Abstract

We experimentally analyze the stimulated Raman scattering characteristics of a high-birefringence fiber (HBF), which presents an extraordinary level of spectral broadening incurred by the strong nonlinear interaction between the pump and Stokes pulses via the polarization-mode dispersion and group-velocity dispersion of the fiber. We also investigate the impact of the inter-pulse time-delay on the additional spectra broadening when dual-wavelength pump pulses are used. Exploiting these unique SRS properties of the HBF, we develop a novel Raman continuum source based on an all-fiber dual-wavelength master-oscillator power amplifier that can generate a dip-free spectrum in the 1200−1400-nm spectral range. We finally obtain a broadband continuum having an average power of ~840 mW and a 3-dB bandwidth of ~240 nm centered at 1200−1400 nm, which also represents a good spectral flatness and conversion efficiency. This type of source is very useful and important for optical coherence tomography applications, for example.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B27(11), B63–B92 (2010).
    [CrossRef]
  2. J. Nilsson and D. N. Payne, “Physics. High-power fiber lasers,” Science332(6032), 921–922 (2011).
    [CrossRef] [PubMed]
  3. A. Tünnermann, T. Schreiber, and J. Limpert, “Fiber lasers and amplifiers: an ultrafast performance evolution,” Appl. Opt.49(25), F71–F78 (2010).
    [CrossRef] [PubMed]
  4. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21(19), 1547–1549 (1996).
    [CrossRef] [PubMed]
  5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25(1), 25–27 (2000).
    [CrossRef] [PubMed]
  6. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B19(4), 753–764 (2002).
    [CrossRef]
  7. J. H. V. Price, W. Belardi, T. M. Monro, A. Malinowski, A. Piper, and D. J. Richardson, “Soliton transmission and supercontinuum generation in holey fiber, using a diode pumped Ytterbium fiber source,” Opt. Express10(8), 382–387 (2002), doi:.
    [CrossRef] [PubMed]
  8. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
    [CrossRef]
  9. J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express16(19), 14435–14447 (2008), doi:.
    [CrossRef] [PubMed]
  10. K. K. Chen, S.-U. Alam, J. H. V. Price, J. R. Hayes, D. Lin, A. Malinowski, C. Codemard, D. Ghosh, M. Pal, S. K. Bhadra, and D. J. Richardson, “Picosecond fiber MOPA pumped supercontinuum source with 39 W output power,” Opt. Express18(6), 5426–5432 (2010), doi:.
    [CrossRef] [PubMed]
  11. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C. L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: Microhole collapse effect,” J. Lightwave Technol.25(11), 3563–3574 (2007), doi: .
    [CrossRef]
  12. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004), doi:.
    [CrossRef] [PubMed]
  13. D. B. S. Soh, S. W. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. A. Codemard, P. Dupriez, J. Kim, and V. N. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9 μm wavelength range,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
    [CrossRef]
  14. Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron.13(3), 573–579 (2007).
    [CrossRef]
  15. P. F. Moulton, “Power scaling of high-efficiency Tm-doped fiber lasers,” in Proc. LASE 2008, paper 6873–15 (2008).
  16. E. M. Dianov, V. V. Dvoyrin, M. V. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
    [CrossRef]
  17. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography–principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
    [CrossRef]
  18. P. L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source,” Opt. Express12(22), 5287–5295 (2004).
    [CrossRef] [PubMed]
  19. K. K. Chen, S.-U. Alam, P. Horak, C. A. Codemard, A. Malinowski, and D. J. Richardson, “Excitation of individual Raman Stokes lines in the visible regime using rectangular-shaped nanosecond optical pulses at 530 nm,” Opt. Lett.35(14), 2433–2435 (2010).
    [CrossRef] [PubMed]
  20. C. Farrell, C. A. Codemard, and J. Nilsson, “Spectral gain control using shaped pump pulses in a counter-pumped cascaded fiber Raman amplifier,” Opt. Express18(23), 24126–24139 (2010).
    [CrossRef] [PubMed]
  21. H. Masuda and S. Kawai, “Wide-band and gain flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier,” IEEE Photon. Technol. Lett.11(6), 647–649 (1999).
    [CrossRef]
  22. S. Namiki and Y. Emori, “Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division multiplexed high-power laser diodes,” IEEE J. Sel. Top. Quantum Electron.7(1), 3–16 (2001).
    [CrossRef]
  23. L. F. Mollenauer, A. R. Grant, and P. V. Mamyshev, “Time-division multiplexing of pump wavelengths to achieve ultrabroadband, flat, backward-pumped Raman gain,” Opt. Lett.27(8), 592–594 (2002).
    [CrossRef] [PubMed]
  24. D. J. Dougherty, F. X. Kärtner, H. A. Haus, and E. P. Ippen, “Measurement of the Raman gain spectrum of optical fibers,” Opt. Lett.20(1), 31–33 (1995).
    [CrossRef] [PubMed]
  25. R. H. Stolen and A. M. Johnson, “The effect of pulse walkoff on stimulated Raman scattering in fibers,” IEEE J. Quantum Electron.22(11), 2154–2160 (1986).
    [CrossRef]
  26. G. Van der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion,” IEEE J. Quantum Electron.47(11), 1396–1403 (2011).
    [CrossRef]
  27. P. Dupriez, F. Poletti, P. Horak, M. N. Petrovich, Y. Jeong, J. Nilsson, D. J. Richardson, and D. N. Payne, “Efficient white light generation in secondary cores of holey fibers,” Opt. Express15(7), 3729–3736 (2007), doi:.
    [CrossRef] [PubMed]
  28. G. Millot and J. M. Dudley, “Polarization-mode dispersion measurements in high-birefringence fibers by means of stimulated Raman scattering,” Appl. Opt.41(13), 2589–2591 (2002).
    [CrossRef] [PubMed]
  29. M. Meissner, C. Marquardt, J. Heersink, T. Gaber, A. Wietfeld, G. Leuchs, and U. L. Andersen, “All-fibre source of amplitude squeezed light pulses,” J. Opt. B Quantum Semiclassical Opt.6(8), S652–S657 (2004).
    [CrossRef]
  30. Y. Wang, “Dynamics of stimulated Raman scattering in double-clad fiber pulse amplifiers,” IEEE J. Quantum Electron.41(6), 779–788 (2005).
    [CrossRef]
  31. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett.23(1), 52–54 (1998).
    [CrossRef] [PubMed]
  32. F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express17(8), 6134–6147 (2009), doi:.
    [CrossRef] [PubMed]

2011

J. Nilsson and D. N. Payne, “Physics. High-power fiber lasers,” Science332(6032), 921–922 (2011).
[CrossRef] [PubMed]

G. Van der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion,” IEEE J. Quantum Electron.47(11), 1396–1403 (2011).
[CrossRef]

2010

2009

2008

2007

2006

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

2005

E. M. Dianov, V. V. Dvoyrin, M. V. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
[CrossRef]

Y. Wang, “Dynamics of stimulated Raman scattering in double-clad fiber pulse amplifiers,” IEEE J. Quantum Electron.41(6), 779–788 (2005).
[CrossRef]

2004

M. Meissner, C. Marquardt, J. Heersink, T. Gaber, A. Wietfeld, G. Leuchs, and U. L. Andersen, “All-fibre source of amplitude squeezed light pulses,” J. Opt. B Quantum Semiclassical Opt.6(8), S652–S657 (2004).
[CrossRef]

D. B. S. Soh, S. W. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. A. Codemard, P. Dupriez, J. Kim, and V. N. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9 μm wavelength range,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

P. L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source,” Opt. Express12(22), 5287–5295 (2004).
[CrossRef] [PubMed]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004), doi:.
[CrossRef] [PubMed]

2003

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography–principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

2002

2001

S. Namiki and Y. Emori, “Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division multiplexed high-power laser diodes,” IEEE J. Sel. Top. Quantum Electron.7(1), 3–16 (2001).
[CrossRef]

2000

1999

H. Masuda and S. Kawai, “Wide-band and gain flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier,” IEEE Photon. Technol. Lett.11(6), 647–649 (1999).
[CrossRef]

1998

1996

1995

1986

R. H. Stolen and A. M. Johnson, “The effect of pulse walkoff on stimulated Raman scattering in fibers,” IEEE J. Quantum Electron.22(11), 2154–2160 (1986).
[CrossRef]

Alam, S.-U.

Andersen, U. L.

M. Meissner, C. Marquardt, J. Heersink, T. Gaber, A. Wietfeld, G. Leuchs, and U. L. Andersen, “All-fibre source of amplitude squeezed light pulses,” J. Opt. B Quantum Semiclassical Opt.6(8), S652–S657 (2004).
[CrossRef]

Atkin, D. M.

Baek, S.

D. B. S. Soh, S. W. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. A. Codemard, P. Dupriez, J. Kim, and V. N. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9 μm wavelength range,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

Belardi, W.

Bhadra, S. K.

Birks, T. A.

Chau, A. H. L.

Chen, K. K.

Chen, Y.

Clarkson, W. A.

Codemard, C.

Codemard, C. A.

K. K. Chen, S.-U. Alam, P. Horak, C. A. Codemard, A. Malinowski, and D. J. Richardson, “Excitation of individual Raman Stokes lines in the visible regime using rectangular-shaped nanosecond optical pulses at 530 nm,” Opt. Lett.35(14), 2433–2435 (2010).
[CrossRef] [PubMed]

C. Farrell, C. A. Codemard, and J. Nilsson, “Spectral gain control using shaped pump pulses in a counter-pumped cascaded fiber Raman amplifier,” Opt. Express18(23), 24126–24139 (2010).
[CrossRef] [PubMed]

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron.13(3), 573–579 (2007).
[CrossRef]

D. B. S. Soh, S. W. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. A. Codemard, P. Dupriez, J. Kim, and V. N. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9 μm wavelength range,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

Coen, S.

Cumberland, B. A.

de Matos, C. J. S.

Demokan, M. S.

Dianov, E. M.

E. M. Dianov, V. V. Dvoyrin, M. V. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
[CrossRef]

Dougherty, D. J.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography–principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Dudley, J. M.

Dupriez, P.

P. Dupriez, F. Poletti, P. Horak, M. N. Petrovich, Y. Jeong, J. Nilsson, D. J. Richardson, and D. N. Payne, “Efficient white light generation in secondary cores of holey fibers,” Opt. Express15(7), 3729–3736 (2007), doi:.
[CrossRef] [PubMed]

D. B. S. Soh, S. W. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. A. Codemard, P. Dupriez, J. Kim, and V. N. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9 μm wavelength range,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

Dvoyrin, V. V.

E. M. Dianov, V. V. Dvoyrin, M. V. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
[CrossRef]

Emori, Y.

S. Namiki and Y. Emori, “Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division multiplexed high-power laser diodes,” IEEE J. Sel. Top. Quantum Electron.7(1), 3–16 (2001).
[CrossRef]

Farrell, C.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography–principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Fermann, M. E.

Fujimoto, J. G.

Gaber, T.

M. Meissner, C. Marquardt, J. Heersink, T. Gaber, A. Wietfeld, G. Leuchs, and U. L. Andersen, “All-fibre source of amplitude squeezed light pulses,” J. Opt. B Quantum Semiclassical Opt.6(8), S652–S657 (2004).
[CrossRef]

Gapontsev, V. P.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Ghosh, D.

Grant, A. R.

Gur’yanov, A. N.

E. M. Dianov, V. V. Dvoyrin, M. V. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
[CrossRef]

Harker, A.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron.13(3), 573–579 (2007).
[CrossRef]

Harvey, J. D.

Haus, H. A.

Hayes, J. R.

Heersink, J.

M. Meissner, C. Marquardt, J. Heersink, T. Gaber, A. Wietfeld, G. Leuchs, and U. L. Andersen, “All-fibre source of amplitude squeezed light pulses,” J. Opt. B Quantum Semiclassical Opt.6(8), S652–S657 (2004).
[CrossRef]

Hickey, L. M. B.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron.13(3), 573–579 (2007).
[CrossRef]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography–principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Horak, P.

Horley, R.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron.13(3), 573–579 (2007).
[CrossRef]

Hsiung, P. L.

Ippen, E. P.

Jeong, Y.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron.13(3), 573–579 (2007).
[CrossRef]

P. Dupriez, F. Poletti, P. Horak, M. N. Petrovich, Y. Jeong, J. Nilsson, D. J. Richardson, and D. N. Payne, “Efficient white light generation in secondary cores of holey fibers,” Opt. Express15(7), 3729–3736 (2007), doi:.
[CrossRef] [PubMed]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004), doi:.
[CrossRef] [PubMed]

D. B. S. Soh, S. W. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. A. Codemard, P. Dupriez, J. Kim, and V. N. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9 μm wavelength range,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

Jin, W.

Johnson, A. M.

R. H. Stolen and A. M. Johnson, “The effect of pulse walkoff on stimulated Raman scattering in fibers,” IEEE J. Quantum Electron.22(11), 2154–2160 (1986).
[CrossRef]

Kärtner, F. X.

Kawai, S.

H. Masuda and S. Kawai, “Wide-band and gain flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier,” IEEE Photon. Technol. Lett.11(6), 647–649 (1999).
[CrossRef]

Kim, J.

D. B. S. Soh, S. W. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. A. Codemard, P. Dupriez, J. Kim, and V. N. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9 μm wavelength range,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

Knight, J. C.

Ko, T. H.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography–principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Leonhardt, R.

Leuchs, G.

M. Meissner, C. Marquardt, J. Heersink, T. Gaber, A. Wietfeld, G. Leuchs, and U. L. Andersen, “All-fibre source of amplitude squeezed light pulses,” J. Opt. B Quantum Semiclassical Opt.6(8), S652–S657 (2004).
[CrossRef]

Limpert, J.

Lin, D.

Lovelady, M.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron.13(3), 573–579 (2007).
[CrossRef]

Malinowski, A.

Mamyshev, P. V.

Marquardt, C.

M. Meissner, C. Marquardt, J. Heersink, T. Gaber, A. Wietfeld, G. Leuchs, and U. L. Andersen, “All-fibre source of amplitude squeezed light pulses,” J. Opt. B Quantum Semiclassical Opt.6(8), S652–S657 (2004).
[CrossRef]

Mashinsky, M. V.

E. M. Dianov, V. V. Dvoyrin, M. V. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
[CrossRef]

Masuda, H.

H. Masuda and S. Kawai, “Wide-band and gain flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier,” IEEE Photon. Technol. Lett.11(6), 647–649 (1999).
[CrossRef]

Meissner, M.

M. Meissner, C. Marquardt, J. Heersink, T. Gaber, A. Wietfeld, G. Leuchs, and U. L. Andersen, “All-fibre source of amplitude squeezed light pulses,” J. Opt. B Quantum Semiclassical Opt.6(8), S652–S657 (2004).
[CrossRef]

Millot, G.

Mollenauer, L. F.

Monro, T. M.

Moulton, P. F.

P. F. Moulton, “Power scaling of high-efficiency Tm-doped fiber lasers,” in Proc. LASE 2008, paper 6873–15 (2008).

Namiki, S.

S. Namiki and Y. Emori, “Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division multiplexed high-power laser diodes,” IEEE J. Sel. Top. Quantum Electron.7(1), 3–16 (2001).
[CrossRef]

Nilsson, J.

G. Van der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion,” IEEE J. Quantum Electron.47(11), 1396–1403 (2011).
[CrossRef]

J. Nilsson and D. N. Payne, “Physics. High-power fiber lasers,” Science332(6032), 921–922 (2011).
[CrossRef] [PubMed]

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B27(11), B63–B92 (2010).
[CrossRef]

C. Farrell, C. A. Codemard, and J. Nilsson, “Spectral gain control using shaped pump pulses in a counter-pumped cascaded fiber Raman amplifier,” Opt. Express18(23), 24126–24139 (2010).
[CrossRef] [PubMed]

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron.13(3), 573–579 (2007).
[CrossRef]

P. Dupriez, F. Poletti, P. Horak, M. N. Petrovich, Y. Jeong, J. Nilsson, D. J. Richardson, and D. N. Payne, “Efficient white light generation in secondary cores of holey fibers,” Opt. Express15(7), 3729–3736 (2007), doi:.
[CrossRef] [PubMed]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004), doi:.
[CrossRef] [PubMed]

D. B. S. Soh, S. W. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. A. Codemard, P. Dupriez, J. Kim, and V. N. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9 μm wavelength range,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

Oh, K.

D. B. S. Soh, S. W. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. A. Codemard, P. Dupriez, J. Kim, and V. N. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9 μm wavelength range,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

Pal, M.

Payne, D. N.

J. Nilsson and D. N. Payne, “Physics. High-power fiber lasers,” Science332(6032), 921–922 (2011).
[CrossRef] [PubMed]

P. Dupriez, F. Poletti, P. Horak, M. N. Petrovich, Y. Jeong, J. Nilsson, D. J. Richardson, and D. N. Payne, “Efficient white light generation in secondary cores of holey fibers,” Opt. Express15(7), 3729–3736 (2007), doi:.
[CrossRef] [PubMed]

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron.13(3), 573–579 (2007).
[CrossRef]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004), doi:.
[CrossRef] [PubMed]

Petrovich, M. N.

Philippov, V. N.

D. B. S. Soh, S. W. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. A. Codemard, P. Dupriez, J. Kim, and V. N. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9 μm wavelength range,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

Piper, A.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron.13(3), 573–579 (2007).
[CrossRef]

J. H. V. Price, W. Belardi, T. M. Monro, A. Malinowski, A. Piper, and D. J. Richardson, “Soliton transmission and supercontinuum generation in holey fiber, using a diode pumped Ytterbium fiber source,” Opt. Express10(8), 382–387 (2002), doi:.
[CrossRef] [PubMed]

Poletti, F.

Popov, S. V.

Price, J. H. V.

Ranka, J. K.

Richardson, D. J.

Rulkov, A. B.

Russell, P. St. J.

Sahu, J. K.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron.13(3), 573–579 (2007).
[CrossRef]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004), doi:.
[CrossRef] [PubMed]

D. B. S. Soh, S. W. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. A. Codemard, P. Dupriez, J. Kim, and V. N. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9 μm wavelength range,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

Schreiber, T.

Soh, D. B. S.

D. B. S. Soh, S. W. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. A. Codemard, P. Dupriez, J. Kim, and V. N. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9 μm wavelength range,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

Stentz, A. J.

Stolen, R. H.

R. H. Stolen and A. M. Johnson, “The effect of pulse walkoff on stimulated Raman scattering in fibers,” IEEE J. Quantum Electron.22(11), 2154–2160 (1986).
[CrossRef]

Taylor, J. R.

Travers, J. C.

Tünnermann, A.

Turner, P. W.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron.13(3), 573–579 (2007).
[CrossRef]

Umnikov, A. A.

E. M. Dianov, V. V. Dvoyrin, M. V. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
[CrossRef]

Van der Westhuizen, G.

G. Van der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion,” IEEE J. Quantum Electron.47(11), 1396–1403 (2011).
[CrossRef]

Wadsworth, W. J.

Wang, Y.

Wietfeld, A.

M. Meissner, C. Marquardt, J. Heersink, T. Gaber, A. Wietfeld, G. Leuchs, and U. L. Andersen, “All-fibre source of amplitude squeezed light pulses,” J. Opt. B Quantum Semiclassical Opt.6(8), S652–S657 (2004).
[CrossRef]

Windeler, R. S.

Xiao, L.

Yashkov, M. V.

E. M. Dianov, V. V. Dvoyrin, M. V. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
[CrossRef]

Yoo, S.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron.13(3), 573–579 (2007).
[CrossRef]

Yoo, S. W.

D. B. S. Soh, S. W. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. A. Codemard, P. Dupriez, J. Kim, and V. N. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9 μm wavelength range,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

Zhao, C. L.

Appl. Opt.

IEEE J. Quantum Electron.

D. B. S. Soh, S. W. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. A. Codemard, P. Dupriez, J. Kim, and V. N. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9 μm wavelength range,” IEEE J. Quantum Electron.40(9), 1275–1282 (2004).
[CrossRef]

Y. Wang, “Dynamics of stimulated Raman scattering in double-clad fiber pulse amplifiers,” IEEE J. Quantum Electron.41(6), 779–788 (2005).
[CrossRef]

R. H. Stolen and A. M. Johnson, “The effect of pulse walkoff on stimulated Raman scattering in fibers,” IEEE J. Quantum Electron.22(11), 2154–2160 (1986).
[CrossRef]

G. Van der Westhuizen and J. Nilsson, “Fiber optical parametric oscillator for large frequency-shift wavelength conversion,” IEEE J. Quantum Electron.47(11), 1396–1403 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Y. Jeong, S. Yoo, C. A. Codemard, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, P. W. Turner, L. M. B. Hickey, A. Harker, M. Lovelady, and A. Piper, “Erbium:ytterbium codoped large-core fiber laser with 297-W continuous-wave output power,” IEEE J. Sel. Top. Quantum Electron.13(3), 573–579 (2007).
[CrossRef]

S. Namiki and Y. Emori, “Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division multiplexed high-power laser diodes,” IEEE J. Sel. Top. Quantum Electron.7(1), 3–16 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Masuda and S. Kawai, “Wide-band and gain flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier,” IEEE Photon. Technol. Lett.11(6), 647–649 (1999).
[CrossRef]

J. Lightwave Technol.

J. Opt. B Quantum Semiclassical Opt.

M. Meissner, C. Marquardt, J. Heersink, T. Gaber, A. Wietfeld, G. Leuchs, and U. L. Andersen, “All-fibre source of amplitude squeezed light pulses,” J. Opt. B Quantum Semiclassical Opt.6(8), S652–S657 (2004).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

C. Farrell, C. A. Codemard, and J. Nilsson, “Spectral gain control using shaped pump pulses in a counter-pumped cascaded fiber Raman amplifier,” Opt. Express18(23), 24126–24139 (2010).
[CrossRef] [PubMed]

J. H. V. Price, W. Belardi, T. M. Monro, A. Malinowski, A. Piper, and D. J. Richardson, “Soliton transmission and supercontinuum generation in holey fiber, using a diode pumped Ytterbium fiber source,” Opt. Express10(8), 382–387 (2002), doi:.
[CrossRef] [PubMed]

J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, and J. R. Taylor, “Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser,” Opt. Express16(19), 14435–14447 (2008), doi:.
[CrossRef] [PubMed]

F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express17(8), 6134–6147 (2009), doi:.
[CrossRef] [PubMed]

K. K. Chen, S.-U. Alam, J. H. V. Price, J. R. Hayes, D. Lin, A. Malinowski, C. Codemard, D. Ghosh, M. Pal, S. K. Bhadra, and D. J. Richardson, “Picosecond fiber MOPA pumped supercontinuum source with 39 W output power,” Opt. Express18(6), 5426–5432 (2010), doi:.
[CrossRef] [PubMed]

