Abstract

We demonstrate the improvement and formation of UV-induced damage on LBO crystal output surface during long-term (130 h) high-power (20 W) high-repetition-rate (80 kHz) third-harmonic generation. The output surface was super-polished (RMS surface roughness <0.6 nm) to sub-nanometer scale super smooth roughness. The surface lifetime has been improved more than 20-fold compared with the as-polished ones (RMS surface roughness 4.0~8.0 nm). The damage could be attributed to the consequence of thermal effects resulted from impurity absorptions. Simultaneously, it was verified that the impurities originated in part from the UV-induced deposition.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, H. Y. Pang, and N. Hodgson, “High power Q-switched TEM00 mode diode-pumped solid state lasers with > 30 W output power at 355 nm,” Proc. SPIE6100, 610019, 610019-14 (2006).
    [CrossRef]
  2. C. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, and S. Lin, “New nonlinear-optical crystal: LiB3O5,” J. Opt. Soc. Am. B6(4), 616–621 (1989).
    [CrossRef]
  3. X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett.7(8), 563–568 (2010).
    [CrossRef]
  4. H. Hong, Q. Liu, L. Huang, and M. Gong, “High-beam-quality all-solid-state 355 nm ultraviolet pulsed laser based on a master-oscillator power-amplifier system pumped at 888 nm,” Appl. Phys. Express5(9), 092705 (2012).
    [CrossRef]
  5. Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate LBO single crystal,” Appl. Phys. Lett.65(12), 1480–1482 (1994).
    [CrossRef]
  6. F. R. Wagner, A. Hildenbrand, J. Y. Natoli, and M. Commandré, “Multiple pulse nanosecond laser induced damage study in LiB3O5 crystals,” Opt. Express18(26), 26791–26798 (2010).
    [CrossRef] [PubMed]
  7. S. Möller, A. Andresen, C. Merschjann, B. Zimmermann, M. Prinz, and M. Imlau, “Insight to UV-induced formation of laser damage on LiB3O5 optical surfaces during long-term sum-frequency generation,” Opt. Express15(12), 7351–7356 (2007).
    [CrossRef] [PubMed]
  8. X. Li, M. Gross, K. Green, B. Oreb, and J. Shen, “Ultraviolet laser-induced damage on fused silica substrate and its sol-gel coating,” Opt. Lett.37(12), 2364–2366 (2012).
    [CrossRef] [PubMed]
  9. C. Gouldieff, F. Wagner, L. Jensen, M. Mende, J. Natoli, and D. Ristau, “Oxide mixtures for UV coatings,” Proc. SPIE8530, 85300T, 85300T-9 (2012).
    [CrossRef]
  10. S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys.109(11), 113106 (2011).
    [CrossRef]
  11. M. Mende, L. O. Jensen, H. Ehlers, S. Bruns, M. Vergöhl, P. Burdack, and D. Ristau, “Applying hafnia mixtures to enhance the laser-induced damage threshold of coatings for third harmonic generation optics,” Proc. SPIE8530, 85300W, 85300W-8 (2012).
    [CrossRef]
  12. W. M. Grossman, J. D. Henrie, and S. Clara, “Third-harmonic generation with uncoated Brewster-cut dispersive output facet,” US Patent, US5850407 (1998).
  13. L. M. Cook, “Chemical processes in glass polishing,” J. of Non-Crystalline Solids120(1-3), 152–171 (1990).
    [CrossRef]
  14. T. Schmid, A. Messmer, B. S. Yeo, W. Zhang, and R. Zenobi, “Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates,” Anal. Bioanal. Chem.391(5), 1907–1916 (2008).
    [CrossRef] [PubMed]
  15. W. E. Morgan and J. R. Wazer, “Binding energy shifts in the X-Ray photoelectron spectra of a series of related group IV-a compounds,” J. Phys. Chem.77(7), 964–969 (1973).
    [CrossRef]
  16. M. D. Irwin, C. G. Pantano, P. Gluche, and E. Kohn, “Bias-enhanced nucleation of diamond on silicon dioxide,” Appl. Phys. Lett.71(5), 716–718 (1997).
    [CrossRef]
  17. P. Boyer, G. Roche, W. Ritchie, and G. Collins, “Laser-induced chemical vapor deposition of SiO2,” Appl. Phys. Lett.40(8), 716–719 (1982).
    [CrossRef]
  18. K. Awazu and H. Onuki, “Photoinduced synthesis of amorphous SiO2 with tetramethoxysilane,” Appl. Phys. Lett.69(4), 482–484 (1996).
    [CrossRef]
  19. H. Takao, M. Okoshi, and N. Inoue, “SiO2 films fabricated by F2 laser-induced chemical deposition using silicone rubber,” Appl. Phys., A Mater. Sci. Process.79(4-6), 1567–1570 (2004).
    [CrossRef]
  20. T. Kamimura, S. Fukumoto, R. Ono, Y. K. Yap, M. Yoshimura, Y. Mori, T. Sasaki, and K. Yoshida, “Enhancement of CsLiB6O10 surface-damage resistance by improved crystallinity and ion-beam etching,” Opt. Lett.27(8), 616–618 (2002).
    [CrossRef] [PubMed]

