Abstract

A singly-resonant intracavity optical parametric oscillator (OPO), pumped by a passively Q-switched Nd:YAG laser, is systematically investigated by means of a series of the output mirrors with various reflectivities for the fundamental wavelength at 1064 nm. Experimental results reveal that the output mirror with partial reflectivity instead of high reflection at 1064 nm not only is practicable to avoid the optical coatings damaged, but also enhances the dual-wavelength output efficiency for the OPO signal and fundamental laser waves. The overall optical-to-optical conversion efficiency is enhanced from 6.4% to 8.2% for the reflectivity decreasing from 99.8% to 90%.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. W. Schilling, S. R. Chinn, A. D. Hays, L. Goldberg, and C. W. Trussell, “End-pumped 1.5 microm monoblock laser for broad temperature operation,” Appl. Opt.45(25), 6607–6615 (2006).
    [CrossRef] [PubMed]
  2. Y. P. Huang, H. L. Chang, Y. J. Huang, Y. T. Chang, K. W. Su, W. C. Yen, and Y. F. Chen, “Subnanosecond mJ eye-safe laser with an intracavity optical parametric oscillator in a shared resonator,” Opt. Express17(3), 1551–1556 (2009).
    [CrossRef] [PubMed]
  3. Y. Y. Wang, D. G. Xu, K. Zhong, P. Wang, and J. Q. Yao, “High-energy pulsed laser of twin wavelengths from KTP intracavity optical parametric oscillator,” Appl. Phys. B97(2), 439–443 (2009).
    [CrossRef]
  4. Y. P. Huang, P. Y. Chiang, Y. F. Chen, and K. F. Huang, “Millijoule intracavity OPO driven by a passively Q-switched Nd:YVO4 laser with AlGaInAs quantum-well saturable absorber,” Appl. Phys. B104(3), 591–595 (2011).
    [CrossRef]
  5. R. Dabu, C. Fenic, and A. Stratan, “Intracavity pumped nanosecond optical parametric oscillator emitting in the eye-safe range,” Appl. Opt.40(24), 4334–4340 (2001).
    [CrossRef] [PubMed]
  6. P. B. Phua, K. S. Lai, and R. F. Wu, “Multiwatt high-repetition-rate 2-μm output from an intracavity KTiOPO4 optical parametric oscillator,” Appl. Opt.39(9), 1435–1439 (2000).
    [CrossRef] [PubMed]
  7. H. Y. Zhu, G. Zhang, C. H. Huang, H. Y. Wang, Y. Wei, Y. F. Lin, L. X. Huang, G. Qiu, and Y. D. Huang, “Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO4,” Opt. Commun.282(4), 601–604 (2009).
    [CrossRef]
  8. Y. Y. Wang, D. G. Xu, K. Zhong, P. Wang, and J. Q. Yao, “High-energy pulsed laser of twin wavelengths from KTP intracavity optical parametric oscillator,” Appl. Phys. B97(2), 439–443 (2009).
    [CrossRef]
  9. R. J. Beach, “Theory and optimization of lens ducts,” Appl. Opt.35(12), 2005–2015 (1996).
    [CrossRef] [PubMed]
  10. R. Fu, G. Wang, Z. Wang, E. Ba, G. Mu, and X. H. Hu, “Design of efficient lens ducts,” Appl. Opt.37(18), 4000–4003 (1998).
    [CrossRef] [PubMed]
  11. Y. F. Chen, J. L. Lee, H. D. Hsieh, and S. W. Tsai, “Analysis of passively Q-switched lasers with simultaneous modelocking,” IEEE J. Quantum Electron.38(3), 312–317 (2002).
    [CrossRef]
  12. T. Debuisschert, J. Raffy, J. P. Pocholle, and M. Papuchon, “Intracavity optical parametric oscillator: study of the dynamics in pulsed regime,” J. Opt. Soc. Am. B13(7), 1569–1587 (1996).
    [CrossRef]
  13. J. J. Degnan, D. B. Coyle, and R. B. Kay, “Effects of thermalization on Q-switched laser properties,” IEEE J. Quantum Electron.34(5), 887–899 (1998).
    [CrossRef]

2011

Y. P. Huang, P. Y. Chiang, Y. F. Chen, and K. F. Huang, “Millijoule intracavity OPO driven by a passively Q-switched Nd:YVO4 laser with AlGaInAs quantum-well saturable absorber,” Appl. Phys. B104(3), 591–595 (2011).
[CrossRef]

2009

H. Y. Zhu, G. Zhang, C. H. Huang, H. Y. Wang, Y. Wei, Y. F. Lin, L. X. Huang, G. Qiu, and Y. D. Huang, “Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO4,” Opt. Commun.282(4), 601–604 (2009).
[CrossRef]

Y. Y. Wang, D. G. Xu, K. Zhong, P. Wang, and J. Q. Yao, “High-energy pulsed laser of twin wavelengths from KTP intracavity optical parametric oscillator,” Appl. Phys. B97(2), 439–443 (2009).
[CrossRef]

Y. Y. Wang, D. G. Xu, K. Zhong, P. Wang, and J. Q. Yao, “High-energy pulsed laser of twin wavelengths from KTP intracavity optical parametric oscillator,” Appl. Phys. B97(2), 439–443 (2009).
[CrossRef]

Y. P. Huang, H. L. Chang, Y. J. Huang, Y. T. Chang, K. W. Su, W. C. Yen, and Y. F. Chen, “Subnanosecond mJ eye-safe laser with an intracavity optical parametric oscillator in a shared resonator,” Opt. Express17(3), 1551–1556 (2009).
[CrossRef] [PubMed]

2006

2002

Y. F. Chen, J. L. Lee, H. D. Hsieh, and S. W. Tsai, “Analysis of passively Q-switched lasers with simultaneous modelocking,” IEEE J. Quantum Electron.38(3), 312–317 (2002).
[CrossRef]

2001

2000

1998

R. Fu, G. Wang, Z. Wang, E. Ba, G. Mu, and X. H. Hu, “Design of efficient lens ducts,” Appl. Opt.37(18), 4000–4003 (1998).
[CrossRef] [PubMed]

J. J. Degnan, D. B. Coyle, and R. B. Kay, “Effects of thermalization on Q-switched laser properties,” IEEE J. Quantum Electron.34(5), 887–899 (1998).
[CrossRef]

1996

Ba, E.

Beach, R. J.

Chang, H. L.

Chang, Y. T.

Chen, Y. F.

Y. P. Huang, P. Y. Chiang, Y. F. Chen, and K. F. Huang, “Millijoule intracavity OPO driven by a passively Q-switched Nd:YVO4 laser with AlGaInAs quantum-well saturable absorber,” Appl. Phys. B104(3), 591–595 (2011).
[CrossRef]

Y. P. Huang, H. L. Chang, Y. J. Huang, Y. T. Chang, K. W. Su, W. C. Yen, and Y. F. Chen, “Subnanosecond mJ eye-safe laser with an intracavity optical parametric oscillator in a shared resonator,” Opt. Express17(3), 1551–1556 (2009).
[CrossRef] [PubMed]

Y. F. Chen, J. L. Lee, H. D. Hsieh, and S. W. Tsai, “Analysis of passively Q-switched lasers with simultaneous modelocking,” IEEE J. Quantum Electron.38(3), 312–317 (2002).
[CrossRef]

Chiang, P. Y.

Y. P. Huang, P. Y. Chiang, Y. F. Chen, and K. F. Huang, “Millijoule intracavity OPO driven by a passively Q-switched Nd:YVO4 laser with AlGaInAs quantum-well saturable absorber,” Appl. Phys. B104(3), 591–595 (2011).
[CrossRef]

Chinn, S. R.

Coyle, D. B.

J. J. Degnan, D. B. Coyle, and R. B. Kay, “Effects of thermalization on Q-switched laser properties,” IEEE J. Quantum Electron.34(5), 887–899 (1998).
[CrossRef]

Dabu, R.

Debuisschert, T.

Degnan, J. J.

J. J. Degnan, D. B. Coyle, and R. B. Kay, “Effects of thermalization on Q-switched laser properties,” IEEE J. Quantum Electron.34(5), 887–899 (1998).
[CrossRef]

Fenic, C.

Fu, R.

Goldberg, L.

Hays, A. D.

Hsieh, H. D.

Y. F. Chen, J. L. Lee, H. D. Hsieh, and S. W. Tsai, “Analysis of passively Q-switched lasers with simultaneous modelocking,” IEEE J. Quantum Electron.38(3), 312–317 (2002).
[CrossRef]

Hu, X. H.

Huang, C. H.

H. Y. Zhu, G. Zhang, C. H. Huang, H. Y. Wang, Y. Wei, Y. F. Lin, L. X. Huang, G. Qiu, and Y. D. Huang, “Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO4,” Opt. Commun.282(4), 601–604 (2009).
[CrossRef]

Huang, K. F.

Y. P. Huang, P. Y. Chiang, Y. F. Chen, and K. F. Huang, “Millijoule intracavity OPO driven by a passively Q-switched Nd:YVO4 laser with AlGaInAs quantum-well saturable absorber,” Appl. Phys. B104(3), 591–595 (2011).
[CrossRef]

Huang, L. X.

H. Y. Zhu, G. Zhang, C. H. Huang, H. Y. Wang, Y. Wei, Y. F. Lin, L. X. Huang, G. Qiu, and Y. D. Huang, “Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO4,” Opt. Commun.282(4), 601–604 (2009).
[CrossRef]

Huang, Y. D.

H. Y. Zhu, G. Zhang, C. H. Huang, H. Y. Wang, Y. Wei, Y. F. Lin, L. X. Huang, G. Qiu, and Y. D. Huang, “Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO4,” Opt. Commun.282(4), 601–604 (2009).
[CrossRef]

Huang, Y. J.

Huang, Y. P.

Y. P. Huang, P. Y. Chiang, Y. F. Chen, and K. F. Huang, “Millijoule intracavity OPO driven by a passively Q-switched Nd:YVO4 laser with AlGaInAs quantum-well saturable absorber,” Appl. Phys. B104(3), 591–595 (2011).
[CrossRef]

Y. P. Huang, H. L. Chang, Y. J. Huang, Y. T. Chang, K. W. Su, W. C. Yen, and Y. F. Chen, “Subnanosecond mJ eye-safe laser with an intracavity optical parametric oscillator in a shared resonator,” Opt. Express17(3), 1551–1556 (2009).
[CrossRef] [PubMed]

Kay, R. B.

J. J. Degnan, D. B. Coyle, and R. B. Kay, “Effects of thermalization on Q-switched laser properties,” IEEE J. Quantum Electron.34(5), 887–899 (1998).
[CrossRef]

Lai, K. S.

Lee, J. L.

Y. F. Chen, J. L. Lee, H. D. Hsieh, and S. W. Tsai, “Analysis of passively Q-switched lasers with simultaneous modelocking,” IEEE J. Quantum Electron.38(3), 312–317 (2002).
[CrossRef]

Lin, Y. F.

H. Y. Zhu, G. Zhang, C. H. Huang, H. Y. Wang, Y. Wei, Y. F. Lin, L. X. Huang, G. Qiu, and Y. D. Huang, “Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO4,” Opt. Commun.282(4), 601–604 (2009).
[CrossRef]

Mu, G.

Papuchon, M.

Phua, P. B.

Pocholle, J. P.

Qiu, G.

H. Y. Zhu, G. Zhang, C. H. Huang, H. Y. Wang, Y. Wei, Y. F. Lin, L. X. Huang, G. Qiu, and Y. D. Huang, “Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO4,” Opt. Commun.282(4), 601–604 (2009).
[CrossRef]

Raffy, J.

Schilling, B. W.

Stratan, A.

Su, K. W.

Trussell, C. W.

Tsai, S. W.

Y. F. Chen, J. L. Lee, H. D. Hsieh, and S. W. Tsai, “Analysis of passively Q-switched lasers with simultaneous modelocking,” IEEE J. Quantum Electron.38(3), 312–317 (2002).
[CrossRef]

Wang, G.

Wang, H. Y.

H. Y. Zhu, G. Zhang, C. H. Huang, H. Y. Wang, Y. Wei, Y. F. Lin, L. X. Huang, G. Qiu, and Y. D. Huang, “Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO4,” Opt. Commun.282(4), 601–604 (2009).
[CrossRef]

Wang, P.

Y. Y. Wang, D. G. Xu, K. Zhong, P. Wang, and J. Q. Yao, “High-energy pulsed laser of twin wavelengths from KTP intracavity optical parametric oscillator,” Appl. Phys. B97(2), 439–443 (2009).
[CrossRef]

Y. Y. Wang, D. G. Xu, K. Zhong, P. Wang, and J. Q. Yao, “High-energy pulsed laser of twin wavelengths from KTP intracavity optical parametric oscillator,” Appl. Phys. B97(2), 439–443 (2009).
[CrossRef]

Wang, Y. Y.

Y. Y. Wang, D. G. Xu, K. Zhong, P. Wang, and J. Q. Yao, “High-energy pulsed laser of twin wavelengths from KTP intracavity optical parametric oscillator,” Appl. Phys. B97(2), 439–443 (2009).
[CrossRef]

Y. Y. Wang, D. G. Xu, K. Zhong, P. Wang, and J. Q. Yao, “High-energy pulsed laser of twin wavelengths from KTP intracavity optical parametric oscillator,” Appl. Phys. B97(2), 439–443 (2009).
[CrossRef]

Wang, Z.

Wei, Y.

H. Y. Zhu, G. Zhang, C. H. Huang, H. Y. Wang, Y. Wei, Y. F. Lin, L. X. Huang, G. Qiu, and Y. D. Huang, “Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO4,” Opt. Commun.282(4), 601–604 (2009).
[CrossRef]

Wu, R. F.

Xu, D. G.

Y. Y. Wang, D. G. Xu, K. Zhong, P. Wang, and J. Q. Yao, “High-energy pulsed laser of twin wavelengths from KTP intracavity optical parametric oscillator,” Appl. Phys. B97(2), 439–443 (2009).
[CrossRef]

Y. Y. Wang, D. G. Xu, K. Zhong, P. Wang, and J. Q. Yao, “High-energy pulsed laser of twin wavelengths from KTP intracavity optical parametric oscillator,” Appl. Phys. B97(2), 439–443 (2009).
[CrossRef]

Yao, J. Q.

Y. Y. Wang, D. G. Xu, K. Zhong, P. Wang, and J. Q. Yao, “High-energy pulsed laser of twin wavelengths from KTP intracavity optical parametric oscillator,” Appl. Phys. B97(2), 439–443 (2009).
[CrossRef]

Y. Y. Wang, D. G. Xu, K. Zhong, P. Wang, and J. Q. Yao, “High-energy pulsed laser of twin wavelengths from KTP intracavity optical parametric oscillator,” Appl. Phys. B97(2), 439–443 (2009).
[CrossRef]

Yen, W. C.

Zhang, G.

H. Y. Zhu, G. Zhang, C. H. Huang, H. Y. Wang, Y. Wei, Y. F. Lin, L. X. Huang, G. Qiu, and Y. D. Huang, “Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO4,” Opt. Commun.282(4), 601–604 (2009).
[CrossRef]

Zhong, K.

Y. Y. Wang, D. G. Xu, K. Zhong, P. Wang, and J. Q. Yao, “High-energy pulsed laser of twin wavelengths from KTP intracavity optical parametric oscillator,” Appl. Phys. B97(2), 439–443 (2009).
[CrossRef]

Y. Y. Wang, D. G. Xu, K. Zhong, P. Wang, and J. Q. Yao, “High-energy pulsed laser of twin wavelengths from KTP intracavity optical parametric oscillator,” Appl. Phys. B97(2), 439–443 (2009).
[CrossRef]

Zhu, H. Y.

H. Y. Zhu, G. Zhang, C. H. Huang, H. Y. Wang, Y. Wei, Y. F. Lin, L. X. Huang, G. Qiu, and Y. D. Huang, “Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO4,” Opt. Commun.282(4), 601–604 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. B

Y. Y. Wang, D. G. Xu, K. Zhong, P. Wang, and J. Q. Yao, “High-energy pulsed laser of twin wavelengths from KTP intracavity optical parametric oscillator,” Appl. Phys. B97(2), 439–443 (2009).
[CrossRef]

Y. Y. Wang, D. G. Xu, K. Zhong, P. Wang, and J. Q. Yao, “High-energy pulsed laser of twin wavelengths from KTP intracavity optical parametric oscillator,” Appl. Phys. B97(2), 439–443 (2009).
[CrossRef]

Y. P. Huang, P. Y. Chiang, Y. F. Chen, and K. F. Huang, “Millijoule intracavity OPO driven by a passively Q-switched Nd:YVO4 laser with AlGaInAs quantum-well saturable absorber,” Appl. Phys. B104(3), 591–595 (2011).
[CrossRef]

IEEE J. Quantum Electron.

Y. F. Chen, J. L. Lee, H. D. Hsieh, and S. W. Tsai, “Analysis of passively Q-switched lasers with simultaneous modelocking,” IEEE J. Quantum Electron.38(3), 312–317 (2002).
[CrossRef]

J. J. Degnan, D. B. Coyle, and R. B. Kay, “Effects of thermalization on Q-switched laser properties,” IEEE J. Quantum Electron.34(5), 887–899 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

H. Y. Zhu, G. Zhang, C. H. Huang, H. Y. Wang, Y. Wei, Y. F. Lin, L. X. Huang, G. Qiu, and Y. D. Huang, “Electro-optic Q-switched intracavity optical parametric oscillator at 1.53 μm based on KTiOAsO4,” Opt. Commun.282(4), 601–604 (2009).
[CrossRef]

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for an intracavity OPO pumped by a diode-pumped passively Q-switched Nd:YAG / Cr4+:YAG laser with a shared resonator.

Fig. 2
Fig. 2

The pump threshold energy with respect to the reflectivity at the fundamental laser wavelength of 1064 nm; solid lines: theoretical results; symbols: experimental values.

Fig. 3
Fig. 3

Calculated and experimental results for the output pulse energy with respect to the reflectivity at the fundamental laser wavelength of 1064 nm; solid lines: theoretical results calculated from Eqs. (2)-(7); symbols: experimental results. Insert: a photograph for the damage of the output coupler with the reflectivity of 99.8%.

Fig. 4
Fig. 4

Experimentally temporal shapes of the fundamental laser (1064 nm) and OPO signal (1572 nm) pulses for the reflectivity of (a) 0.998, (b) 0.98, (c) 0.94, and (d) 0.9.

Fig. 5
Fig. 5

The output peak power with respect to the reflectivity at the fundamental laser wavelength of 1064 nm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E th = 1 η p h ν p 2σ [ ln( 1/ T o 2 )+ln( 1/R )+L ],
n i = 1 2σl [ ln( 1/ T o 2 )+ln( 1/R )+L ].
dn dt =cσ φ p n,
d φ p dt = l cr l ca cσn( φ p +Δ φ p ) l nl l ca σ opo φ s φ p φ p t r [ ln( 1/R )+L ],
d φ s dt = l nl l ca c σ opo φ p ( φ s +Δ φ s ) φ s t r [ ln( 1/ R s )+ L s ],
2 σ opo l nl = 8 ω i ω s d eff 2 l nl 2 n i n s n p ε o c 2 A p A s + A p ,
E j = h ν j A j 2σ ln( 1/R ) φ j (t)dt ,

Metrics