P. L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, and V. P. Gapontsev, “Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source,” Opt. Express12(22), 5287–5295 (2004).
[CrossRef] [PubMed]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004), doi:.
[CrossRef] [PubMed]

P. Dupriez, F. Poletti, P. Horak, M. N. Petrovich, Y. Jeong, J. Nilsson, D. J. Richardson, and D. N. Payne, “Efficient white light generation in secondary cores of holey fibers,” Opt. Express15(7), 3729–3736 (2007), doi:.
[CrossRef] [PubMed]

Opt. Lett.

Quantum Electron.

E. M. Dianov, V. V. Dvoyrin, M. V. Mashinsky, A. A. Umnikov, M. V. Yashkov, and A. N. Gur’yanov, “CW bismuth fibre laser,” Quantum Electron.35(12), 1083–1084 (2005).
[CrossRef]

Rep. Prog. Phys.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography–principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Science

J. Nilsson and D. N. Payne, “Physics. High-power fiber lasers,” Science332(6032), 921–922 (2011).
[CrossRef] [PubMed]

Other

P. F. Moulton, “Power scaling of high-efficiency Tm-doped fiber lasers,” in Proc. LASE 2008, paper 6873–15 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Spectra of the Raman Stokes lines generated from various different Raman-active fibers. (b) Schematic representation of the walk-offs of the Stokes pulses against the pump pulses in an HBF for two different cases: The input polarization of the pump pulse is aligned along the slow axis in Case 1 and at 45° to the slow axis in Case 2, respectively.

Fig. 2
Fig. 2

Schematic of the broadband continuum source based on a dual-wavelength MOPA seeded at 1060 and 1080 nm via a Raman-active fiber.

Fig. 3
Fig. 3

Schematic prepared for analyzing the polarization-dependent SRS in an HBF. AL: aspheric lens; RM: rotation mount.

Fig. 4
Fig. 4

Measured optical spectra (upper) and their spectrum-prints (lower) of the Raman Stokes lines generated through 60 m of an HBF for different angles of rotation of PBS-1 for input wavelengths of (a) 1060 nm and (b) 1080 nm, respectively.

Fig. 5
Fig. 5

Spectrum-prints of the Raman Stokes lines generated through the HBF when the input polarization was aligned either to the (a) x-axis or (b) y-axis for input wavelengths of 1060 (upper) and 1080 nm (lower), respectively. The angle of rotation denotes the angle of PBS-1 (shown in Fig. 3) with respect to the slow axis (x-axis).

Fig. 6
Fig. 6

Spectrum-prints of the Raman Stokes lines generated from the HBF when the input polarization was aligned at 45° to the slow axis (x-axis) for the input wavelengths of (a) 1060 and (b) 1080 nm, respectively. The angle of rotation denotes the angle of PBS-2 (shown in Fig. 3) with respect to the slow axis (x-axis).

Fig. 7
Fig. 7

Spectrum-prints of the Raman Stokes lines generated from the HBF with the dual-wavelength pulses at 1060 nm and 1080 nm when the input polarization was aligned to (a) the slow axis (x-axis) or (b) fast axis (y-axis), varying the inter-pulse time-delay from −2.5 ns to + 2.5 ns. The time traces of (c)−(g) depict the input dual- wavelength pulses with different inter-pulse time-delays.

Fig. 8
Fig. 8

Output spectra and their spectrum-prints of the Raman continuum generated through the HBF: The blue (A) and red traces (B) are for the cases before and after optimizing the polarization state of the input pump, and the green trace (C) is for the case when the peak power of the 1080-nm seed pulse was individually reduced by ~10%.

Fig. 9
Fig. 9

Output optical spectra and their spectrum-prints of the Raman continuum generated through the HBF (60 m) + HNF (10 m) for two different inter-pulse time-delays: (a) For Δt = ~7 ns and (b) Δt = ~0 ns.

Metrics