2012 (4)

H. Hong, Q. Liu, L. Huang, and M. Gong, “High-beam-quality all-solid-state 355 nm ultraviolet pulsed laser based on a master-oscillator power-amplifier system pumped at 888 nm,” Appl. Phys. Express5(9), 092705 (2012).
[CrossRef]

C. Gouldieff, F. Wagner, L. Jensen, M. Mende, J. Natoli, and D. Ristau, “Oxide mixtures for UV coatings,” Proc. SPIE8530, 85300T, 85300T-9 (2012).
[CrossRef]

M. Mende, L. O. Jensen, H. Ehlers, S. Bruns, M. Vergöhl, P. Burdack, and D. Ristau, “Applying hafnia mixtures to enhance the laser-induced damage threshold of coatings for third harmonic generation optics,” Proc. SPIE8530, 85300W, 85300W-8 (2012).
[CrossRef]

X. Li, M. Gross, K. Green, B. Oreb, and J. Shen, “Ultraviolet laser-induced damage on fused silica substrate and its sol-gel coating,” Opt. Lett.37(12), 2364–2366 (2012).
[CrossRef] [PubMed]

2011 (1)

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys.109(11), 113106 (2011).
[CrossRef]

2010 (2)

X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett.7(8), 563–568 (2010).
[CrossRef]

F. R. Wagner, A. Hildenbrand, J. Y. Natoli, and M. Commandré, “Multiple pulse nanosecond laser induced damage study in LiB3O5 crystals,” Opt. Express18(26), 26791–26798 (2010).
[CrossRef] [PubMed]

2008 (1)

T. Schmid, A. Messmer, B. S. Yeo, W. Zhang, and R. Zenobi, “Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates,” Anal. Bioanal. Chem.391(5), 1907–1916 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (1)

C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, H. Y. Pang, and N. Hodgson, “High power Q-switched TEM00 mode diode-pumped solid state lasers with > 30 W output power at 355 nm,” Proc. SPIE6100, 610019, 610019-14 (2006).
[CrossRef]

2004 (1)

H. Takao, M. Okoshi, and N. Inoue, “SiO2 films fabricated by F2 laser-induced chemical deposition using silicone rubber,” Appl. Phys., A Mater. Sci. Process.79(4-6), 1567–1570 (2004).
[CrossRef]

2002 (1)

1997 (1)

M. D. Irwin, C. G. Pantano, P. Gluche, and E. Kohn, “Bias-enhanced nucleation of diamond on silicon dioxide,” Appl. Phys. Lett.71(5), 716–718 (1997).
[CrossRef]

1996 (1)

K. Awazu and H. Onuki, “Photoinduced synthesis of amorphous SiO2 with tetramethoxysilane,” Appl. Phys. Lett.69(4), 482–484 (1996).
[CrossRef]

1994 (1)

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate LBO single crystal,” Appl. Phys. Lett.65(12), 1480–1482 (1994).
[CrossRef]

1990 (1)

L. M. Cook, “Chemical processes in glass polishing,” J. of Non-Crystalline Solids120(1-3), 152–171 (1990).
[CrossRef]

1989 (1)

1982 (1)

P. Boyer, G. Roche, W. Ritchie, and G. Collins, “Laser-induced chemical vapor deposition of SiO2,” Appl. Phys. Lett.40(8), 716–719 (1982).
[CrossRef]

1973 (1)

W. E. Morgan and J. R. Wazer, “Binding energy shifts in the X-Ray photoelectron spectra of a series of related group IV-a compounds,” J. Phys. Chem.77(7), 964–969 (1973).
[CrossRef]

Andresen, A.

Awazu, K.

K. Awazu and H. Onuki, “Photoinduced synthesis of amorphous SiO2 with tetramethoxysilane,” Appl. Phys. Lett.69(4), 482–484 (1996).
[CrossRef]

Bittle, W.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys.109(11), 113106 (2011).
[CrossRef]

Boyer, P.

P. Boyer, G. Roche, W. Ritchie, and G. Collins, “Laser-induced chemical vapor deposition of SiO2,” Appl. Phys. Lett.40(8), 716–719 (1982).
[CrossRef]

Bruns, S.

M. Mende, L. O. Jensen, H. Ehlers, S. Bruns, M. Vergöhl, P. Burdack, and D. Ristau, “Applying hafnia mixtures to enhance the laser-induced damage threshold of coatings for third harmonic generation optics,” Proc. SPIE8530, 85300W, 85300W-8 (2012).
[CrossRef]

Burdack, P.

M. Mende, L. O. Jensen, H. Ehlers, S. Bruns, M. Vergöhl, P. Burdack, and D. Ristau, “Applying hafnia mixtures to enhance the laser-induced damage threshold of coatings for third harmonic generation optics,” Proc. SPIE8530, 85300W, 85300W-8 (2012).
[CrossRef]

Chen, C.

Chen, H.

X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett.7(8), 563–568 (2010).
[CrossRef]

Collins, G.

P. Boyer, G. Roche, W. Ritchie, and G. Collins, “Laser-induced chemical vapor deposition of SiO2,” Appl. Phys. Lett.40(8), 716–719 (1982).
[CrossRef]

Commandré, M.

Cook, L. M.

L. M. Cook, “Chemical processes in glass polishing,” J. of Non-Crystalline Solids120(1-3), 152–171 (1990).
[CrossRef]

Dudley, D. R.

C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, H. Y. Pang, and N. Hodgson, “High power Q-switched TEM00 mode diode-pumped solid state lasers with > 30 W output power at 355 nm,” Proc. SPIE6100, 610019, 610019-14 (2006).
[CrossRef]

Ehlers, H.

M. Mende, L. O. Jensen, H. Ehlers, S. Bruns, M. Vergöhl, P. Burdack, and D. Ristau, “Applying hafnia mixtures to enhance the laser-induced damage threshold of coatings for third harmonic generation optics,” Proc. SPIE8530, 85300W, 85300W-8 (2012).
[CrossRef]

Fu, X.

X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett.7(8), 563–568 (2010).
[CrossRef]

Fujita, H.

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate LBO single crystal,” Appl. Phys. Lett.65(12), 1480–1482 (1994).
[CrossRef]

Fukumoto, S.

Furukawa, Y.

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate LBO single crystal,” Appl. Phys. Lett.65(12), 1480–1482 (1994).
[CrossRef]

Gluche, P.

M. D. Irwin, C. G. Pantano, P. Gluche, and E. Kohn, “Bias-enhanced nucleation of diamond on silicon dioxide,” Appl. Phys. Lett.71(5), 716–718 (1997).
[CrossRef]

Gong, M.

H. Hong, Q. Liu, L. Huang, and M. Gong, “High-beam-quality all-solid-state 355 nm ultraviolet pulsed laser based on a master-oscillator power-amplifier system pumped at 888 nm,” Appl. Phys. Express5(9), 092705 (2012).
[CrossRef]

X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett.7(8), 563–568 (2010).
[CrossRef]

Gouldieff, C.

C. Gouldieff, F. Wagner, L. Jensen, M. Mende, J. Natoli, and D. Ristau, “Oxide mixtures for UV coatings,” Proc. SPIE8530, 85300T, 85300T-9 (2012).
[CrossRef]

Green, K.

Gross, M.

Hicks, A. V.

C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, H. Y. Pang, and N. Hodgson, “High power Q-switched TEM00 mode diode-pumped solid state lasers with > 30 W output power at 355 nm,” Proc. SPIE6100, 610019, 610019-14 (2006).
[CrossRef]

Hildenbrand, A.

Hodgson, N.

C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, H. Y. Pang, and N. Hodgson, “High power Q-switched TEM00 mode diode-pumped solid state lasers with > 30 W output power at 355 nm,” Proc. SPIE6100, 610019, 610019-14 (2006).
[CrossRef]

Hong, H.

H. Hong, Q. Liu, L. Huang, and M. Gong, “High-beam-quality all-solid-state 355 nm ultraviolet pulsed laser based on a master-oscillator power-amplifier system pumped at 888 nm,” Appl. Phys. Express5(9), 092705 (2012).
[CrossRef]

Huang, L.

H. Hong, Q. Liu, L. Huang, and M. Gong, “High-beam-quality all-solid-state 355 nm ultraviolet pulsed laser based on a master-oscillator power-amplifier system pumped at 888 nm,” Appl. Phys. Express5(9), 092705 (2012).
[CrossRef]

Imlau, M.

Inoue, N.

H. Takao, M. Okoshi, and N. Inoue, “SiO2 films fabricated by F2 laser-induced chemical deposition using silicone rubber,” Appl. Phys., A Mater. Sci. Process.79(4-6), 1567–1570 (2004).
[CrossRef]

Irwin, M. D.

M. D. Irwin, C. G. Pantano, P. Gluche, and E. Kohn, “Bias-enhanced nucleation of diamond on silicon dioxide,” Appl. Phys. Lett.71(5), 716–718 (1997).
[CrossRef]

Jensen, L.

C. Gouldieff, F. Wagner, L. Jensen, M. Mende, J. Natoli, and D. Ristau, “Oxide mixtures for UV coatings,” Proc. SPIE8530, 85300T, 85300T-9 (2012).
[CrossRef]

Jensen, L. O.

M. Mende, L. O. Jensen, H. Ehlers, S. Bruns, M. Vergöhl, P. Burdack, and D. Ristau, “Applying hafnia mixtures to enhance the laser-induced damage threshold of coatings for third harmonic generation optics,” Proc. SPIE8530, 85300W, 85300W-8 (2012).
[CrossRef]

Jiang, A.

Kamimura, T.

Kohn, E.

M. D. Irwin, C. G. Pantano, P. Gluche, and E. Kohn, “Bias-enhanced nucleation of diamond on silicon dioxide,” Appl. Phys. Lett.71(5), 716–718 (1997).
[CrossRef]

Kupinski, P.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys.109(11), 113106 (2011).
[CrossRef]

Li, R.

Li, X.

Lin, S.

Liu, Q.

H. Hong, Q. Liu, L. Huang, and M. Gong, “High-beam-quality all-solid-state 355 nm ultraviolet pulsed laser based on a master-oscillator power-amplifier system pumped at 888 nm,” Appl. Phys. Express5(9), 092705 (2012).
[CrossRef]

X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett.7(8), 563–568 (2010).
[CrossRef]

Markgraf, S. A.

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate LBO single crystal,” Appl. Phys. Lett.65(12), 1480–1482 (1994).
[CrossRef]

Mende, M.

C. Gouldieff, F. Wagner, L. Jensen, M. Mende, J. Natoli, and D. Ristau, “Oxide mixtures for UV coatings,” Proc. SPIE8530, 85300T, 85300T-9 (2012).
[CrossRef]

M. Mende, L. O. Jensen, H. Ehlers, S. Bruns, M. Vergöhl, P. Burdack, and D. Ristau, “Applying hafnia mixtures to enhance the laser-induced damage threshold of coatings for third harmonic generation optics,” Proc. SPIE8530, 85300W, 85300W-8 (2012).
[CrossRef]

Merschjann, C.

Messmer, A.

T. Schmid, A. Messmer, B. S. Yeo, W. Zhang, and R. Zenobi, “Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates,” Anal. Bioanal. Chem.391(5), 1907–1916 (2008).
[CrossRef] [PubMed]

Möller, S.

Morgan, W. E.

W. E. Morgan and J. R. Wazer, “Binding energy shifts in the X-Ray photoelectron spectra of a series of related group IV-a compounds,” J. Phys. Chem.77(7), 964–969 (1973).
[CrossRef]

Mori, Y.

Nakai, S.

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate LBO single crystal,” Appl. Phys. Lett.65(12), 1480–1482 (1994).
[CrossRef]

Natoli, J.

C. Gouldieff, F. Wagner, L. Jensen, M. Mende, J. Natoli, and D. Ristau, “Oxide mixtures for UV coatings,” Proc. SPIE8530, 85300T, 85300T-9 (2012).
[CrossRef]

Natoli, J. Y.

Okoshi, M.

H. Takao, M. Okoshi, and N. Inoue, “SiO2 films fabricated by F2 laser-induced chemical deposition using silicone rubber,” Appl. Phys., A Mater. Sci. Process.79(4-6), 1567–1570 (2004).
[CrossRef]

Oliver, J. B.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys.109(11), 113106 (2011).
[CrossRef]

Ono, R.

Onuki, H.

K. Awazu and H. Onuki, “Photoinduced synthesis of amorphous SiO2 with tetramethoxysilane,” Appl. Phys. Lett.69(4), 482–484 (1996).
[CrossRef]

Oreb, B.

Pang, H. Y.

C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, H. Y. Pang, and N. Hodgson, “High power Q-switched TEM00 mode diode-pumped solid state lasers with > 30 W output power at 355 nm,” Proc. SPIE6100, 610019, 610019-14 (2006).
[CrossRef]

Pantano, C. G.

M. D. Irwin, C. G. Pantano, P. Gluche, and E. Kohn, “Bias-enhanced nucleation of diamond on silicon dioxide,” Appl. Phys. Lett.71(5), 716–718 (1997).
[CrossRef]

Papernov, S.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys.109(11), 113106 (2011).
[CrossRef]

Prinz, M.

Ristau, D.

C. Gouldieff, F. Wagner, L. Jensen, M. Mende, J. Natoli, and D. Ristau, “Oxide mixtures for UV coatings,” Proc. SPIE8530, 85300T, 85300T-9 (2012).
[CrossRef]

M. Mende, L. O. Jensen, H. Ehlers, S. Bruns, M. Vergöhl, P. Burdack, and D. Ristau, “Applying hafnia mixtures to enhance the laser-induced damage threshold of coatings for third harmonic generation optics,” Proc. SPIE8530, 85300W, 85300W-8 (2012).
[CrossRef]

Ritchie, W.

P. Boyer, G. Roche, W. Ritchie, and G. Collins, “Laser-induced chemical vapor deposition of SiO2,” Appl. Phys. Lett.40(8), 716–719 (1982).
[CrossRef]

Roche, G.

P. Boyer, G. Roche, W. Ritchie, and G. Collins, “Laser-induced chemical vapor deposition of SiO2,” Appl. Phys. Lett.40(8), 716–719 (1982).
[CrossRef]

Sasaki, T.

T. Kamimura, S. Fukumoto, R. Ono, Y. K. Yap, M. Yoshimura, Y. Mori, T. Sasaki, and K. Yoshida, “Enhancement of CsLiB6O10 surface-damage resistance by improved crystallinity and ion-beam etching,” Opt. Lett.27(8), 616–618 (2002).
[CrossRef] [PubMed]

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate LBO single crystal,” Appl. Phys. Lett.65(12), 1480–1482 (1994).
[CrossRef]

Sato, M.

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate LBO single crystal,” Appl. Phys. Lett.65(12), 1480–1482 (1994).
[CrossRef]

Schmid, A. W.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys.109(11), 113106 (2011).
[CrossRef]

Schmid, T.

T. Schmid, A. Messmer, B. S. Yeo, W. Zhang, and R. Zenobi, “Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates,” Anal. Bioanal. Chem.391(5), 1907–1916 (2008).
[CrossRef] [PubMed]

Shen, J.

Tait, A.

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys.109(11), 113106 (2011).
[CrossRef]

Takao, H.

H. Takao, M. Okoshi, and N. Inoue, “SiO2 films fabricated by F2 laser-induced chemical deposition using silicone rubber,” Appl. Phys., A Mater. Sci. Process.79(4-6), 1567–1570 (2004).
[CrossRef]

Vergöhl, M.

M. Mende, L. O. Jensen, H. Ehlers, S. Bruns, M. Vergöhl, P. Burdack, and D. Ristau, “Applying hafnia mixtures to enhance the laser-induced damage threshold of coatings for third harmonic generation optics,” Proc. SPIE8530, 85300W, 85300W-8 (2012).
[CrossRef]

Wagner, F.

C. Gouldieff, F. Wagner, L. Jensen, M. Mende, J. Natoli, and D. Ristau, “Oxide mixtures for UV coatings,” Proc. SPIE8530, 85300T, 85300T-9 (2012).
[CrossRef]

Wagner, F. R.

Wang, C. X.

C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, H. Y. Pang, and N. Hodgson, “High power Q-switched TEM00 mode diode-pumped solid state lasers with > 30 W output power at 355 nm,” Proc. SPIE6100, 610019, 610019-14 (2006).
[CrossRef]

Wang, D.

X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett.7(8), 563–568 (2010).
[CrossRef]

Wang, G. Y.

C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, H. Y. Pang, and N. Hodgson, “High power Q-switched TEM00 mode diode-pumped solid state lasers with > 30 W output power at 355 nm,” Proc. SPIE6100, 610019, 610019-14 (2006).
[CrossRef]

Wazer, J. R.

W. E. Morgan and J. R. Wazer, “Binding energy shifts in the X-Ray photoelectron spectra of a series of related group IV-a compounds,” J. Phys. Chem.77(7), 964–969 (1973).
[CrossRef]

Wu, B.

Wu, Y.

Yamanaka, T.

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate LBO single crystal,” Appl. Phys. Lett.65(12), 1480–1482 (1994).
[CrossRef]

Yan, X.

X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett.7(8), 563–568 (2010).
[CrossRef]

Yap, Y. K.

Yeo, B. S.

T. Schmid, A. Messmer, B. S. Yeo, W. Zhang, and R. Zenobi, “Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates,” Anal. Bioanal. Chem.391(5), 1907–1916 (2008).
[CrossRef] [PubMed]

Yoshida, H.

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate LBO single crystal,” Appl. Phys. Lett.65(12), 1480–1482 (1994).
[CrossRef]

Yoshida, K.

Yoshimura, M.

You, G.

Zenobi, R.

T. Schmid, A. Messmer, B. S. Yeo, W. Zhang, and R. Zenobi, “Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates,” Anal. Bioanal. Chem.391(5), 1907–1916 (2008).
[CrossRef] [PubMed]

Zhang, W.

T. Schmid, A. Messmer, B. S. Yeo, W. Zhang, and R. Zenobi, “Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates,” Anal. Bioanal. Chem.391(5), 1907–1916 (2008).
[CrossRef] [PubMed]

Zimmermann, B.

Anal. Bioanal. Chem. (1)

T. Schmid, A. Messmer, B. S. Yeo, W. Zhang, and R. Zenobi, “Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates,” Anal. Bioanal. Chem.391(5), 1907–1916 (2008).
[CrossRef] [PubMed]

Appl. Phys. Express (1)

H. Hong, Q. Liu, L. Huang, and M. Gong, “High-beam-quality all-solid-state 355 nm ultraviolet pulsed laser based on a master-oscillator power-amplifier system pumped at 888 nm,” Appl. Phys. Express5(9), 092705 (2012).
[CrossRef]

Appl. Phys. Lett. (4)

Y. Furukawa, S. A. Markgraf, M. Sato, H. Yoshida, T. Sasaki, H. Fujita, T. Yamanaka, and S. Nakai, “Investigation of the bulk laser damage of lithium triborate LBO single crystal,” Appl. Phys. Lett.65(12), 1480–1482 (1994).
[CrossRef]

M. D. Irwin, C. G. Pantano, P. Gluche, and E. Kohn, “Bias-enhanced nucleation of diamond on silicon dioxide,” Appl. Phys. Lett.71(5), 716–718 (1997).
[CrossRef]

P. Boyer, G. Roche, W. Ritchie, and G. Collins, “Laser-induced chemical vapor deposition of SiO2,” Appl. Phys. Lett.40(8), 716–719 (1982).
[CrossRef]

K. Awazu and H. Onuki, “Photoinduced synthesis of amorphous SiO2 with tetramethoxysilane,” Appl. Phys. Lett.69(4), 482–484 (1996).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

H. Takao, M. Okoshi, and N. Inoue, “SiO2 films fabricated by F2 laser-induced chemical deposition using silicone rubber,” Appl. Phys., A Mater. Sci. Process.79(4-6), 1567–1570 (2004).
[CrossRef]

J. Appl. Phys. (1)

S. Papernov, A. Tait, W. Bittle, A. W. Schmid, J. B. Oliver, and P. Kupinski, “Near-ultraviolet absorption and nanosecond-pulse-laser damage in HfO2 monolayers studied by submicrometer-resolution photothermal heterodyne imaging and atomic force microscopy,” J. Appl. Phys.109(11), 113106 (2011).
[CrossRef]

J. of Non-Crystalline Solids (1)

L. M. Cook, “Chemical processes in glass polishing,” J. of Non-Crystalline Solids120(1-3), 152–171 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

W. E. Morgan and J. R. Wazer, “Binding energy shifts in the X-Ray photoelectron spectra of a series of related group IV-a compounds,” J. Phys. Chem.77(7), 964–969 (1973).
[CrossRef]

Laser Phys. Lett. (1)

X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett.7(8), 563–568 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (3)

M. Mende, L. O. Jensen, H. Ehlers, S. Bruns, M. Vergöhl, P. Burdack, and D. Ristau, “Applying hafnia mixtures to enhance the laser-induced damage threshold of coatings for third harmonic generation optics,” Proc. SPIE8530, 85300W, 85300W-8 (2012).
[CrossRef]

C. X. Wang, G. Y. Wang, A. V. Hicks, D. R. Dudley, H. Y. Pang, and N. Hodgson, “High power Q-switched TEM00 mode diode-pumped solid state lasers with > 30 W output power at 355 nm,” Proc. SPIE6100, 610019, 610019-14 (2006).
[CrossRef]

C. Gouldieff, F. Wagner, L. Jensen, M. Mende, J. Natoli, and D. Ristau, “Oxide mixtures for UV coatings,” Proc. SPIE8530, 85300T, 85300T-9 (2012).
[CrossRef]

Other (1)

W. M. Grossman, J. D. Henrie, and S. Clara, “Third-harmonic generation with uncoated Brewster-cut dispersive output facet,” US Patent, US5850407 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Configuration of the experiment setup: M1, M2, AR at 1064 nm and 532 nm, high-reflection at 355 nm; M3, M4, wedge mirror for power split.

Fig. 2
Fig. 2

Beam quality of the fundamental wave

Fig. 3
Fig. 3

UV average-power at 80 kHz and beam quality change during the long-term THG

Fig. 4
Fig. 4

Microscopic images of the super-polished THG LBO output surface before and after a THG-exposure of 130 hours: (a) Output surface without any exposure determined by AFM; (b) Image determined by optical microscope; (c) Image determined by WLI with 10 × object lens; (d) Image determined by WLI with 50 × object lens.

Fig. 5
Fig. 5

Spectra of the THG LBO output surface detected by XPS: (a) Full spectra, (b) Silicon 2p spectra.

Tables (2)

Tables Icon

Table 1 Parameters of the laser system operating at 80 kHz

Tables Icon

Table 2 Results of an ESCA for exposed and unaffected areas: relative element concentrations on the output surface of the THG LBO crystal. The values reflect the fraction of the particular element related to the total ESCA-signal (relative error is about 10%). These results are corresponding to Figs. 5(a) and 5(b).

Metrics