Abstract

We show that a periodic array of metal-insulator-metal resonators can be described as a high refractive index metamaterial. This approach permits to obtain analytically the optical properties of the structure and thus to establish conception rules on the quality factor or on total absorption. Furthermore, we extend this formalism to the combination of two independent resonators.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Le Perchec, Y. Desieres, and R. E. de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett.94, 181104 (2009).
    [CrossRef]
  2. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
    [CrossRef]
  3. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83, 165107 (2011).
    [CrossRef]
  4. P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98, 191109 (2011).
    [CrossRef]
  5. F. Pardo, P. Bouchon, R. Haïdar, and J. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett.107, 93902 (2011).
    [CrossRef]
  6. C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett.99, 241104–241104 (2011).
    [CrossRef]
  7. P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett.37, 1038–1040 (2012).
    [CrossRef] [PubMed]
  8. M. Nielsen, A. Pors, O. Albrektsen, and S. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express20, 13311–13319 (2012).
    [CrossRef] [PubMed]
  9. J. Yang, S. Sauvan, A. Jouanin, S. Collin, J.-L. Pelouard, and P. Lalanne, “Quality factor of metal-insulator-metal nanoresonators,” Opt. Express20, 16880–16891 (2012).
    [CrossRef]
  10. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett.12, 440–445 (2012).
    [CrossRef]
  11. A. Cattoni, P. Ghenuche, A. Haghiri-Gosnet, D. Decanini, J. Chen, J. Pelouard, and S. Collin, “λ3/1000 plasmonic nanocavities for biosensing fabricated by soft uv nanoimprint lithography,” Nano Lett.11, 3557–3563 (2011).
    [CrossRef] [PubMed]
  12. Z. Jiang, S. Yun, F. Toor, D. Werner, and T. Mayer, “Conformal dual band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5, 4641–4647 (2011).
    [CrossRef] [PubMed]
  13. J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett.100, 113305–113305 (2012).
    [CrossRef]
  14. J. Shen, P. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. lett.94, 197401 (2005).
    [CrossRef] [PubMed]
  15. E. Palik and G. Ghosh, Handbook of optical constants of solids (Academic press, 1985).
  16. P. Bouchon, F. Pardo, R. Haïdar, and J. Pelouard, “Fast modal method for subwavelength gratings based on b-spline formulation,” J. Opt. Soc. Am. A27, 696–702 (2010).
    [CrossRef]
  17. S. Collin, F. Pardo, and J. Pelouard, “Waveguiding in nanoscale metallic apertures,” Opt. Express15, 4310–4320 (2007).
    [CrossRef] [PubMed]
  18. P. Jouy, A. Vasanelli, Y. Todorov, A. Delteil, G. Biasiol, L. Sorba, and C. Sirtori, “Transition from strong to ultrastrong coupling regime in mid-infrared metal-dielectric-metal cavities,” Appl. Phys. Lett.98, 231114–231114 (2011).
    [CrossRef]
  19. J. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett.99, 211106–211106 (2011).
    [CrossRef]

2012 (5)

2011 (8)

P. Jouy, A. Vasanelli, Y. Todorov, A. Delteil, G. Biasiol, L. Sorba, and C. Sirtori, “Transition from strong to ultrastrong coupling regime in mid-infrared metal-dielectric-metal cavities,” Appl. Phys. Lett.98, 231114–231114 (2011).
[CrossRef]

J. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett.99, 211106–211106 (2011).
[CrossRef]

A. Cattoni, P. Ghenuche, A. Haghiri-Gosnet, D. Decanini, J. Chen, J. Pelouard, and S. Collin, “λ3/1000 plasmonic nanocavities for biosensing fabricated by soft uv nanoimprint lithography,” Nano Lett.11, 3557–3563 (2011).
[CrossRef] [PubMed]

Z. Jiang, S. Yun, F. Toor, D. Werner, and T. Mayer, “Conformal dual band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5, 4641–4647 (2011).
[CrossRef] [PubMed]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83, 165107 (2011).
[CrossRef]

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98, 191109 (2011).
[CrossRef]

F. Pardo, P. Bouchon, R. Haïdar, and J. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett.107, 93902 (2011).
[CrossRef]

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett.99, 241104–241104 (2011).
[CrossRef]

2010 (2)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

P. Bouchon, F. Pardo, R. Haïdar, and J. Pelouard, “Fast modal method for subwavelength gratings based on b-spline formulation,” J. Opt. Soc. Am. A27, 696–702 (2010).
[CrossRef]

2009 (1)

J. Le Perchec, Y. Desieres, and R. E. de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett.94, 181104 (2009).
[CrossRef]

2007 (1)

2005 (1)

J. Shen, P. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. lett.94, 197401 (2005).
[CrossRef] [PubMed]

Albrektsen, O.

