Abstract

The surface localized polymer alignment (SLPA) method allows complete control of the polar pretilt angle as a function of position in liquid crystal devices. In this work, a liquid crystal (LC) cylindrical lens is fabricated by the SLPA method. The focal length of the LC lens is set by the polymerization conditions, and can be varied by a non-segmented electrode. The LC lens does not require a shaped substrate, or complicated electrode patterns, to achieve a desired parabolic phase profile. Therefore, both fabrication and driving process are relatively simple.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys.18(9), 1679–1684 (1979).
    [CrossRef]
  2. C. W. Chiu, Y. C. Lin, P. C. P. Chao, and A. Y. G. Fuh, “Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes,” Opt. Express16(23), 19277–19284 (2008).
    [CrossRef] [PubMed]
  3. H.-C. Lin and Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express20(3), 2045–2052 (2012).
    [CrossRef] [PubMed]
  4. H. Ren, D. W. Fox, B. Wu, and S.-T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express15(18), 11328–11335 (2007).
    [CrossRef] [PubMed]
  5. G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
    [CrossRef] [PubMed]
  6. L. Lu, L. Shi, P. J. Bos, T. Van Heugten, and D. Duston, “Late-newspaper: comparisons between a liquid crystal refractive lens and a diffractive lens for 3D displays,” SID Int. Symp. Dig. Tech. 42, 171–174 (2011).
  7. Y.-P. Huang, C.-W. Chen, and Y.-C. Huang, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol.8(11), 650–655 (2012).
    [CrossRef]
  8. P. J. Bos and A. K. Bhowmik, “Liquid-crystal technology advances toward future “True” 3-D flat-panel displays,” Inf. Display27, 6–9 (2011).
  9. G. Lawton, “3D displays without glasses: coming to a screen near you,” Computer44(1), 17–19 (2011).
    [CrossRef]
  10. L. Lu, V. Sergan, T. Van Heugten, D. Duston, A. Bhowmik, and P. J. Bos, “Distinguished paper: tunable polymer localized liquid crystal lenses for autostereoscopic 3D displays,” SID Int. Symp. Dig. Tech. 43, 383–386 (2012).
    [CrossRef]
  11. N. A. Dodgson, “Autostereoscopic 3D displays,” Computer38(8), 31–36 (2005).
    [CrossRef]
  12. M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Disp.16(8), 847–855 (2008).
    [CrossRef]
  13. Y.-Y. Kao, Y.-P. Huang, K.-X. Yang, P. C.-P. Chao, C.-C. Tsai, and C.-N. Mo, “An auto-stereoscopic 3D display using tunable liquid crystal lens array that mimics effects of GRIN lenticular lens array,” SID Int. Symp. Dig. Tech. 40, 111–114 (2009).
    [CrossRef]
  14. Y.-Y. Kao, P. C. P. Chao, and C.-W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express18(18), 18506–18518 (2010).
    [CrossRef] [PubMed]
  15. M. Ye, B. Wang, and S. Sato, “Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material,” Opt. Express16(6), 4302–4308 (2008).
    [CrossRef] [PubMed]
  16. M. C. Tseng, F. Fan, C. Y. Lee, A. Murauski, V. Chigrinov, and H. S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys.109(8), 083109 (2011).
    [CrossRef]
  17. F. S. Yeung, J. Y. Ho, Y. W. Li, F. C. Xie, O. K. Tsui, P. Sheng, and H. S. Kwok, “Variable liquid crystal pretilt angles by nanostructured surfaces,” Appl. Phys. Lett.88(5), 051910 (2006).
    [CrossRef]
  18. T. Nose, S. Masuda, S. Sato, J. L. Li, L. C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett.22(6), 351–353 (1997).
    [CrossRef] [PubMed]
  19. H. W. Ren, Y. H. Fan, and S. T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett.29(14), 1608–1610 (2004).
    [CrossRef] [PubMed]
  20. V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys.97(10), 103101 (2005).
    [CrossRef]
  21. V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett.486(4-6), 123–125 (2010).
    [CrossRef]
  22. L. Lu, T. Sergan, V. Sergan, and P. J. Bos, “Spatial and orientational control of liquid crystal alignment using a surface localized polymer layer,” Appl. Phys. Lett.101(25), 251912 (2012).
    [CrossRef]
  23. L. Lu, V. Sergan, and P. J. Bos, “Mechanism of electric-field-induced segregation of additives in a liquid-crystal host,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.86(5), 051706 (2012).
    [CrossRef] [PubMed]

2012

Y.-P. Huang, C.-W. Chen, and Y.-C. Huang, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol.8(11), 650–655 (2012).
[CrossRef]

L. Lu, T. Sergan, V. Sergan, and P. J. Bos, “Spatial and orientational control of liquid crystal alignment using a surface localized polymer layer,” Appl. Phys. Lett.101(25), 251912 (2012).
[CrossRef]

L. Lu, V. Sergan, and P. J. Bos, “Mechanism of electric-field-induced segregation of additives in a liquid-crystal host,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.86(5), 051706 (2012).
[CrossRef] [PubMed]

H.-C. Lin and Y.-H. Lin, “An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes,” Opt. Express20(3), 2045–2052 (2012).
[CrossRef] [PubMed]

2011

P. J. Bos and A. K. Bhowmik, “Liquid-crystal technology advances toward future “True” 3-D flat-panel displays,” Inf. Display27, 6–9 (2011).

G. Lawton, “3D displays without glasses: coming to a screen near you,” Computer44(1), 17–19 (2011).
[CrossRef]

M. C. Tseng, F. Fan, C. Y. Lee, A. Murauski, V. Chigrinov, and H. S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys.109(8), 083109 (2011).
[CrossRef]

2010

V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett.486(4-6), 123–125 (2010).
[CrossRef]

Y.-Y. Kao, P. C. P. Chao, and C.-W. Hsueh, “A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths,” Opt. Express18(18), 18506–18518 (2010).
[CrossRef] [PubMed]

2008

2007

2006

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

F. S. Yeung, J. Y. Ho, Y. W. Li, F. C. Xie, O. K. Tsui, P. Sheng, and H. S. Kwok, “Variable liquid crystal pretilt angles by nanostructured surfaces,” Appl. Phys. Lett.88(5), 051910 (2006).
[CrossRef]

2005

V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys.97(10), 103101 (2005).
[CrossRef]

N. A. Dodgson, “Autostereoscopic 3D displays,” Computer38(8), 31–36 (2005).
[CrossRef]

2004

1997

1979

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys.18(9), 1679–1684 (1979).
[CrossRef]

Ayräs, P.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Bhowmik, A. K.

P. J. Bos and A. K. Bhowmik, “Liquid-crystal technology advances toward future “True” 3-D flat-panel displays,” Inf. Display27, 6–9 (2011).

Bos, P. J.

L. Lu, V. Sergan, and P. J. Bos, “Mechanism of electric-field-induced segregation of additives in a liquid-crystal host,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.86(5), 051706 (2012).
[CrossRef] [PubMed]

L. Lu, T. Sergan, V. Sergan, and P. J. Bos, “Spatial and orientational control of liquid crystal alignment using a surface localized polymer layer,” Appl. Phys. Lett.101(25), 251912 (2012).
[CrossRef]

P. J. Bos and A. K. Bhowmik, “Liquid-crystal technology advances toward future “True” 3-D flat-panel displays,” Inf. Display27, 6–9 (2011).

V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett.486(4-6), 123–125 (2010).
[CrossRef]

T. Nose, S. Masuda, S. Sato, J. L. Li, L. C. Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett.22(6), 351–353 (1997).
[CrossRef] [PubMed]

Chao, P. C. P.

Chen, C.-W.

Y.-P. Huang, C.-W. Chen, and Y.-C. Huang, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol.8(11), 650–655 (2012).
[CrossRef]

Chien, L. C.

Chigrinov, V.

M. C. Tseng, F. Fan, C. Y. Lee, A. Murauski, V. Chigrinov, and H. S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys.109(8), 083109 (2011).
[CrossRef]

Chiu, C. W.

de Boer, D. K. G.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Disp.16(8), 847–855 (2008).
[CrossRef]

de Zwart, S. T.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Disp.16(8), 847–855 (2008).
[CrossRef]

Dodgson, N. A.

N. A. Dodgson, “Autostereoscopic 3D displays,” Computer38(8), 31–36 (2005).
[CrossRef]

Fan, F.

M. C. Tseng, F. Fan, C. Y. Lee, A. Murauski, V. Chigrinov, and H. S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys.109(8), 083109 (2011).
[CrossRef]

Fan, Y. H.

Fox, D. W.

Fuh, A. Y. G.

Galstian, T. V.

V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys.97(10), 103101 (2005).
[CrossRef]

Giridhar, M. S.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Haddock, J. N.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Ho, J. Y.

F. S. Yeung, J. Y. Ho, Y. W. Li, F. C. Xie, O. K. Tsui, P. Sheng, and H. S. Kwok, “Variable liquid crystal pretilt angles by nanostructured surfaces,” Appl. Phys. Lett.88(5), 051910 (2006).
[CrossRef]

Honkanen, S.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Hsueh, C.-W.

Huang, Y.-C.

Y.-P. Huang, C.-W. Chen, and Y.-C. Huang, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol.8(11), 650–655 (2012).
[CrossRef]

Huang, Y.-P.

Y.-P. Huang, C.-W. Chen, and Y.-C. Huang, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol.8(11), 650–655 (2012).
[CrossRef]

Kao, Y.-Y.

Kippelen, B.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Krijn, M. P. C. M.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Disp.16(8), 847–855 (2008).
[CrossRef]

Kwok, H. S.

M. C. Tseng, F. Fan, C. Y. Lee, A. Murauski, V. Chigrinov, and H. S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys.109(8), 083109 (2011).
[CrossRef]

F. S. Yeung, J. Y. Ho, Y. W. Li, F. C. Xie, O. K. Tsui, P. Sheng, and H. S. Kwok, “Variable liquid crystal pretilt angles by nanostructured surfaces,” Appl. Phys. Lett.88(5), 051910 (2006).
[CrossRef]

Lawton, G.

G. Lawton, “3D displays without glasses: coming to a screen near you,” Computer44(1), 17–19 (2011).
[CrossRef]

Lee, C. Y.

M. C. Tseng, F. Fan, C. Y. Lee, A. Murauski, V. Chigrinov, and H. S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys.109(8), 083109 (2011).
[CrossRef]

Li, G. Q.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Li, J. L.

Li, Y. W.

F. S. Yeung, J. Y. Ho, Y. W. Li, F. C. Xie, O. K. Tsui, P. Sheng, and H. S. Kwok, “Variable liquid crystal pretilt angles by nanostructured surfaces,” Appl. Phys. Lett.88(5), 051910 (2006).
[CrossRef]

Lin, H.-C.

Lin, Y. C.

Lin, Y.-H.

Lu, L.

L. Lu, T. Sergan, V. Sergan, and P. J. Bos, “Spatial and orientational control of liquid crystal alignment using a surface localized polymer layer,” Appl. Phys. Lett.101(25), 251912 (2012).
[CrossRef]

L. Lu, V. Sergan, and P. J. Bos, “Mechanism of electric-field-induced segregation of additives in a liquid-crystal host,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.86(5), 051706 (2012).
[CrossRef] [PubMed]

Masuda, S.

Mathine, D. L.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Meredith, G. R.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Murauski, A.

M. C. Tseng, F. Fan, C. Y. Lee, A. Murauski, V. Chigrinov, and H. S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys.109(8), 083109 (2011).
[CrossRef]

Nose, T.

Peyghambarian, N.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Presnyakov, V. V.

V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys.97(10), 103101 (2005).
[CrossRef]

Ren, H.

Ren, H. W.

Sato, S.

Schwiegerling, J.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Sergan, T.

L. Lu, T. Sergan, V. Sergan, and P. J. Bos, “Spatial and orientational control of liquid crystal alignment using a surface localized polymer layer,” Appl. Phys. Lett.101(25), 251912 (2012).
[CrossRef]

Sergan, T. A.

V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett.486(4-6), 123–125 (2010).
[CrossRef]

Sergan, V.

L. Lu, T. Sergan, V. Sergan, and P. J. Bos, “Spatial and orientational control of liquid crystal alignment using a surface localized polymer layer,” Appl. Phys. Lett.101(25), 251912 (2012).
[CrossRef]

L. Lu, V. Sergan, and P. J. Bos, “Mechanism of electric-field-induced segregation of additives in a liquid-crystal host,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.86(5), 051706 (2012).
[CrossRef] [PubMed]

Sergan, V. V.

V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett.486(4-6), 123–125 (2010).
[CrossRef]

Sheng, P.

F. S. Yeung, J. Y. Ho, Y. W. Li, F. C. Xie, O. K. Tsui, P. Sheng, and H. S. Kwok, “Variable liquid crystal pretilt angles by nanostructured surfaces,” Appl. Phys. Lett.88(5), 051910 (2006).
[CrossRef]

Sluijter, M.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Disp.16(8), 847–855 (2008).
[CrossRef]

Tseng, M. C.

M. C. Tseng, F. Fan, C. Y. Lee, A. Murauski, V. Chigrinov, and H. S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys.109(8), 083109 (2011).
[CrossRef]

Tsui, O. K.

F. S. Yeung, J. Y. Ho, Y. W. Li, F. C. Xie, O. K. Tsui, P. Sheng, and H. S. Kwok, “Variable liquid crystal pretilt angles by nanostructured surfaces,” Appl. Phys. Lett.88(5), 051910 (2006).
[CrossRef]

Valley, P.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Wang, B.

Willemsen, O. H.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Disp.16(8), 847–855 (2008).
[CrossRef]

Williby, G.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Wu, B.

Wu, S. T.

Wu, S.-T.

Xie, F. C.

F. S. Yeung, J. Y. Ho, Y. W. Li, F. C. Xie, O. K. Tsui, P. Sheng, and H. S. Kwok, “Variable liquid crystal pretilt angles by nanostructured surfaces,” Appl. Phys. Lett.88(5), 051910 (2006).
[CrossRef]

Ye, M.

Yeung, F. S.

F. S. Yeung, J. Y. Ho, Y. W. Li, F. C. Xie, O. K. Tsui, P. Sheng, and H. S. Kwok, “Variable liquid crystal pretilt angles by nanostructured surfaces,” Appl. Phys. Lett.88(5), 051910 (2006).
[CrossRef]

Appl. Phys. Lett.

F. S. Yeung, J. Y. Ho, Y. W. Li, F. C. Xie, O. K. Tsui, P. Sheng, and H. S. Kwok, “Variable liquid crystal pretilt angles by nanostructured surfaces,” Appl. Phys. Lett.88(5), 051910 (2006).
[CrossRef]

L. Lu, T. Sergan, V. Sergan, and P. J. Bos, “Spatial and orientational control of liquid crystal alignment using a surface localized polymer layer,” Appl. Phys. Lett.101(25), 251912 (2012).
[CrossRef]

Chem. Phys. Lett.

V. V. Sergan, T. A. Sergan, and P. J. Bos, “Control of the molecular pretilt angle in liquid crystal devices by using a low-density localized polymer network,” Chem. Phys. Lett.486(4-6), 123–125 (2010).
[CrossRef]

Computer

G. Lawton, “3D displays without glasses: coming to a screen near you,” Computer44(1), 17–19 (2011).
[CrossRef]

N. A. Dodgson, “Autostereoscopic 3D displays,” Computer38(8), 31–36 (2005).
[CrossRef]

Inf. Display

P. J. Bos and A. K. Bhowmik, “Liquid-crystal technology advances toward future “True” 3-D flat-panel displays,” Inf. Display27, 6–9 (2011).

J. Appl. Phys.

V. V. Presnyakov and T. V. Galstian, “Electrically tunable polymer stabilized liquid-crystal lens,” J. Appl. Phys.97(10), 103101 (2005).
[CrossRef]

M. C. Tseng, F. Fan, C. Y. Lee, A. Murauski, V. Chigrinov, and H. S. Kwok, “Tunable lens by spatially varying liquid crystal pretilt angles,” J. Appl. Phys.109(8), 083109 (2011).
[CrossRef]

J. Disp. Technol.

Y.-P. Huang, C.-W. Chen, and Y.-C. Huang, “Superzone fresnel liquid crystal lens for temporal scanning auto-stereoscopic display,” J. Disp. Technol.8(11), 650–655 (2012).
[CrossRef]

J. Soc. Inf. Disp.

M. P. C. M. Krijn, S. T. de Zwart, D. K. G. de Boer, O. H. Willemsen, and M. Sluijter, “2-D/3-D displays based on switchable lenticulars,” J. Soc. Inf. Disp.16(8), 847–855 (2008).
[CrossRef]

Jpn. J. Appl. Phys.

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys.18(9), 1679–1684 (1979).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

L. Lu, V. Sergan, and P. J. Bos, “Mechanism of electric-field-induced segregation of additives in a liquid-crystal host,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.86(5), 051706 (2012).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

G. Q. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A.103(16), 6100–6104 (2006).
[CrossRef] [PubMed]

Other

L. Lu, L. Shi, P. J. Bos, T. Van Heugten, and D. Duston, “Late-newspaper: comparisons between a liquid crystal refractive lens and a diffractive lens for 3D displays,” SID Int. Symp. Dig. Tech. 42, 171–174 (2011).

Y.-Y. Kao, Y.-P. Huang, K.-X. Yang, P. C.-P. Chao, C.-C. Tsai, and C.-N. Mo, “An auto-stereoscopic 3D display using tunable liquid crystal lens array that mimics effects of GRIN lenticular lens array,” SID Int. Symp. Dig. Tech. 40, 111–114 (2009).
[CrossRef]

L. Lu, V. Sergan, T. Van Heugten, D. Duston, A. Bhowmik, and P. J. Bos, “Distinguished paper: tunable polymer localized liquid crystal lenses for autostereoscopic 3D displays,” SID Int. Symp. Dig. Tech. 43, 383–386 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The surface localized polymer alignment method for controlling LC directors spatially

Fig. 2
Fig. 2

The cure voltage pattern for making a 5mm wide 2 diopter SLPA LC Lens

Fig. 3
Fig. 3

OPD measurement across the cured area in the LC cell

Fig. 4
Fig. 4

Comparing the LC lens with the glass lens: (a) focus in infinity; (b) the LC lens focuses on the vertical lines; (c) the LC lens focuses on the horizontal lines; (d) the spherical glass lens focuses on both horizontal and vertical lines; (e) and (f) are the same as (b) and (c), but with masks added for clarity.

Fig. 5
Fig. 5

MTF value vs. cycles per pixel of the LC cylindrical lens and glass spherical lens

Fig. 6
Fig. 6

(a) OPD of the cured area fits well with the ideal lens curve under different applied voltages; (b) lens focus is tuned with different applied voltages.

Metrics