Abstract

Aluminum nitride (AlN)-on-insulator has emerged as a promising platform for the realization of linear and non-linear integrated photonic circuits. In order to efficiently route optical signals on-chip, precise control over the interaction and polarization of evanescently coupled waveguide modes is required. Here we employ nanophotonic AlN waveguides to realize directional couplers with a broad coupling bandwidth and low insertion loss. We achieve uniform splitting of incoming modes, confirmed by high extinction-ratio exceeding 33dB in integrated Mach-Zehnder Interferometers. Optimized three-waveguide couplers furthermore allow for extending the coupling bandwidth over traditional side-coupled devices by almost an order of magnitude, with variable splitting ratio. Our work illustrates the potential of AlN circuits for coupled waveguide optics, DWDM applications and integrated polarization diversity schemes.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics1(6), 303–305 (2007).
    [CrossRef]
  2. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006).
    [CrossRef]
  3. R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
    [CrossRef]
  4. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol.23(1), 401–412 (2005).
    [CrossRef]
  5. W. Bludau, A. Onton, and W. Heinke, “Temperature dependence of the band gap of silicon,” J. Appl. Phys.45(4), 1846 (1974).
    [CrossRef]
  6. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express17(14), 11366–11370 (2009).
    [CrossRef] [PubMed]
  7. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express17(17), 14543–14551 (2009).
    [CrossRef] [PubMed]
  8. K. Fong, W. Pernice, M. Li, and H. Tang, “High Q optomechanical resonators in silicon nitride nanophotonic circuits,” Appl. Phys. Lett.97(7), 073112 (2010).
    [CrossRef]
  9. M.-C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, “Ultra-high quality factor planar Si3N4 ring resonators on Si substrates,” Opt. Express19(14), 13551–13556 (2011).
    [CrossRef] [PubMed]
  10. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36(17), 3398–3400 (2011).
    [CrossRef] [PubMed]
  11. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature452(7183), 72–75 (2008).
    [CrossRef] [PubMed]
  12. B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett.92(10), 103125 (2008).
    [CrossRef]
  13. Q. P. Unterreithmeier, T. Faust, and J. P. Kotthaus, “Damping of Nanomechanical Resonators,” Phys. Rev. Lett.105(2), 027205 (2010).
    [CrossRef] [PubMed]
  14. B. Bhushan, Springer Handbook of Nanotechnology. (second ed.)Springer-Verlag, Heidelberg (2007).
  15. C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express19(11), 10462–10470 (2011).
    [CrossRef] [PubMed]
  16. Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011).
    [CrossRef]
  17. C. Xiong, W. Pernice, X. Sun, C. Schuck, K. Fong, and H. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys.14(9), 095014 (2012).
    [CrossRef]
  18. C. Xiong, W. H. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett.12(7), 3562–3568 (2012).
    [CrossRef] [PubMed]
  19. S. Ghosh, C. R. Doerr, and G. Piazza, “Aluminum nitride grating couplers,” Appl. Opt.51(17), 3763–3767 (2012).
    [CrossRef] [PubMed]
  20. W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap,” J. Appl. Phys.44(1), 292–296(1973).
    [CrossRef]
  21. M. H. Crawford, “LEDs for Solid-State Lighting: Performance Challenges and Recent Advances,” IEEE J. Sel. Top. Quantum Electron.15(4), 1028–1040 (2009).
    [CrossRef]
  22. H. A. Haus, W. P. Huang, S. Kawakami, and N. A. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Technol.5(1), 16–23 (1987).
    [CrossRef]
  23. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
    [CrossRef]
  24. P. Ganguly, J. C. Biswas, S. Das, and S. K. Lahiri, “A three-waveguide polarization independent power splitter on lithium niobate substrate,” Opt. Commun.168(5-6), 349–354 (1999).
    [CrossRef]

2012 (3)

C. Xiong, W. Pernice, X. Sun, C. Schuck, K. Fong, and H. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys.14(9), 095014 (2012).
[CrossRef]