Bardou, N.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98, 191109 (2011).
[CrossRef]

Biasiol, G.

P. Jouy, A. Vasanelli, Y. Todorov, A. Delteil, G. Biasiol, L. Sorba, and C. Sirtori, “Transition from strong to ultrastrong coupling regime in mid-infrared metal-dielectric-metal cavities,” Appl. Phys. Lett.98, 231114–231114 (2011).
[CrossRef]

Bouchon, P.

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett.37, 1038–1040 (2012).
[CrossRef] [PubMed]

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett.99, 241104–241104 (2011).
[CrossRef]

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98, 191109 (2011).
[CrossRef]

F. Pardo, P. Bouchon, R. Haïdar, and J. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett.107, 93902 (2011).
[CrossRef]

P. Bouchon, F. Pardo, R. Haïdar, and J. Pelouard, “Fast modal method for subwavelength gratings based on b-spline formulation,” J. Opt. Soc. Am. A27, 696–702 (2010).
[CrossRef]

Bozhevolnyi, S.

Catrysse, P.

J. Shen, P. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. lett.94, 197401 (2005).
[CrossRef] [PubMed]

Cattoni, A.

A. Cattoni, P. Ghenuche, A. Haghiri-Gosnet, D. Decanini, J. Chen, J. Pelouard, and S. Collin, “λ3/1000 plasmonic nanocavities for biosensing fabricated by soft uv nanoimprint lithography,” Nano Lett.11, 3557–3563 (2011).
[CrossRef] [PubMed]

Chen, J.

A. Cattoni, P. Ghenuche, A. Haghiri-Gosnet, D. Decanini, J. Chen, J. Pelouard, and S. Collin, “λ3/1000 plasmonic nanocavities for biosensing fabricated by soft uv nanoimprint lithography,” Nano Lett.11, 3557–3563 (2011).
[CrossRef] [PubMed]

Collin, S.

Dagher, G.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98, 191109 (2011).
[CrossRef]

de Lamaestre, R. E.

J. Le Perchec, Y. Desieres, and R. E. de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett.94, 181104 (2009).
[CrossRef]

Decanini, D.

A. Cattoni, P. Ghenuche, A. Haghiri-Gosnet, D. Decanini, J. Chen, J. Pelouard, and S. Collin, “λ3/1000 plasmonic nanocavities for biosensing fabricated by soft uv nanoimprint lithography,” Nano Lett.11, 3557–3563 (2011).
[CrossRef] [PubMed]

Delteil, A.

P. Jouy, A. Vasanelli, Y. Todorov, A. Delteil, G. Biasiol, L. Sorba, and C. Sirtori, “Transition from strong to ultrastrong coupling regime in mid-infrared metal-dielectric-metal cavities,” Appl. Phys. Lett.98, 231114–231114 (2011).
[CrossRef]

Desieres, Y.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett.100, 113305–113305 (2012).
[CrossRef]

J. Le Perchec, Y. Desieres, and R. E. de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett.94, 181104 (2009).
[CrossRef]

Dupuis, C.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98, 191109 (2011).
[CrossRef]

Espiau de Lamaestre, R.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett.100, 113305–113305 (2012).
[CrossRef]

Fan, S.

J. Shen, P. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. lett.94, 197401 (2005).
[CrossRef] [PubMed]

Ferlazzo, L.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98, 191109 (2011).
[CrossRef]

Ghenuche, P.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98, 191109 (2011).
[CrossRef]

A. Cattoni, P. Ghenuche, A. Haghiri-Gosnet, D. Decanini, J. Chen, J. Pelouard, and S. Collin, “λ3/1000 plasmonic nanocavities for biosensing fabricated by soft uv nanoimprint lithography,” Nano Lett.11, 3557–3563 (2011).
[CrossRef] [PubMed]

Ghosh, G.

E. Palik and G. Ghosh, Handbook of optical constants of solids (Academic press, 1985).

Haghiri-Gosnet, A.

