Abstract

We propose a nano-polarization-converter made of a resonant L-shaped slot antenna in a gold film and study its optical properties using the finite-difference time-domain method. Phase retardation between the fast and slow axes of the nano-polarization-converter originates from the simultaneous excitation of both single-surface first-order magnetic plasmon resonance mode and second-order magnetic plasmon resonance mode at the working wavelength. By adjusting the size of the slot antenna, which is still much smaller than the wavelength, the working wavelength can be tuned within a large wavelength range.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
    [CrossRef]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  4. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimmers,” Opt. Express14(21), 9988–9999 (2006).
    [CrossRef] [PubMed]
  5. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
    [CrossRef]
  6. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
    [CrossRef] [PubMed]
  7. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B71(23), 235420 (2005).
    [CrossRef]
  8. A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. Garcia-Vidal, “Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory,” Phys. Rev. B73(15), 155404 (2006).
    [CrossRef]
  9. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bow-tie”nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
    [CrossRef]
  10. L. Wang, S. M. Uppuluri, E. X. Jin, and X. F. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett.6(3), 361–364 (2006).
    [CrossRef] [PubMed]
  11. C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett.91(6), 063108 (2007).
    [CrossRef]
  12. L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: Single apertures versus periodic arrays,” Appl. Phys. Lett.95(20), 201116 (2009).
    [CrossRef]
  13. S. Wu, L. Zhou, Y. M. Wang, G. D. Wang, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, “Optical properties of a metal film perforated with coaxial elliptical hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(5), 057601 (2010).
    [CrossRef] [PubMed]
  14. J. Yang and J. S. Zhang, “Subwavelength quarter-waveplate composed of L-shaped metal nanoparticles,” Plasmonics6(2), 251–254 (2011).
    [CrossRef]
  15. T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett.93(2), 021110 (2008).
    [CrossRef]
  16. T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett.97(26), 261113 (2010).
    [CrossRef]
  17. P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett.102(25), 256801 (2009).
    [CrossRef] [PubMed]
  18. P. Biagioni, M. Savoini, J. S. Huang, L. Duo, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B80(15), 153409 (2009).
    [CrossRef]
  19. E. Öğüt and K. Sendur, “Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures,” Appl. Phys. Lett.96(14), 141104 (2010).
    [CrossRef]
  20. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
    [CrossRef] [PubMed]
  21. E. H. Khoo, E. P. Li, and K. B. Crozier, “Plasmonic wave plate based on subwavelength nanoslits,” Opt. Lett.36(13), 2498–2500 (2011).
    [CrossRef] [PubMed]
  22. A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett.37(11), 1820–1822 (2012).
    [CrossRef] [PubMed]
  23. Z. H. Zhu, C. C. Guo, K. Liu, W. M. Ye, X. D. Yuan, B. Yang, and T. Ma, “Metallic nanofilm half-wave plate based on magnetic plasmon resonance,” Opt. Lett.37(4), 698–700 (2012).
    [CrossRef] [PubMed]
  24. E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, 1991).
  25. A. Yu Nikitin, D. Zueco, F. J. Garcia-Vidal, and L. Martin-Moreno, “Electromagnetic wave transmission through a small hole in a perfect electric conductor of finite thickness,” Phys. Rev. B78(16), 165429 (2008).
  26. S.-H. Chang, S. K. Gray, and G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express13(8), 3150–3165 (2005).
    [CrossRef] [PubMed]

2012 (2)

2011 (2)

E. H. Khoo, E. P. Li, and K. B. Crozier, “Plasmonic wave plate based on subwavelength nanoslits,” Opt. Lett.36(13), 2498–2500 (2011).
[CrossRef] [PubMed]

J. Yang and J. S. Zhang, “Subwavelength quarter-waveplate composed of L-shaped metal nanoparticles,” Plasmonics6(2), 251–254 (2011).
[CrossRef]

2010 (3)

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett.97(26), 261113 (2010).
[CrossRef]

E. Öğüt and K. Sendur, “Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures,” Appl. Phys. Lett.96(14), 141104 (2010).
[CrossRef]

S. Wu, L. Zhou, Y. M. Wang, G. D. Wang, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, “Optical properties of a metal film perforated with coaxial elliptical hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(5), 057601 (2010).
[CrossRef] [PubMed]

2009 (3)

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett.102(25), 256801 (2009).
[CrossRef] [PubMed]

P. Biagioni, M. Savoini, J. S. Huang, L. Duo, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B80(15), 153409 (2009).
[CrossRef]

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: Single apertures versus periodic arrays,” Appl. Phys. Lett.95(20), 201116 (2009).
[CrossRef]

2008 (3)

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett.93(2), 021110 (2008).
[CrossRef]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

A. Yu Nikitin, D. Zueco, F. J. Garcia-Vidal, and L. Martin-Moreno, “Electromagnetic wave transmission through a small hole in a perfect electric conductor of finite thickness,” Phys. Rev. B78(16), 165429 (2008).

2007 (1)

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett.91(6), 063108 (2007).
[CrossRef]

2006 (4)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimmers,” Opt. Express14(21), 9988–9999 (2006).
[CrossRef] [PubMed]

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. Garcia-Vidal, “Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory,” Phys. Rev. B73(15), 155404 (2006).
[CrossRef]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. F. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett.6(3), 361–364 (2006).
[CrossRef] [PubMed]

2005 (3)

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B71(23), 235420 (2005).
[CrossRef]

S.-H. Chang, S. K. Gray, and G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express13(8), 3150–3165 (2005).
[CrossRef] [PubMed]

2004 (1)

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bow-tie”nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

2003 (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Aizpurua, J.

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimmers,” Opt. Express14(21), 9988–9999 (2006).
[CrossRef] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B71(23), 235420 (2005).
[CrossRef]

Beermann, J.

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. Garcia-Vidal, “Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory,” Phys. Rev. B73(15), 155404 (2006).
[CrossRef]

Biagioni, P.

P. Biagioni, M. Savoini, J. S. Huang, L. Duo, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B80(15), 153409 (2009).
[CrossRef]

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett.102(25), 256801 (2009).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. Garcia-Vidal, “Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory,” Phys. Rev. B73(15), 155404 (2006).
[CrossRef]

Bryant, G. W.

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimmers,” Opt. Express14(21), 9988–9999 (2006).
[CrossRef] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B71(23), 235420 (2005).
[CrossRef]

Cao, J. X.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett.97(26), 261113 (2010).
[CrossRef]

Chang, S.-H.

Chang, Y. T.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett.91(6), 063108 (2007).
[CrossRef]

Chen, C. Y.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett.91(6), 063108 (2007).
[CrossRef]

Chuang, T. H.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett.91(6), 063108 (2007).
[CrossRef]

Crozier, K. B.

E. H. Khoo, E. P. Li, and K. B. Crozier, “Plasmonic wave plate based on subwavelength nanoslits,” Opt. Lett.36(13), 2498–2500 (2011).
[CrossRef] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
[CrossRef]

Drezet, A.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

Duo, L.

P. Biagioni, M. Savoini, J. S. Huang, L. Duo, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B80(15), 153409 (2009).
[CrossRef]

Duò, L.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett.102(25), 256801 (2009).
[CrossRef] [PubMed]

Ebbesen, T. W.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Finazzi, M.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett.102(25), 256801 (2009).
[CrossRef] [PubMed]

P. Biagioni, M. Savoini, J. S. Huang, L. Duo, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B80(15), 153409 (2009).
[CrossRef]

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bow-tie”nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Garcia de Abajo, F. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B71(23), 235420 (2005).
[CrossRef]

García De Abajo, F. J.

Garcia-Vidal, F.

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. Garcia-Vidal, “Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory,” Phys. Rev. B73(15), 155404 (2006).
[CrossRef]

Garcia-Vidal, F. J.

A. Yu Nikitin, D. Zueco, F. J. Garcia-Vidal, and L. Martin-Moreno, “Electromagnetic wave transmission through a small hole in a perfect electric conductor of finite thickness,” Phys. Rev. B78(16), 165429 (2008).

Genet, C.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Gray, S. K.

Guo, C. C.

Hande, L. B.

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: Single apertures versus periodic arrays,” Appl. Phys. Lett.95(20), 201116 (2009).
[CrossRef]

Hecht, B.

P. Biagioni, M. Savoini, J. S. Huang, L. Duo, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B80(15), 153409 (2009).
[CrossRef]

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett.102(25), 256801 (2009).
[CrossRef] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Hohenau, A.

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. Garcia-Vidal, “Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory,” Phys. Rev. B73(15), 155404 (2006).
[CrossRef]

Huang, C. P.

S. Wu, L. Zhou, Y. M. Wang, G. D. Wang, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, “Optical properties of a metal film perforated with coaxial elliptical hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(5), 057601 (2010).
[CrossRef] [PubMed]

Huang, J. S.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett.102(25), 256801 (2009).
[CrossRef] [PubMed]

P. Biagioni, M. Savoini, J. S. Huang, L. Duo, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B80(15), 153409 (2009).
[CrossRef]

Jin, E. X.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. F. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett.6(3), 361–364 (2006).
[CrossRef] [PubMed]

Kelley, B. K.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B71(23), 235420 (2005).
[CrossRef]

Khoo, E. H.

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bow-tie”nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Kino, G. S.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
[CrossRef]

Krenn, J. R.

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. Garcia-Vidal, “Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory,” Phys. Rev. B73(15), 155404 (2006).
[CrossRef]

Lee, S. C.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett.91(6), 063108 (2007).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Li, E. P.

Li, T.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett.97(26), 261113 (2010).
[CrossRef]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett.93(2), 021110 (2008).
[CrossRef]

Lin, L.

A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett.37(11), 1820–1822 (2012).
[CrossRef] [PubMed]

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: Single apertures versus periodic arrays,” Appl. Phys. Lett.95(20), 201116 (2009).
[CrossRef]

Liu, H.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett.97(26), 261113 (2010).
[CrossRef]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett.93(2), 021110 (2008).
[CrossRef]

Liu, K.

Ma, T.

Mallouk, T.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B71(23), 235420 (2005).
[CrossRef]

Martin, O. J. F.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Martin-Moreno, L.

A. Yu Nikitin, D. Zueco, F. J. Garcia-Vidal, and L. Martin-Moreno, “Electromagnetic wave transmission through a small hole in a perfect electric conductor of finite thickness,” Phys. Rev. B78(16), 165429 (2008).

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. Garcia-Vidal, “Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory,” Phys. Rev. B73(15), 155404 (2006).
[CrossRef]

Moerner, W. E.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bow-tie”nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Ögüt, E.

E. Öğüt and K. Sendur, “Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures,” Appl. Phys. Lett.96(14), 141104 (2010).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
[CrossRef]

Richter, L. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B71(23), 235420 (2005).
[CrossRef]

Roberts, A.

A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett.37(11), 1820–1822 (2012).
[CrossRef] [PubMed]

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: Single apertures versus periodic arrays,” Appl. Phys. Lett.95(20), 201116 (2009).
[CrossRef]

Rodrigo, S. G.

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. Garcia-Vidal, “Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory,” Phys. Rev. B73(15), 155404 (2006).
[CrossRef]

Romero, I.

Savoini, M.

P. Biagioni, M. Savoini, J. S. Huang, L. Duo, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B80(15), 153409 (2009).
[CrossRef]

Schatz, G. C.

Schuck, P. J.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bow-tie”nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

Sendur, K.

E. Öğüt and K. Sendur, “Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures,” Appl. Phys. Lett.96(14), 141104 (2010).
[CrossRef]

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bow-tie”nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Tsai, M. W.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett.91(6), 063108 (2007).
[CrossRef]

Uppuluri, S. M.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. F. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett.6(3), 361–364 (2006).
[CrossRef] [PubMed]

Wang, F. M.

