Abstract

High-resolution spectral lidar measurements using dual frequency combs as a source is presented. The technique enables the range-resolved measurement of fine spectral features, such as gas absorption lines, provided that a suitable scatterer is present in the scene. Measurements of HCN absorption lines at 20 meters are presented, with a water droplet cloud and a diffusely reflective surface as scatterers.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett.29(13), 1542–1544 (2004).
    [CrossRef] [PubMed]
  2. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100(1), 013902 (2008).
    [CrossRef] [PubMed]
  3. P. Giaccari, J.-D. Deschênes, P. Saucier, J. Genest, and P. Tremblay, “Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method,” Opt. Express16(6), 4347–4365 (2008).
    [CrossRef] [PubMed]
  4. J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics3(2), 99–102 (2009).
    [CrossRef]
  5. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics3(6), 351–356 (2009).
    [CrossRef]
  6. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, and J. J. M. Braat, “High-accuracy long-distance measurements in air with a frequency comb laser,” Opt. Lett.34(13), 1982–1984 (2009).
    [CrossRef] [PubMed]
  7. A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express13(22), 9029–9038 (2005).
    [CrossRef] [PubMed]
  8. M. Godbout, J. D. Deschênes, and J. Genest, “Spectrally resolved laser ranging with frequency combs,” Opt. Express18(15), 15981–15989 (2010).
    [CrossRef] [PubMed]
  9. T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express20(7), 7119–7127 (2012).
    [CrossRef] [PubMed]
  10. M. A. Powers and C. C. Davis, “Spectral LADAR: active range-resolved three-dimensional imaging spectroscopy,” Appl. Opt.51(10), 1468–1478 (2012).
    [CrossRef] [PubMed]
  11. T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express18(2), 1613–1617 (2010).
    [CrossRef] [PubMed]
  12. C. Mohr, A. Romann, A. Ruehl, I. Hartl, and M. E. Fermann, “Fourier Transform Spectrometry Using a Single Cavity Length Modulated Mode-Locked Fiber Laser,” in Fiber Laser Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper FWA2.
  13. A. M. Zolot, I. Coddington, F. Giorgetta, E. Baumann, W. Swann, J. Nicholson, and N. R. Newbury, “High Accuracy Molecular Spectroscopy with Combs Broadened From 1.35 to 1.7 μm,” in CLEO:2011- Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThK2.

2012 (2)

2010 (2)

2009 (3)

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics3(2), 99–102 (2009).
[CrossRef]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics3(6), 351–356 (2009).
[CrossRef]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, and J. J. M. Braat, “High-accuracy long-distance measurements in air with a frequency comb laser,” Opt. Lett.34(13), 1982–1984 (2009).
[CrossRef] [PubMed]

2008 (2)

2005 (1)

2004 (1)

Bhattacharya, N.

Braat, J. J. M.

Brehm, M.

Chen, Y.

Coddington, I.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics3(6), 351–356 (2009).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100(1), 013902 (2008).
[CrossRef] [PubMed]

Cui, M.

Davis, C. C.

Deschênes, J. D.

Deschênes, J.-D.

Genest, J.

Giaccari, P.

Godbout, M.

Gohle, C.

Guelachvili, G.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics3(2), 99–102 (2009).
[CrossRef]

Hakala, T.

Hochrein, T.

Holzwarth, R.

Kaasalainen, S.

Keilmann, F.

Koch, M.

Krumbholz, N.

Mandon, J.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics3(2), 99–102 (2009).
[CrossRef]

Mei, M.

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics3(6), 351–356 (2009).
[CrossRef]

Newbury, N. R.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics3(6), 351–356 (2009).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100(1), 013902 (2008).
[CrossRef] [PubMed]

Picqué, N.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics3(2), 99–102 (2009).
[CrossRef]

Powers, M. A.

Saucier, P.

Schliesser, A.

Suomalainen, J.

Swann, W. C.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics3(6), 351–356 (2009).
[CrossRef]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100(1), 013902 (2008).
[CrossRef] [PubMed]

Tremblay, P.

Urbach, H. P.

van den Berg, S. A.

van der Weide, D.

Wilk, R.

Zeitouny, M. G.

Appl. Opt. (1)

Nat. Photonics (2)

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics3(2), 99–102 (2009).
[CrossRef]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics3(6), 351–356 (2009).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100(1), 013902 (2008).
[CrossRef] [PubMed]

Other (2)

C. Mohr, A. Romann, A. Ruehl, I. Hartl, and M. E. Fermann, “Fourier Transform Spectrometry Using a Single Cavity Length Modulated Mode-Locked Fiber Laser,” in Fiber Laser Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper FWA2.

A. M. Zolot, I. Coddington, F. Giorgetta, E. Baumann, W. Swann, J. Nicholson, and N. R. Newbury, “High Accuracy Molecular Spectroscopy with Combs Broadened From 1.35 to 1.7 μm,” in CLEO:2011- Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThK2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Complete measurement setup. Both combs are sent to a pulse stretching module for chirped pulse amplification. Repetition rate is chosen using the pulse pickers, after which the pulses are amplified and combined. A local trace is taken for calibration purposes. The combined combs are then sent to the target and the return signal is collected by an APD in the image plane of a telescope.

Fig. 2
Fig. 2

Pulse energy at the output of one of the EDFAs as a function of pulse repetition interval. For all pumping currents, the pulse energy caps at approximately 0.5 µs, resulting in an optimal repetition rate of 2 MHz for long distance measurements.

Fig. 3
Fig. 3

a) Launcher, telescope and APD setup. b) Fog generating apparatus. Condensed vapor generated above the liquid nitrogen bath is pushed to the 1 m horizontal tube (labeled Interaction section) by the convection fan.

Fig. 4
Fig. 4

Interferogram as a function of distance from the launcher. About 3 m of the full unambiguous range of 4.5 m corresponding to a pulse picking factor of 3 can be seen. The graph features two distinct interferograms, corresponding to the distributed reflection from the aerosol cloud and the discrete but diffuse reflection from the spectralon block.

Fig. 5
Fig. 5

Spectrum of the scene as a function of distance. Both the aerosol cloud and the spectralon block spectra can be seen. A slice at 20 m is highlighted in black to show the HCN absorption lines.

Fig. 6
Fig. 6

Spectrum of the HCN filtered water droplet cloud. Absorption lines from the HCN cell can clearly be seen. Spectral features present in the combs are very well removed by the calibration spectrum.

Fig. 7
Fig. 7

Spectrum of the HCN filtered spectralon block. Some spectral features not due to the HCN remain after calibration. These features are caused by speckle from the spectralon block.

Fig. 8
Fig. 8

Calibrated spectralon spectrum for both stationary measurement and spatial averaging by making the spectralon block rotate while measuring. The spectral fluctuations are attenuated by spatial averaging, showing that they are caused by speckle due to surface irregularities.

Metrics