A. Cattoni, P. Ghenuche, A. Haghiri-Gosnet, D. Decanini, J. Chen, J. Pelouard, and S. Collin, “λ3/1000 plasmonic nanocavities for biosensing fabricated by soft uv nanoimprint lithography,” Nano Lett.11, 3557–3563 (2011).
[CrossRef] [PubMed]

Haidar, R.

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett.99, 241104–241104 (2011).
[CrossRef]

Haïdar, R.

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett.37, 1038–1040 (2012).
[CrossRef] [PubMed]

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98, 191109 (2011).
[CrossRef]

F. Pardo, P. Bouchon, R. Haïdar, and J. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett.107, 93902 (2011).
[CrossRef]

P. Bouchon, F. Pardo, R. Haïdar, and J. Pelouard, “Fast modal method for subwavelength gratings based on b-spline formulation,” J. Opt. Soc. Am. A27, 696–702 (2010).
[CrossRef]

Hao, J.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83, 165107 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

Jaeck, J.

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett.99, 241104–241104 (2011).
[CrossRef]

Jiang, Z.

Z. Jiang, S. Yun, F. Toor, D. Werner, and T. Mayer, “Conformal dual band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5, 4641–4647 (2011).
[CrossRef] [PubMed]

Jouanin, A.

Jouy, P.

P. Jouy, A. Vasanelli, Y. Todorov, A. Delteil, G. Biasiol, L. Sorba, and C. Sirtori, “Transition from strong to ultrastrong coupling regime in mid-infrared metal-dielectric-metal cavities,” Appl. Phys. Lett.98, 231114–231114 (2011).
[CrossRef]

Kempa, K.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett.12, 440–445 (2012).
[CrossRef]

Khurgin, J.

J. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett.99, 211106–211106 (2011).
[CrossRef]

Koechlin, C.

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett.37, 1038–1040 (2012).
[CrossRef] [PubMed]

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett.99, 241104–241104 (2011).
[CrossRef]

Lafosse, X.

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett.99, 241104–241104 (2011).
[CrossRef]

Lalanne, P.

Le Perchec, J.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett.100, 113305–113305 (2012).
[CrossRef]

J. Le Perchec, Y. Desieres, and R. E. de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett.94, 181104 (2009).
[CrossRef]

Liu, X.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

Mayer, T.

Z. Jiang, S. Yun, F. Toor, D. Werner, and T. Mayer, “Conformal dual band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5, 4641–4647 (2011).
[CrossRef] [PubMed]

Nielsen, M.

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

Palik, E.

E. Palik and G. Ghosh, Handbook of optical constants of solids (Academic press, 1985).

Pardo, F.

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett.37, 1038–1040 (2012).
[CrossRef] [PubMed]

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett.99, 241104–241104 (2011).
[CrossRef]

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98, 191109 (2011).
[CrossRef]

F. Pardo, P. Bouchon, R. Haïdar, and J. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett.107, 93902 (2011).
[CrossRef]

P. Bouchon, F. Pardo, R. Haïdar, and J. Pelouard, “Fast modal method for subwavelength gratings based on b-spline formulation,” J. Opt. Soc. Am. A27, 696–702 (2010).
[CrossRef]

S. Collin, F. Pardo, and J. Pelouard, “Waveguiding in nanoscale metallic apertures,” Opt. Express15, 4310–4320 (2007).
[CrossRef] [PubMed]

Paudel, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett.12, 440–445 (2012).
[CrossRef]

Pelouard, J.

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett.99, 241104–241104 (2011).
[CrossRef]

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98, 191109 (2011).
[CrossRef]

A. Cattoni, P. Ghenuche, A. Haghiri-Gosnet, D. Decanini, J. Chen, J. Pelouard, and S. Collin, “λ3/1000 plasmonic nanocavities for biosensing fabricated by soft uv nanoimprint lithography,” Nano Lett.11, 3557–3563 (2011).
[CrossRef] [PubMed]

F. Pardo, P. Bouchon, R. Haïdar, and J. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett.107, 93902 (2011).
[CrossRef]

P. Bouchon, F. Pardo, R. Haïdar, and J. Pelouard, “Fast modal method for subwavelength gratings based on b-spline formulation,” J. Opt. Soc. Am. A27, 696–702 (2010).
[CrossRef]

S. Collin, F. Pardo, and J. Pelouard, “Waveguiding in nanoscale metallic apertures,” Opt. Express15, 4310–4320 (2007).
[CrossRef] [PubMed]

Pelouard, J.-L.