C. Xiong, W. H. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett.12(7), 3562–3568 (2012).
[CrossRef] [PubMed]

S. Ghosh, C. R. Doerr, and G. Piazza, “Aluminum nitride grating couplers,” Appl. Opt.51(17), 3763–3767 (2012).
[CrossRef] [PubMed]

2011 (4)

2010 (2)

Q. P. Unterreithmeier, T. Faust, and J. P. Kotthaus, “Damping of Nanomechanical Resonators,” Phys. Rev. Lett.105(2), 027205 (2010).
[CrossRef] [PubMed]

K. Fong, W. Pernice, M. Li, and H. Tang, “High Q optomechanical resonators in silicon nitride nanophotonic circuits,” Appl. Phys. Lett.97(7), 073112 (2010).
[CrossRef]

2009 (3)

2008 (2)

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature452(7183), 72–75 (2008).
[CrossRef] [PubMed]

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett.92(10), 103125 (2008).
[CrossRef]

2007 (1)

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics1(6), 303–305 (2007).
[CrossRef]

2006 (2)

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006).
[CrossRef]

2005 (1)

2002 (1)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

1999 (1)

P. Ganguly, J. C. Biswas, S. Das, and S. K. Lahiri, “A three-waveguide polarization independent power splitter on lithium niobate substrate,” Opt. Commun.168(5-6), 349–354 (1999).
[CrossRef]

1987 (1)

H. A. Haus, W. P. Huang, S. Kawakami, and N. A. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Technol.5(1), 16–23 (1987).
[CrossRef]

1974 (1)

W. Bludau, A. Onton, and W. Heinke, “Temperature dependence of the band gap of silicon,” J. Appl. Phys.45(4), 1846 (1974).
[CrossRef]

1973 (1)

W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap,” J. Appl. Phys.44(1), 292–296(1973).
[CrossRef]

Adibi, A.

Atabaki, A. H.

Baets, R.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol.23(1), 401–412 (2005).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Bauters, J. F.

Beckx, S.

Bienstman, P.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol.23(1), 401–412 (2005).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Biswas, J. C.

P. Ganguly, J. C. Biswas, S. Das, and S. K. Lahiri, “A three-waveguide polarization independent power splitter on lithium niobate substrate,” Opt. Commun.168(5-6), 349–354 (1999).
[CrossRef]

Bleszynski Jayich, A. C.

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett.92(10), 103125 (2008).
[CrossRef]

Bludau, W.

W. Bludau, A. Onton, and W. Heinke, “Temperature dependence of the band gap of silicon,” J. Appl. Phys.45(4), 1846 (1974).
[CrossRef]

Blumenthal, D. J.

Bogaerts, W.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol.23(1), 401–412 (2005).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Bowers, J. E.

Calvez, S.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011).
[CrossRef]

Crawford, M. H.

M. H. Crawford, “LEDs for Solid-State Lighting: Performance Challenges and Recent Advances,” IEEE J. Sel. Top. Quantum Electron.15(4), 1028–1040 (2009).
[CrossRef]

Cryan, M. J.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011).
[CrossRef]

Das, S.

P. Ganguly, J. C. Biswas, S. Das, and S. K. Lahiri, “A three-waveguide polarization independent power splitter on lithium niobate substrate,” Opt. Commun.168(5-6), 349–354 (1999).
[CrossRef]

Dawson, M. D.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011).
[CrossRef]

De Mesel, K.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Doerr, C. R.

Dumon, P.

Engin, E.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011).
[CrossRef]

Ettenberg, M.

W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap,” J. Appl. Phys.44(1), 292–296(1973).
[CrossRef]

Fathpour, S.

Faust, T.

Q. P. Unterreithmeier, T. Faust, and J. P. Kotthaus, “Damping of Nanomechanical Resonators,” Phys. Rev. Lett.105(2), 027205 (2010).
[CrossRef] [PubMed]

Fong, K.

C. Xiong, W. Pernice, X. Sun, C. Schuck, K. Fong, and H. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys.14(9), 095014 (2012).
[CrossRef]

K. Fong, W. Pernice, M. Li, and H. Tang, “High Q optomechanical resonators in silicon nitride nanophotonic circuits,” Appl. Phys. Lett.97(7), 073112 (2010).
[CrossRef]

Fong, K. Y.

Gaeta, A. L.

Ganguly, P.

P. Ganguly, J. C. Biswas, S. Das, and S. K. Lahiri, “A three-waveguide polarization independent power splitter on lithium niobate substrate,” Opt. Commun.168(5-6), 349–354 (1999).
[CrossRef]

Ghosh, S.

Gilbert, S. L.

W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap,” J. Appl. Phys.44(1), 292–296(1973).
[CrossRef]

Girvin, S. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature452(7183), 72–75 (2008).
[CrossRef] [PubMed]

Gondarenko, A.

Gu, E.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011).
[CrossRef]

Harris, J. G.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature452(7183), 72–75 (2008).
[CrossRef] [PubMed]

Harris, J. G. E.

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett.92(10), 103125 (2008).
[CrossRef]

Haus, H. A.

H. A. Haus, W. P. Huang, S. Kawakami, and N. A. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Technol.5(1), 16–23 (1987).
[CrossRef]

Heck, M. J. R.

Heinke, W.

W. Bludau, A. Onton, and W. Heinke, “Temperature dependence of the band gap of silicon,” J. Appl. Phys.45(4), 1846 (1974).
[CrossRef]

Hosseini, E. S.

Huang, W. P.

H. A. Haus, W. P. Huang, S. Kawakami, and N. A. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Technol.5(1), 16–23 (1987).
[CrossRef]

Jalali, B.

Jayich, A. M.

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett.92(10), 103125 (2008).
[CrossRef]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature452(7183), 72–75 (2008).
[CrossRef] [PubMed]

Kawakami, S.

H. A. Haus, W. P. Huang, S. Kawakami, and N. A. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Technol.5(1), 16–23 (1987).
[CrossRef]

Kimerling, L.

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics1(6), 303–305 (2007).
[CrossRef]

Kirchain, R.

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics1(6), 303–305 (2007).
[CrossRef]

Kotthaus, J. P.

Q. P. Unterreithmeier, T. Faust, and J. P. Kotthaus, “Damping of Nanomechanical Resonators,” Phys. Rev. Lett.105(2), 027205 (2010).
[CrossRef] [PubMed]

Krauss, T. F.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Lahiri, S. K.

P. Ganguly, J. C. Biswas, S. Das, and S. K. Lahiri, “A three-waveguide polarization independent power splitter on lithium niobate substrate,” Opt. Commun.168(5-6), 349–354 (1999).
[CrossRef]

Levy, J. S.

Li, M.

K. Fong, W. Pernice, M. Li, and H. Tang, “High Q optomechanical resonators in silicon nitride nanophotonic circuits,” Appl. Phys. Lett.97(7), 073112 (2010).
[CrossRef]

Lipson, M.

Luyssaert, B.

Marquardt, F.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature452(7183), 72–75 (2008).
[CrossRef] [PubMed]

McKnight, L.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011).
[CrossRef]

Moerman, I.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

O’Brien, J. L.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011).
[CrossRef]

Okawachi, Y.

Onton, A.

W. Bludau, A. Onton, and W. Heinke, “Temperature dependence of the band gap of silicon,” J. Appl. Phys.45(4), 1846 (1974).
[CrossRef]

Palacios, T.

Pankove, J. I.

W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap,” J. Appl. Phys.44(1), 292–296(1973).
[CrossRef]

Pernice, W.

C. Xiong, W. Pernice, X. Sun, C. Schuck, K. Fong, and H. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys.14(9), 095014 (2012).
[CrossRef]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express19(11), 10462–10470 (2011).
[CrossRef] [PubMed]

K. Fong, W. Pernice, M. Li, and H. Tang, “High Q optomechanical resonators in silicon nitride nanophotonic circuits,” Appl. Phys. Lett.97(7), 073112 (2010).
[CrossRef]

Pernice, W. H.

C. Xiong, W. H. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett.12(7), 3562–3568 (2012).
[CrossRef] [PubMed]

Piazza, G.

Ryu, K. K.

Saha, K.

Schuck, C.

C. Xiong, W. Pernice, X. Sun, C. Schuck, K. Fong, and H. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys.14(9), 095014 (2012).
[CrossRef]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express19(11), 10462–10470 (2011).
[CrossRef] [PubMed]

Shanks, W. E.

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett.92(10), 103125 (2008).
[CrossRef]

Soltani, M.

Soref, R.

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

Spencer, D. T.

Stofko, E. J.

W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap,” J. Appl. Phys.44(1), 292–296(1973).
[CrossRef]

Sun, X.

C. Xiong, W. Pernice, X. Sun, C. Schuck, K. Fong, and H. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys.14(9), 095014 (2012).
[CrossRef]

Taillaert, D.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol.23(1), 401–412 (2005).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Tang, H.

C. Xiong, W. Pernice, X. Sun, C. Schuck, K. Fong, and H. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys.14(9), 095014 (2012).
[CrossRef]

K. Fong, W. Pernice, M. Li, and H. Tang, “High Q optomechanical resonators in silicon nitride nanophotonic circuits,” Appl. Phys. Lett.97(7), 073112 (2010).
[CrossRef]

Tang, H. X.

C. Xiong, W. H. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett.12(7), 3562–3568 (2012).
[CrossRef] [PubMed]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express19(11), 10462–10470 (2011).
[CrossRef] [PubMed]

Thompson, J. D.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature452(7183), 72–75 (2008).
[CrossRef] [PubMed]

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett.92(10), 103125 (2008).
[CrossRef]

Thompson, M. G.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011).
[CrossRef]

Tien, M.-C.

Unterreithmeier, Q. P.

Q. P. Unterreithmeier, T. Faust, and J. P. Kotthaus, “Damping of Nanomechanical Resonators,” Phys. Rev. Lett.105(2), 027205 (2010).
[CrossRef] [PubMed]

Van Campenhout, J.

Van Dale, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Van Thourhout, D.

Verstuyft, S.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

Watson, I. M.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011).
[CrossRef]

Wen, Y. H.

Whitaker, N. A.

H. A. Haus, W. P. Huang, S. Kawakami, and N. A. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Technol.5(1), 16–23 (1987).
[CrossRef]

Wiaux, V.

Xiong, C.

C. Xiong, W. H. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett.12(7), 3562–3568 (2012).
[CrossRef] [PubMed]

C. Xiong, W. Pernice, X. Sun, C. Schuck, K. Fong, and H. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys.14(9), 095014 (2012).
[CrossRef]

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express19(11), 10462–10470 (2011).
[CrossRef] [PubMed]

Yang, C.

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett.92(10), 103125 (2008).
[CrossRef]

Yegnanarayanan, S.

Yim, W. M.

W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap,” J. Appl. Phys.44(1), 292–296(1973).
[CrossRef]

Zanzucchi, P. J.

W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap,” J. Appl. Phys.44(1), 292–296(1973).
[CrossRef]

Zhang, Y.

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011).
[CrossRef]

Zwickl, B. M.

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett.92(10), 103125 (2008).
[CrossRef]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature452(7183), 72–75 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

K. Fong, W. Pernice, M. Li, and H. Tang, “High Q optomechanical resonators in silicon nitride nanophotonic circuits,” Appl. Phys. Lett.97(7), 073112 (2010).
[CrossRef]

B. M. Zwickl, W. E. Shanks, A. M. Jayich, C. Yang, A. C. Bleszynski Jayich, J. D. Thompson, and J. G. E. Harris, “High quality mechanical and optical properties of commercial silicon nitride membranes,” Appl. Phys. Lett.92(10), 103125 (2008).
[CrossRef]

Y. Zhang, L. McKnight, E. Engin, I. M. Watson, M. J. Cryan, E. Gu, M. G. Thompson, S. Calvez, J. L. O’Brien, and M. D. Dawson, “GaN directional couplers for integrated quantum photonics,” Appl. Phys. Lett.99(16), 161119 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Dale, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron.38(7), 949–955 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

M. H. Crawford, “LEDs for Solid-State Lighting: Performance Challenges and Recent Advances,” IEEE J. Sel. Top. Quantum Electron.15(4), 1028–1040 (2009).
[CrossRef]

J. Appl. Phys. (2)

W. Bludau, A. Onton, and W. Heinke, “Temperature dependence of the band gap of silicon,” J. Appl. Phys.45(4), 1846 (1974).
[CrossRef]

W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap,” J. Appl. Phys.44(1), 292–296(1973).
[CrossRef]

J. Lightwave Technol. (3)

Nano Lett. (1)

C. Xiong, W. H. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett.12(7), 3562–3568 (2012).
[CrossRef] [PubMed]

Nat. Photonics (1)

R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics1(6), 303–305 (2007).
[CrossRef]

Nature (1)

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature452(7183), 72–75 (2008).
[CrossRef] [PubMed]

New J. Phys. (1)

C. Xiong, W. Pernice, X. Sun, C. Schuck, K. Fong, and H. Tang, “Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics,” New J. Phys.14(9), 095014 (2012).
[CrossRef]

Opt. Commun. (1)

P. Ganguly, J. C. Biswas, S. Das, and S. K. Lahiri, “A three-waveguide polarization independent power splitter on lithium niobate substrate,” Opt. Commun.168(5-6), 349–354 (1999).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

Q. P. Unterreithmeier, T. Faust, and J. P. Kotthaus, “Damping of Nanomechanical Resonators,” Phys. Rev. Lett.105(2), 027205 (2010).
[CrossRef] [PubMed]

Other (1)

B. Bhushan, Springer Handbook of Nanotechnology. (second ed.)Springer-Verlag, Heidelberg (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Exemplary fabricated directional coupler photonic circuit. Light is coupled into and out of the device via grating couplers attached to the input and output ports. In the coupling region in the center of the figure two waveguides are built parallel to each other over a fixed length L. The unused upper left input port is terminated with a taper to scatter incoming light out of the structure and suppress reflections. (b) Cross-sectional view of the coupling area. Two AlN waveguides of width w, height h and sidewall angles θ lie close together, separated by a gap of size g, on an insulating SiO2 substrate.

Fig. 2
Fig. 2

(a) Simulated Ey-profiles of the symmetric and antisymmetric TM-like supermodes of the studied directional coupler. The calculations are carried out with the finite-element solver COMSOL® (b) Full-vectorial finite-difference time-domain (FDTD) analysis of the power transfer characteristic of the studied directional coupler. The power of the excited lower TM-like mode is coupled into the upper waveguide within a distance Lc = 32.5µm, the so-called coupling length. With a longer interaction length L than Lc, the coupling leads to a sinusoidal oscillation of the guided power between the two waveguides.

Fig. 3
Fig. 3

Coupling efficiencies of (a) the TM-like and (b) the TE-like mode measured with different directional coupler devices with varying interaction length L. The obtained data are fitted to the theoretical sinusoidal oscillations yielding coupling lengths Lc consistent with the simulated values of LcTE = 32µm and LcTM = 67µm. In addition, almost complete power transfer for both modes, i.e. values for ηmax close to 100%, is obtained.

Fig. 4
Fig. 4

(a) Optical micrograph of a fabricated MZI design employing directional couplers as beam splitters. The light is launched into the lower left grating coupler, split by the first directional coupler, transferred again by the second directional coupler and finally coupled out via two grating couplers. Fringes corresponding to constructive and destructive interference at the output directional coupler provide a sensitive measure of the quality of the power splitter. (b) Recorded overall transmission at the middle output port. The specially marked Gaussian envelope corresponds to the transmission curve of the input and output grating coupler only. The observed fringes are the result of interference in the reuniting directional coupler (c) Logarithmic plot of another measured transmission curve. The used device had a longer path difference within the MZI than the device used for the upper transmission curve, leading to a smaller fringe separation. (d) Measured extinction ratio at the middle output port, corresponding to the lower waveguide. In the shown exemplary device, a perfect 50:50 splitting ratio is achieved around λ = 1567nm. The observed dispersion is a result of the linear decrease of the coupling length Lc with increasing wavelength. Extinction ratio in excess of 30dB is obtained over a 4nm bandwidth.

Fig. 5
Fig. 5

(a) Sketch of the proposed beam splitter design. The device is composed of three waveguides in parallel with gap sizes g and g’. As in common directional couplers, light entering the device at the middle port is transferred to the outer waveguides due to evanescent-wave coupling. The periodicities of this power transfer to the outer waveguides are the same and the ratio of the coupled powers t2 can be adjusted by choosing the gaps appropriately. Note that if the chosen interaction length L is not equal to the coupling length Lc (which is the case in the sketch), some power remains in the middle waveguide. (b) Simulated dispersion of the coupling coefficient ratio t2, carried out with COMSOL®. The wavelength dependence is well described by a linear decrease. Due to a small relative change of t2 across an interval of 100nm, the coupler design is expected to have a broad splitting bandwidth.

Fig. 6
Fig. 6

(a) Fabricated MZI based on two 50:50 beam splitters of the proposed design, recorded with an optical microscope. The light enters the device at the left lower grating coupler, is then transferred to the outer waveguides in the first beam splitter, partially reunited in the second one and finally detected after leaving the device via the output grating couplers. (b) Measured extinction ratio of the middle output port, i.e. the middle waveguide of the splitter, versus wavelength of an exemplary device. The reduction of Re from the expected value of infinity to the observed values of up to 35 dB is mainly a result of non-zero propagation losses. Here, phase mismatch effects caused by different waveguide widths lead to the observed dispersion effect.

Fig. 7
Fig. 7

(a) Optical Micrograph of a fabricated device to test the splitting ratio of the asymmetric 3-waveguide directional coupler. The light coming from the input grating coupler at the lower left is transferred to the outer two waveguides of the beam splitter. Whereas the lower port guides the light directly to the reuniting Y-splitter, the power in the upper waveguide is first split by an additional Y-splitter. If the transferred power ratio is 66:33, then the incident power values in the reuniting Y-splitter are equal due to the bisection of the power in the upper waveguide. Hence, measuring the extinction ratio in the output port is a good measure of the quality of the power splitting. (b) Measured extinction ratio of the middle output port plotted against wavelength for an exemplary device. A perfect 66:33 splitting ratio is achieved around λ = 1530nm and the obtained 30dB bandwidth is 15nm. Phase mismatch effects and the performance of the used Y-splitters limit the obtained extinction ratios and have an impact on the observed dispersion. Propagation losses cause a shift of the perfect splitting ratio.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

L c = π 2| κ | = λ 2( n eff,odd n eff,even )
η( Δ L L c )=η( π 2 [ 1 2 +Δ L L c ] ) 1 2 + π 4 Δ L L c
d dz ( A B C )=i[ 0 κ 0 κ 0 κ' 0 κ' 0 ]( A B C )
( A B C )(L)= 1 1+ t 2 [ t 2 +cos( κ ˜ L) i 1+ t 2 sin( κ ˜ L) t[cos( κ ˜ L)1] i 1+ t 2 sin( κ ˜ L) (1+ t 2 )cos( κ ˜ L) it 1+ t 2 sin( κ ˜ L) t[cos( κ ˜ L)1] it 1+ t 2 sin( κ ˜ L) 1+ t 2 cos( κ ˜ L) ]( A 0 B 0 C 0 )
P a P c = | A(L) | 2 | C(L) | 2 = 1 t 2
R e =10 log 10 [ 1+ e αd 1 e αd ] 2
R e =10 log 10 [ t 2 + e αd t 2 e αd ] 2

Metrics