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett.93(2), 021110 (2008).
[CrossRef]

Wang, G. D.

S. Wu, L. Zhou, Y. M. Wang, G. D. Wang, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, “Optical properties of a metal film perforated with coaxial elliptical hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(5), 057601 (2010).
[CrossRef] [PubMed]

Wang, L.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. F. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett.6(3), 361–364 (2006).
[CrossRef] [PubMed]

Wang, Q. J.

S. Wu, L. Zhou, Y. M. Wang, G. D. Wang, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, “Optical properties of a metal film perforated with coaxial elliptical hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(5), 057601 (2010).
[CrossRef] [PubMed]

Wang, S. M.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett.97(26), 261113 (2010).
[CrossRef]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett.93(2), 021110 (2008).
[CrossRef]

Wang, Y. M.

S. Wu, L. Zhou, Y. M. Wang, G. D. Wang, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, “Optical properties of a metal film perforated with coaxial elliptical hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(5), 057601 (2010).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Wu, S.

S. Wu, L. Zhou, Y. M. Wang, G. D. Wang, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, “Optical properties of a metal film perforated with coaxial elliptical hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(5), 057601 (2010).
[CrossRef] [PubMed]

Xu, X. F.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. F. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett.6(3), 361–364 (2006).
[CrossRef] [PubMed]

Yang, B.

Yang, J.

J. Yang and J. S. Zhang, “Subwavelength quarter-waveplate composed of L-shaped metal nanoparticles,” Plasmonics6(2), 251–254 (2011).
[CrossRef]

Ye, W. M.

Yin, X. G.

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett.93(2), 021110 (2008).
[CrossRef]

Yu Nikitin, A.

A. Yu Nikitin, D. Zueco, F. J. Garcia-Vidal, and L. Martin-Moreno, “Electromagnetic wave transmission through a small hole in a perfect electric conductor of finite thickness,” Phys. Rev. B78(16), 165429 (2008).

Yuan, X. D.

Zhang, J. S.

J. Yang and J. S. Zhang, “Subwavelength quarter-waveplate composed of L-shaped metal nanoparticles,” Plasmonics6(2), 251–254 (2011).
[CrossRef]

Zhang, X.

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett.93(2), 021110 (2008).
[CrossRef]

Zhou, L.

S. Wu, L. Zhou, Y. M. Wang, G. D. Wang, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, “Optical properties of a metal film perforated with coaxial elliptical hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(5), 057601 (2010).
[CrossRef] [PubMed]

Zhu, S. N.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett.97(26), 261113 (2010).
[CrossRef]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett.93(2), 021110 (2008).
[CrossRef]

Zhu, Y. Y.

S. Wu, L. Zhou, Y. M. Wang, G. D. Wang, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, “Optical properties of a metal film perforated with coaxial elliptical hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(5), 057601 (2010).
[CrossRef] [PubMed]

Zhu, Z. H.

Zueco, D.

A. Yu Nikitin, D. Zueco, F. J. Garcia-Vidal, and L. Martin-Moreno, “Electromagnetic wave transmission through a small hole in a perfect electric conductor of finite thickness,” Phys. Rev. B78(16), 165429 (2008).

Appl. Phys. Lett. (5)

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett.91(6), 063108 (2007).
[CrossRef]

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: Single apertures versus periodic arrays,” Appl. Phys. Lett.95(20), 201116 (2009).
[CrossRef]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett.93(2), 021110 (2008).
[CrossRef]

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett.97(26), 261113 (2010).
[CrossRef]

E. Öğüt and K. Sendur, “Circularly and elliptically polarized near-field radiation from nanoscale subwavelength apertures,” Appl. Phys. Lett.96(14), 141104 (2010).
[CrossRef]

J. Appl. Phys. (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
[CrossRef]

Nano Lett. (2)

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single “bow-tie”nanoantennas resonant in the visible,” Nano Lett.4(5), 957–961 (2004).
[CrossRef]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. F. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett.6(3), 361–364 (2006).
[CrossRef] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. B (4)

P. Biagioni, M. Savoini, J. S. Huang, L. Duo, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B80(15), 153409 (2009).
[CrossRef]

A. Yu Nikitin, D. Zueco, F. J. Garcia-Vidal, and L. Martin-Moreno, “Electromagnetic wave transmission through a small hole in a perfect electric conductor of finite thickness,” Phys. Rev. B78(16), 165429 (2008).