Pors, A.

Portier, B.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98, 191109 (2011).
[CrossRef]

Qiu, M.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83, 165107 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

Ren, Z.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett.12, 440–445 (2012).
[CrossRef]

Rochat, N.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett.100, 113305–113305 (2012).
[CrossRef]

Sauvan, S.

Shen, J.

J. Shen, P. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. lett.94, 197401 (2005).
[CrossRef] [PubMed]

Sirtori, C.

P. Jouy, A. Vasanelli, Y. Todorov, A. Delteil, G. Biasiol, L. Sorba, and C. Sirtori, “Transition from strong to ultrastrong coupling regime in mid-infrared metal-dielectric-metal cavities,” Appl. Phys. Lett.98, 231114–231114 (2011).
[CrossRef]

Sorba, L.

P. Jouy, A. Vasanelli, Y. Todorov, A. Delteil, G. Biasiol, L. Sorba, and C. Sirtori, “Transition from strong to ultrastrong coupling regime in mid-infrared metal-dielectric-metal cavities,” Appl. Phys. Lett.98, 231114–231114 (2011).
[CrossRef]

Sun, G.

J. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett.99, 211106–211106 (2011).
[CrossRef]

Sun, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett.12, 440–445 (2012).
[CrossRef]

Todorov, Y.

P. Jouy, A. Vasanelli, Y. Todorov, A. Delteil, G. Biasiol, L. Sorba, and C. Sirtori, “Transition from strong to ultrastrong coupling regime in mid-infrared metal-dielectric-metal cavities,” Appl. Phys. Lett.98, 231114–231114 (2011).
[CrossRef]

Toor, F.

Z. Jiang, S. Yun, F. Toor, D. Werner, and T. Mayer, “Conformal dual band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5, 4641–4647 (2011).
[CrossRef] [PubMed]

Vasanelli, A.

P. Jouy, A. Vasanelli, Y. Todorov, A. Delteil, G. Biasiol, L. Sorba, and C. Sirtori, “Transition from strong to ultrastrong coupling regime in mid-infrared metal-dielectric-metal cavities,” Appl. Phys. Lett.98, 231114–231114 (2011).
[CrossRef]

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

Wang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett.12, 440–445 (2012).
[CrossRef]

Werner, D.

Z. Jiang, S. Yun, F. Toor, D. Werner, and T. Mayer, “Conformal dual band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5, 4641–4647 (2011).
[CrossRef] [PubMed]

Yang, J.

Yun, S.

Z. Jiang, S. Yun, F. Toor, D. Werner, and T. Mayer, “Conformal dual band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5, 4641–4647 (2011).
[CrossRef] [PubMed]

Zhang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett.12, 440–445 (2012).
[CrossRef]

Zhou, L.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83, 165107 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

ACS Nano (1)

Z. Jiang, S. Yun, F. Toor, D. Werner, and T. Mayer, “Conformal dual band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5, 4641–4647 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (7)

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett.100, 113305–113305 (2012).
[CrossRef]

J. Le Perchec, Y. Desieres, and R. E. de Lamaestre, “Plasmon-based photosensors comprising a very thin semiconducting region,” Appl. Phys. Lett.94, 181104 (2009).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98, 191109 (2011).
[CrossRef]

C. Koechlin, P. Bouchon, F. Pardo, J. Jaeck, X. Lafosse, J. Pelouard, and R. Haidar, “Total routing and absorption of photons in dual color plasmonic antennas,” Appl. Phys. Lett.99, 241104–241104 (2011).
[CrossRef]

P. Jouy, A. Vasanelli, Y. Todorov, A. Delteil, G. Biasiol, L. Sorba, and C. Sirtori, “Transition from strong to ultrastrong coupling regime in mid-infrared metal-dielectric-metal cavities,” Appl. Phys. Lett.98, 231114–231114 (2011).
[CrossRef]

J. Khurgin and G. Sun, “Scaling of losses with size and wavelength in nanoplasmonics and metamaterials,” Appl. Phys. Lett.99, 211106–211106 (2011).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nano Lett. (2)

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett.12, 440–445 (2012).
[CrossRef]

A. Cattoni, P. Ghenuche, A. Haghiri-Gosnet, D. Decanini, J. