limiting factors. In this work, a coherent supercontinuum generated in an all-normal-dispersion nonlinear fiber is phase-shaped within a narrow bandwidth for broadband vibrational spectroscopy. The Raman spectra can be directly retrieved from the CARS measurements, covering the fingerprint regime up to 1750 cm−1. The retrieved spectra of several chemical species agree with their spontaneous Raman data. The compact fiber supercontinuum source offers broad vibrational bandwidth with high stability and sufficient power, showing the potential for spectroscopic imaging in a wide range of applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem.1(1), 883–909 (2008).
    [CrossRef] [PubMed]
  2. J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B115(24), 7713–7725 (2011).
    [CrossRef] [PubMed]
  3. D. L. Marks and S. A. Boppart, “Nonlinear interferometric vibrational imaging,” Phys. Rev. Lett.92(12), 123905 (2004).
    [CrossRef] [PubMed]
  4. T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25–27 (2004).
    [CrossRef]
  5. C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett.29(24), 2923–2925 (2004).
    [CrossRef] [PubMed]
  6. J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, and M. Joffre, “Fourier-transform coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.31(4), 480–482 (2006).
    [CrossRef] [PubMed]
  7. H. A. Rinia, M. Bonn, M. Müller, and E. M. Vartiainen, “Quantitative CARS spectroscopy using the Maximum Entropy Method: the main lipid phase transition,” ChemPhysChem8(2), 279–287 (2007).
    [CrossRef] [PubMed]
  8. S. Postma, A. C. W. van Rhijn, J. P. Korterik, P. Gross, J. L. Herek, and H. L. Offerhaus, “Application of spectral phase shaping to high resolution CARS spectroscopy,” Opt. Express16(11), 7985–7996 (2008).
    [CrossRef] [PubMed]
  9. I. Rocha-Mendoza, W. Langbein, P. Watson, and P. Borri, “Differential coherent anti-Stokes Raman scattering microscopy with linearly chirped femtosecond laser pulses,” Opt. Lett.34(15), 2258–2260 (2009).
    [CrossRef] [PubMed]
  10. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
    [CrossRef]
  11. Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Annu. Rev. Phys. Chem.60(1), 277–292 (2009).
    [CrossRef] [PubMed]
  12. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature418(6897), 512–514 (2002).
    [CrossRef] [PubMed]
  13. B. von Vacano, T. Buckup, and M. Motzkus, “Highly sensitive single-beam heterodyne coherent anti-Stokes Raman scattering,” Opt. Lett.31(16), 2495–2497 (2006).
    [CrossRef] [PubMed]
  14. B. von Vacano, W. Wohlleben, and M. Motzkus, “Actively shaped supercontinuum from a photonic crystal fiber for nonlinear coherent microspectroscopy,” Opt. Lett.31(3), 413–415 (2006).
    [CrossRef] [PubMed]
  15. B. von Vacano and M. Motzkus, “Time-resolving molecular vibration for microanalytics: single laser beam nonlinear Raman spectroscopy in simulation and experiment,” Phys. Chem. Chem. Phys.10(5), 681–691 (2008).
    [CrossRef] [PubMed]
  16. K. Isobe, A. Suda, M. Tanaka, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Single-pulse coherent anti-Stokes Raman scattering microscopy employing an octave spanning pulse,” Opt. Express17(14), 11259–11266 (2009).
    [CrossRef] [PubMed]
  17. D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett.89(27), 273001 (2002).
    [CrossRef] [PubMed]
  18. D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett.90(21), 213902 (2003).
    [CrossRef] [PubMed]
  19. S. H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A72(4), 041803 (2005).
    [CrossRef]
  20. S. H. Lim, A. G. Caster, and S. R. Leone, “Fourier transform spectral interferometric coherent anti-Stokes Raman scattering (FTSI-CARS) spectroscopy,” Opt. Lett.32(10), 1332–1334 (2007).
    [CrossRef] [PubMed]
  21. H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Express16(8), 5499–5504 (2008).
    [CrossRef] [PubMed]
  22. O. Katz, J. M. Levitt, E. Grinvald, and Y. Silberberg, “Single-beam coherent Raman spectroscopy and microscopy via spectral notch shaping,” Opt. Express18(22), 22693–22701 (2010).
    [CrossRef] [PubMed]
  23. A. Wipfler, J. Rehbinder, T. Buckup, and M. Motzkus, “Full characterization of the third-order nonlinear susceptibility using a single-beam coherent anti-Stokes Raman scattering setup,” Opt. Lett.37(20), 4239–4241 (2012).
    [CrossRef] [PubMed]
  24. H. Kano and H. Hamaguchi, “Ultrabroadband (>2500 cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett.86(12), 121113 (2005).
    [CrossRef]
  25. E. R. Andresen, H. N. Paulsen, V. Birkedal, J. Thøgersen, and S. R. Keiding, “Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers,” J. Opt. Soc. Am. B22(9), 1934–1938 (2005).
    [CrossRef]
  26. S. Murugkar, C. Brideau, A. Ridsdale, M. Naji, P. K. Stys, and H. Anis, “Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths,” Opt. Express15(21), 14028–14037 (2007).
    [CrossRef] [PubMed]
  27. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express17(4), 2984–2996 (2009).
    [CrossRef] [PubMed]
  28. H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser & Photon Rev,1–18 (2012).
  29. N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B24(8), 1786–1792 (2007).
    [CrossRef]
  30. H. Tu, Y. Liu, J. Lægsgaard, U. Sharma, M. Siegel, D. Kopf, and S. A. Boppart, “Scalar generalized nonlinear Schrödinger equation-quantified continuum generation in an all-normal dispersion photonic crystal fiber for broadband coherent optical sources,” Opt. Express18(26), 27872–27884 (2010).
    [CrossRef] [PubMed]
  31. L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express19(6), 4902–4907 (2011).
    [CrossRef] [PubMed]
  32. H. Tu, Y. Liu, D. Turchinovich, and S. A. Boppart, “Compression of fiber supercontinuum pulses to the Fourier-limit in a high-numerical-aperture focus,” Opt. Lett.36(12), 2315–2317 (2011).
    [CrossRef] [PubMed]
  33. H. Tu, Y. Liu, J. Lægsgaard, D. Turchinovich, M. Siegel, D. Kopf, H. Li, T. Gunaratne, and S. A. Boppart, “Cross-validation of theoretically quantified fiber continuum generation and absolute pulse measurement by MIIPS for a broadband coherently controlled optical source,” Appl. Phys. B106(2), 379–384 (2012).
    [CrossRef] [PubMed]
  34. J. Jakutis-Neto, J. P. Lin, N. U. Wetter, and H. Pask, “Continuous-wave watt-level Nd:YLF/KGW Raman laser operating at near-IR, yellow and lime-green wavelengths,” Opt. Express20(9), 9841–9850 (2012).
    [CrossRef] [PubMed]
  35. H. Tu, Y. Liu, X. Liu, D. Turchinovich, J. Lægsgaard, and S. A. Boppart, “Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser,” Opt. Express20(2), 1113–1128 (2012).
    [CrossRef] [PubMed]
  36. Y. Liu, H. Tu, and S. A. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression,” Opt. Lett.37(12), 2172–2174 (2012).
    [CrossRef] [PubMed]
  37. Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett.34(9), 1363–1365 (2009).
    [CrossRef] [PubMed]
  38. Y. Liu, Y. J. Lee, and M. T. Cicerone, “Fast extraction of resonant vibrational response from CARS spectra with arbitrary nonresonant background,” J Raman Spectrosc40(7), 726–731 (2009).
    [CrossRef]

2012 (6)

2011 (3)

2010 (2)

2009 (6)

2008 (4)

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem.1(1), 883–909 (2008).
[CrossRef] [PubMed]

S. Postma, A. C. W. van Rhijn, J. P. Korterik, P. Gross, J. L. Herek, and H. L. Offerhaus, “Application of spectral phase shaping to high resolution CARS spectroscopy,” Opt. Express16(11), 7985–7996 (2008).
[CrossRef] [PubMed]

H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Express16(8), 5499–5504 (2008).
[CrossRef] [PubMed]

B. von Vacano and M. Motzkus, “Time-resolving molecular vibration for microanalytics: single laser beam nonlinear Raman spectroscopy in simulation and experiment,” Phys. Chem. Chem. Phys.10(5), 681–691 (2008).
[CrossRef] [PubMed]

2007 (4)

2006 (3)

2005 (3)

S. H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A72(4), 041803 (2005).
[CrossRef]

H. Kano and H. Hamaguchi, “Ultrabroadband (>2500 cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett.86(12), 121113 (2005).
[CrossRef]

E. R. Andresen, H. N. Paulsen, V. Birkedal, J. Thøgersen, and S. R. Keiding, “Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers,” J. Opt. Soc. Am. B22(9), 1934–1938 (2005).
[CrossRef]

2004 (3)

D. L. Marks and S. A. Boppart, “Nonlinear interferometric vibrational imaging,” Phys. Rev. Lett.92(12), 123905 (2004).
[CrossRef] [PubMed]

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25–27 (2004).
[CrossRef]

C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett.29(24), 2923–2925 (2004).
[CrossRef] [PubMed]

2003 (1)

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett.90(21), 213902 (2003).
[CrossRef] [PubMed]

2002 (2)

D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett.89(27), 273001 (2002).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature418(6897), 512–514 (2002).
[CrossRef] [PubMed]

2000 (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
[CrossRef]

Alexandrou, A.

Andresen, E. R.

Anis, H.

Beaurepaire, E.

Birkedal, V.

Bonn, M.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

H. A. Rinia, M. Bonn, M. Müller, and E. M. Vartiainen, “Quantitative CARS spectroscopy using the Maximum Entropy Method: the main lipid phase transition,” ChemPhysChem8(2), 279–287 (2007).
[CrossRef] [PubMed]

Boppart, S. A.

H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser & Photon Rev,1–18 (2012).

H. Tu, Y. Liu, J. Lægsgaard, D. Turchinovich, M. Siegel, D. Kopf, H. Li, T. Gunaratne, and S. A. Boppart, “Cross-validation of theoretically quantified fiber continuum generation and absolute pulse measurement by MIIPS for a broadband coherently controlled optical source,” Appl. Phys. B106(2), 379–384 (2012).
[CrossRef] [PubMed]

H. Tu, Y. Liu, X. Liu, D. Turchinovich, J. Lægsgaard, and S. A. Boppart, “Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser,” Opt. Express20(2), 1113–1128 (2012).
[CrossRef] [PubMed]

Y. Liu, H. Tu, and S. A. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression,” Opt. Lett.37(12), 2172–2174 (2012).
[CrossRef] [PubMed]

H. Tu, Y. Liu, D. Turchinovich, and S. A. Boppart, “Compression of fiber supercontinuum pulses to the Fourier-limit in a high-numerical-aperture focus,” Opt. Lett.36(12), 2315–2317 (2011).
[CrossRef] [PubMed]

H. Tu, Y. Liu, J. Lægsgaard, U. Sharma, M. Siegel, D. Kopf, and S. A. Boppart, “Scalar generalized nonlinear Schrödinger equation-quantified continuum generation in an all-normal dispersion photonic crystal fiber for broadband coherent optical sources,” Opt. Express18(26), 27872–27884 (2010).
[CrossRef] [PubMed]

D. L. Marks and S. A. Boppart, “Nonlinear interferometric vibrational imaging,” Phys. Rev. Lett.92(12), 123905 (2004).
[CrossRef] [PubMed]

Borri, P.

Brideau, C.

Buckup, T.

Caster, A. G.

S. H. Lim, A. G. Caster, and S. R. Leone, “Fourier transform spectral interferometric coherent anti-Stokes Raman scattering (FTSI-CARS) spectroscopy,” Opt. Lett.32(10), 1332–1334 (2007).
[CrossRef] [PubMed]

S. H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A72(4), 041803 (2005).
[CrossRef]

Cicerone, M. T.

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett.34(9), 1363–1365 (2009).
[CrossRef] [PubMed]

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Fast extraction of resonant vibrational response from CARS spectra with arbitrary nonresonant background,” J Raman Spectrosc40(7), 726–731 (2009).
[CrossRef]

Dantus, M.

Day, J. P. R.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

Domke, K. F.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

Dudovich, N.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett.90(21), 213902 (2003).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett.89(27), 273001 (2002).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Enejder, A. M. K.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25–27 (2004).
[CrossRef]

Evans, C. L.

Grinvald, E.

Gross, P.

Gunaratne, T.

H. Tu, Y. Liu, J. Lægsgaard, D. Turchinovich, M. Siegel, D. Kopf, H. Li, T. Gunaratne, and S. A. Boppart, “Cross-validation of theoretically quantified fiber continuum generation and absolute pulse measurement by MIIPS for a broadband coherently controlled optical source,” Appl. Phys. B106(2), 379–384 (2012).
[CrossRef] [PubMed]

Hamaguchi, H.

H. Kano and H. Hamaguchi, “Ultrabroadband (>2500 cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett.86(12), 121113 (2005).
[CrossRef]

Hamaguchi, H. O.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

Harris, D. A.

Hashimoto, H.

Hellerer, T.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25–27 (2004).
[CrossRef]

Herek, J. L.

Hooper, L. E.

Isobe, K.

Jakutis-Neto, J.

Jia, Y.

Joffre, M.

Kannari, F.

Kano, H.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

H. Kano and H. Hamaguchi, “Ultrabroadband (>2500 cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett.86(12), 121113 (2005).
[CrossRef]

Katz, O.

Kawano, H.

Keiding, S. R.

Knight, J. C.

Kopf, D.

H. Tu, Y. Liu, J. Lægsgaard, D. Turchinovich, M. Siegel, D. Kopf, H. Li, T. Gunaratne, and S. A. Boppart, “Cross-validation of theoretically quantified fiber continuum generation and absolute pulse measurement by MIIPS for a broadband coherently controlled optical source,” Appl. Phys. B106(2), 379–384 (2012).
[CrossRef] [PubMed]

H. Tu, Y. Liu, J. Lægsgaard, U. Sharma, M. Siegel, D. Kopf, and S. A. Boppart, “Scalar generalized nonlinear Schrödinger equation-quantified continuum generation in an all-normal dispersion photonic crystal fiber for broadband coherent optical sources,” Opt. Express18(26), 27872–27884 (2010).
[CrossRef] [PubMed]

Korterik, J. P.

Lægsgaard, J.

Langbein, W.

Lee, Y. J.

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett.34(9), 1363–1365 (2009).
[CrossRef] [PubMed]

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Fast extraction of resonant vibrational response from CARS spectra with arbitrary nonresonant background,” J Raman Spectrosc40(7), 726–731 (2009).
[CrossRef]

Leone, S. R.

S. H. Lim, A. G. Caster, and S. R. Leone, “Fourier transform spectral interferometric coherent anti-Stokes Raman scattering (FTSI-CARS) spectroscopy,” Opt. Lett.32(10), 1332–1334 (2007).
[CrossRef] [PubMed]

S. H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A72(4), 041803 (2005).
[CrossRef]

Levitt, J. M.

Li, H.

H. Tu, Y. Liu, J. Lægsgaard, D. Turchinovich, M. Siegel, D. Kopf, H. Li, T. Gunaratne, and S. A. Boppart, “Cross-validation of theoretically quantified fiber continuum generation and absolute pulse measurement by MIIPS for a broadband coherently controlled optical source,” Appl. Phys. B106(2), 379–384 (2012).
[CrossRef] [PubMed]

H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Express16(8), 5499–5504 (2008).
[CrossRef] [PubMed]

Lim, S. H.

S. H. Lim, A. G. Caster, and S. R. Leone, “Fourier transform spectral interferometric coherent anti-Stokes Raman scattering (FTSI-CARS) spectroscopy,” Opt. Lett.32(10), 1332–1334 (2007).
[CrossRef] [PubMed]

S. H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A72(4), 041803 (2005).
[CrossRef]

Lin, J. P.

Liu, X.

Liu, Y.

H. Tu, Y. Liu, X. Liu, D. Turchinovich, J. Lægsgaard, and S. A. Boppart, “Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser,” Opt. Express20(2), 1113–1128 (2012).
[CrossRef] [PubMed]

H. Tu, Y. Liu, J. Lægsgaard, D. Turchinovich, M. Siegel, D. Kopf, H. Li, T. Gunaratne, and S. A. Boppart, “Cross-validation of theoretically quantified fiber continuum generation and absolute pulse measurement by MIIPS for a broadband coherently controlled optical source,” Appl. Phys. B106(2), 379–384 (2012).
[CrossRef] [PubMed]

Y. Liu, H. Tu, and S. A. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression,” Opt. Lett.37(12), 2172–2174 (2012).
[CrossRef] [PubMed]

H. Tu, Y. Liu, D. Turchinovich, and S. A. Boppart, “Compression of fiber supercontinuum pulses to the Fourier-limit in a high-numerical-aperture focus,” Opt. Lett.36(12), 2315–2317 (2011).
[CrossRef] [PubMed]

H. Tu, Y. Liu, J. Lægsgaard, U. Sharma, M. Siegel, D. Kopf, and S. A. Boppart, “Scalar generalized nonlinear Schrödinger equation-quantified continuum generation in an all-normal dispersion photonic crystal fiber for broadband coherent optical sources,” Opt. Express18(26), 27872–27884 (2010).
[CrossRef] [PubMed]

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett.34(9), 1363–1365 (2009).
[CrossRef] [PubMed]

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Fast extraction of resonant vibrational response from CARS spectra with arbitrary nonresonant background,” J Raman Spectrosc40(7), 726–731 (2009).
[CrossRef]

Lozovoy, V. V.

Marks, D. L.

D. L. Marks and S. A. Boppart, “Nonlinear interferometric vibrational imaging,” Phys. Rev. Lett.92(12), 123905 (2004).
[CrossRef] [PubMed]

Midorikawa, K.

Miyawaki, A.

Mizuno, H.

Moffatt, D. J.

Mosley, P. J.

Motzkus, M.

Muir, A. C.

Müller, M.

H. A. Rinia, M. Bonn, M. Müller, and E. M. Vartiainen, “Quantitative CARS spectroscopy using the Maximum Entropy Method: the main lipid phase transition,” ChemPhysChem8(2), 279–287 (2007).
[CrossRef] [PubMed]

Murugkar, S.

Naji, M.

Nishizawa, N.

Offerhaus, H. L.

Ogilvie, J. P.

Oron, D.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett.90(21), 213902 (2003).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett.89(27), 273001 (2002).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Pask, H.

Paulsen, H. N.

Pegoraro, A. F.

Pezacki, J. P.

Postma, S.

Potma, E. O.

Rago, G.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

Rehbinder, J.

Ridsdale, A.

Rinia, H. A.

H. A. Rinia, M. Bonn, M. Müller, and E. M. Vartiainen, “Quantitative CARS spectroscopy using the Maximum Entropy Method: the main lipid phase transition,” ChemPhysChem8(2), 279–287 (2007).
[CrossRef] [PubMed]

Rocha-Mendoza, I.

Sharma, U.

Siegel, M.

H. Tu, Y. Liu, J. Lægsgaard, D. Turchinovich, M. Siegel, D. Kopf, H. Li, T. Gunaratne, and S. A. Boppart, “Cross-validation of theoretically quantified fiber continuum generation and absolute pulse measurement by MIIPS for a broadband coherently controlled optical source,” Appl. Phys. B106(2), 379–384 (2012).
[CrossRef] [PubMed]

H. Tu, Y. Liu, J. Lægsgaard, U. Sharma, M. Siegel, D. Kopf, and S. A. Boppart, “Scalar generalized nonlinear Schrödinger equation-quantified continuum generation in an all-normal dispersion photonic crystal fiber for broadband coherent optical sources,” Opt. Express18(26), 27872–27884 (2010).
[CrossRef] [PubMed]

Silberberg, Y.

O. Katz, J. M. Levitt, E. Grinvald, and Y. Silberberg, “Single-beam coherent Raman spectroscopy and microscopy via spectral notch shaping,” Opt. Express18(22), 22693–22701 (2010).
[CrossRef] [PubMed]

Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Annu. Rev. Phys. Chem.60(1), 277–292 (2009).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett.90(21), 213902 (2003).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett.89(27), 273001 (2002).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Stolow, A.

Stys, P. K.

Suda, A.

Takayanagi, J.

Tanaka, M.

Thøgersen, J.

Tu, H.

H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser & Photon Rev,1–18 (2012).

H. Tu, Y. Liu, J. Lægsgaard, D. Turchinovich, M. Siegel, D. Kopf, H. Li, T. Gunaratne, and S. A. Boppart, “Cross-validation of theoretically quantified fiber continuum generation and absolute pulse measurement by MIIPS for a broadband coherently controlled optical source,” Appl. Phys. B106(2), 379–384 (2012).
[CrossRef] [PubMed]

H. Tu, Y. Liu, X. Liu, D. Turchinovich, J. Lægsgaard, and S. A. Boppart, “Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser,” Opt. Express20(2), 1113–1128 (2012).
[CrossRef] [PubMed]

Y. Liu, H. Tu, and S. A. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression,” Opt. Lett.37(12), 2172–2174 (2012).
[CrossRef] [PubMed]

H. Tu, Y. Liu, D. Turchinovich, and S. A. Boppart, “Compression of fiber supercontinuum pulses to the Fourier-limit in a high-numerical-aperture focus,” Opt. Lett.36(12), 2315–2317 (2011).
[CrossRef] [PubMed]

H. Tu, Y. Liu, J. Lægsgaard, U. Sharma, M. Siegel, D. Kopf, and S. A. Boppart, “Scalar generalized nonlinear Schrödinger equation-quantified continuum generation in an all-normal dispersion photonic crystal fiber for broadband coherent optical sources,” Opt. Express18(26), 27872–27884 (2010).
[CrossRef] [PubMed]

Turchinovich, D.

van Rhijn, A. C. W.

Vartiainen, E. M.

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

H. A. Rinia, M. Bonn, M. Müller, and E. M. Vartiainen, “Quantitative CARS spectroscopy using the Maximum Entropy Method: the main lipid phase transition,” ChemPhysChem8(2), 279–287 (2007).
[CrossRef] [PubMed]

von Vacano, B.

Wadsworth, W. J.

Watson, P.

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
[CrossRef]

Wetter, N. U.

Wipfler, A.

Wohlleben, W.

Wrzesinski, P. J.

Xie, X. S.

Xu, B.

Zumbusch, A.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25–27 (2004).
[CrossRef]

Annu. Rev. Anal. Chem. (1)

C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem.1(1), 883–909 (2008).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Annu. Rev. Phys. Chem.60(1), 277–292 (2009).
[CrossRef] [PubMed]

Appl. Phys. B (1)

H. Tu, Y. Liu, J. Lægsgaard, D. Turchinovich, M. Siegel, D. Kopf, H. Li, T. Gunaratne, and S. A. Boppart, “Cross-validation of theoretically quantified fiber continuum generation and absolute pulse measurement by MIIPS for a broadband coherently controlled optical source,” Appl. Phys. B106(2), 379–384 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

H. Kano and H. Hamaguchi, “Ultrabroadband (>2500 cm−1) multiplex coherent anti-Stokes Raman scattering microspectroscopy using a supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett.86(12), 121113 (2005).
[CrossRef]

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25–27 (2004).
[CrossRef]

ChemPhysChem (1)

H. A. Rinia, M. Bonn, M. Müller, and E. M. Vartiainen, “Quantitative CARS spectroscopy using the Maximum Entropy Method: the main lipid phase transition,” ChemPhysChem8(2), 279–287 (2007).
[CrossRef] [PubMed]

J Raman Spectrosc (1)

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Fast extraction of resonant vibrational response from CARS spectra with arbitrary nonresonant background,” J Raman Spectrosc40(7), 726–731 (2009).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B (1)

J. P. R. Day, K. F. Domke, G. Rago, H. Kano, H. O. Hamaguchi, E. M. Vartiainen, and M. Bonn, “Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Phys. Chem. B115(24), 7713–7725 (2011).
[CrossRef] [PubMed]

Laser & Photon Rev, (1)

H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser & Photon Rev,1–18 (2012).

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Opt. Express (10)

K. Isobe, A. Suda, M. Tanaka, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Single-pulse coherent anti-Stokes Raman scattering microscopy employing an octave spanning pulse,” Opt. Express17(14), 11259–11266 (2009).
[CrossRef] [PubMed]

S. Postma, A. C. W. van Rhijn, J. P. Korterik, P. Gross, J. L. Herek, and H. L. Offerhaus, “Application of spectral phase shaping to high resolution CARS spectroscopy,” Opt. Express16(11), 7985–7996 (2008).
[CrossRef] [PubMed]

H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Express16(8), 5499–5504 (2008).
[CrossRef] [PubMed]

O. Katz, J. M. Levitt, E. Grinvald, and Y. Silberberg, “Single-beam coherent Raman spectroscopy and microscopy via spectral notch shaping,” Opt. Express18(22), 22693–22701 (2010).
[CrossRef] [PubMed]

J. Jakutis-Neto, J. P. Lin, N. U. Wetter, and H. Pask, “Continuous-wave watt-level Nd:YLF/KGW Raman laser operating at near-IR, yellow and lime-green wavelengths,” Opt. Express20(9), 9841–9850 (2012).
[CrossRef] [PubMed]

H. Tu, Y. Liu, X. Liu, D. Turchinovich, J. Lægsgaard, and S. A. Boppart, “Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser,” Opt. Express20(2), 1113–1128 (2012).
[CrossRef] [PubMed]

H. Tu, Y. Liu, J. Lægsgaard, U. Sharma, M. Siegel, D. Kopf, and S. A. Boppart, “Scalar generalized nonlinear Schrödinger equation-quantified continuum generation in an all-normal dispersion photonic crystal fiber for broadband coherent optical sources,” Opt. Express18(26), 27872–27884 (2010).
[CrossRef] [PubMed]

L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express19(6), 4902–4907 (2011).
[CrossRef] [PubMed]

S. Murugkar, C. Brideau, A. Ridsdale, M. Naji, P. K. Stys, and H. Anis, “Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths,” Opt. Express15(21), 14028–14037 (2007).
[CrossRef] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express17(4), 2984–2996 (2009).
[CrossRef] [PubMed]

Opt. Lett. (10)

H. Tu, Y. Liu, D. Turchinovich, and S. A. Boppart, “Compression of fiber supercontinuum pulses to the Fourier-limit in a high-numerical-aperture focus,” Opt. Lett.36(12), 2315–2317 (2011).
[CrossRef] [PubMed]

Y. Liu, H. Tu, and S. A. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression,” Opt. Lett.37(12), 2172–2174 (2012).
[CrossRef] [PubMed]

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett.34(9), 1363–1365 (2009).
[CrossRef] [PubMed]

A. Wipfler, J. Rehbinder, T. Buckup, and M. Motzkus, “Full characterization of the third-order nonlinear susceptibility using a single-beam coherent anti-Stokes Raman scattering setup,” Opt. Lett.37(20), 4239–4241 (2012).
[CrossRef] [PubMed]

I. Rocha-Mendoza, W. Langbein, P. Watson, and P. Borri, “Differential coherent anti-Stokes Raman scattering microscopy with linearly chirped femtosecond laser pulses,” Opt. Lett.34(15), 2258–2260 (2009).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-Stokes Raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett.29(24), 2923–2925 (2004).
[CrossRef] [PubMed]

J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, and M. Joffre, “Fourier-transform coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.31(4), 480–482 (2006).
[CrossRef] [PubMed]

S. H. Lim, A. G. Caster, and S. R. Leone, “Fourier transform spectral interferometric coherent anti-Stokes Raman scattering (FTSI-CARS) spectroscopy,” Opt. Lett.32(10), 1332–1334 (2007).
[CrossRef] [PubMed]

B. von Vacano, T. Buckup, and M. Motzkus, “Highly sensitive single-beam heterodyne coherent anti-Stokes Raman scattering,” Opt. Lett.31(16), 2495–2497 (2006).
[CrossRef] [PubMed]

B. von Vacano, W. Wohlleben, and M. Motzkus, “Actively shaped supercontinuum from a photonic crystal fiber for nonlinear coherent microspectroscopy,” Opt. Lett.31(3), 413–415 (2006).
[CrossRef] [PubMed]

Phys. Chem. Chem. Phys. (1)

B. von Vacano and M. Motzkus, “Time-resolving molecular vibration for microanalytics: single laser beam nonlinear Raman spectroscopy in simulation and experiment,” Phys. Chem. Chem. Phys.10(5), 681–691 (2008).
[CrossRef] [PubMed]

Phys. Rev. A (1)

S. H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A72(4), 041803 (2005).
[CrossRef]

Phys. Rev. Lett. (3)

D. Oron, N. Dudovich, and Y. Silberberg, “Single-pulse phase-contrast nonlinear Raman spectroscopy,” Phys. Rev. Lett.89(27), 273001 (2002).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett.90(21), 213902 (2003).
[CrossRef] [PubMed]

D. L. Marks and S. A. Boppart, “Nonlinear interferometric vibrational imaging,” Phys. Rev. Lett.92(12), 123905 (2004).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental setup. BF: bandpass filter; C: spherical curved mirror; G: diffraction grating; HWP: half-wave plate; KYW: potassium yttrium tungstate; L: lens; ND: neutral density filter; OBJ: objective; P: polarizer; PCF: photonic crystal fiber; PM: parabolic mirror; SLM: spatial light modulator; Yb: ytterbium; SPEX: spectrometer.

Fig. 2
Fig. 2

Pulse shaping strategy for retrieving Raman spectra. The supercontinuum below 900 nm was blocked using a knife-edge at the Fourier plane of the pulse shaper (gray area). The narrow-band probe pulses centered at the shortest-wavelength peak of the supercontinuum spectrum were phase shifted by (a) π/2 (red) or (b) -π/2 (green) radian.

Fig. 3
Fig. 3

Theoretical modeling of a retrieved Raman spectrum. (a) Raman spectrum of a hypothetical molecule (blue) and vibrational excitation spectrum of the compressed supercontinuum (gray). (b) The CARS spectra generated by π/2 (red) and -π/2 (green) pulses. Two spectra are offset vertically. (c) The retrieved spectrum which closely resembles the original Raman spectrum.

Fig. 4
Fig. 4

Retrieved Raman spectra (blue) of acetone, isopropanol, and toluene, and their corresponding spontaneous Raman spectra (gray). The retrieved spectra are vertically offset for comparison. The CARS measurements show good agreement with the spontaneous data. The peak of isopropanol at 819 cm−1 is used to quantify the spectral resolution (13 cm−1, FWHM).

Fig. 5
Fig. 5

Retrieved Raman spectra (blue) of a KGW crystal at two orientations (E||Ng, E||Nm) and their corresponding spontaneous Raman spectra (gray). The retrieved spectra are vertically offset for comparison. The CARS measurements reproduce the orientation-sensitive spontaneous Raman spectra.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A(Ω)= χ (3) (Ω) 0 E p (ω') E s * (ω' Ω)dω'
P(ω)= 0 A(Ω) E pr (ω Ω)dΩ
S ± (ω)=| P NR (ω) | 2 +| P R (ω) | 2 2| P NR (ω)|| P R (ω)|Im{ e iϕ(ω) }
Im{ P R (ω)}=| P R (ω)|Im{ e iϕ(ω) }~ S (ω) S + (ω) [ S (ω)+ S + (ω)] 1/2
Im{ χ R (3) (Ω)}= Im{ P R (Ω)} 0 E p (ω') E s * (ω' Ω)dω'

Metrics