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B71(23), 235420 (2005).
[CrossRef]

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. Garcia-Vidal, “Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory,” Phys. Rev. B73(15), 155404 (2006).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. Wu, L. Zhou, Y. M. Wang, G. D. Wang, Q. J. Wang, C. P. Huang, and Y. Y. Zhu, “Optical properties of a metal film perforated with coaxial elliptical hole arrays,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.81(5), 057601 (2010).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett.102(25), 256801 (2009).
[CrossRef] [PubMed]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

Plasmonics (1)

J. Yang and J. S. Zhang, “Subwavelength quarter-waveplate composed of L-shaped metal nanoparticles,” Plasmonics6(2), 251–254 (2011).
[CrossRef]

Science (2)

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Other (2)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of the L-shaped slot antenna. (b) Far-field transmitted intensity |(E)|2 of an L-shaped slot antenna (L = 360 nm, w = 140 nm and h = 200 nm) for different incident polarization angles θ. The peak wavelengths are indicated by arrows for clarity.

Fig. 2
Fig. 2

Near-field magnetic field distributions |(H)| on the top surface (z = 0 plane) and bottom surface (z = −200 nm plane) of the Au film for the L-shaped slot antenna with L = 360 nm, w = 140 nm, h = 200 nm at the resonant wavelength of 853 nm, 1482 nm, and 902 nm respectively. The six scale bars in (a) to (f) differ, and the number 100 represents a magnetic field amplitude of 6 × 10−3 A/m in (a) and (b), 1.8 × 10−2 A/m in (c) and (d), 8 × 10−3 A/m in (e), and 1 × 10−2 A/m in (f). The arrows in the figure show the incident polarization directions.

Fig. 3
Fig. 3

Far-field transmitted intensity |(E)|2 of an L-shaped slot antenna (L = 360 nm, w = 140 nm and h = 200 nm) with different substrates and incident polarization angles θ .

Fig. 4
Fig. 4

Electric field amplitude ratio |(E)m|/|(E)k| (black square dots) and phase retardation Δφmk = φmφk (blue circular dots) at point F (x = 0, y = 0, z = 1 m) versus wavelength for the L-shaped slot antenna with L = 360 nm, w = 140 nm, h = 200 nm.

Fig. 5
Fig. 5

(a) Electric field amplitude ratio |(E)x|/|(E)y| (black square dots) and phase retardation Δφxy = φx−φy (blue circular dots) at point F (x = 0, y = 0, and z = 1 m) versus the incident polarization angle θ. Red solid line represents Δφxy = 2(θ − 45°). (b) and (c) Distributions of the far-field electric field amplitude |(E)x| and |(E)y| for a left circularly polarized incident beam, respectively. The two scale bars in (b) and (c) are the same and the number 100 represents an electric field amplitude of 2 × 10−7 V/m. Concentric circles in the plots represent the spread of the solid angle γ with 10° steps.

Fig. 6
Fig. 6

Far-field transmitted intensity |(E)|2 for an L-shaped slot antenna (L = 360 nm and w = 140 nm) for different thickness (h) values of the Au film and different incident polarization angles (a) θ = 45° and (b) θ = 135°.

Fig. 7
Fig. 7

Electric field amplitude ratio |(E)m|/∣(E)k| (black square dots) and phase retardation Δφmk = φm − φk (blue circular dots) at point F (x = 0, y = 0, and z = 1 m) versus the thickness h of the Au film. The resonant wavelengths λres for each thickness h are labeled.

Tables (1)

Tables Icon

Table 1 Working wavelength λw of the nano-polarization-converter for different arm length (L) and width (w) values of the L-shaped slot antenna (h = 200 nm).

Metrics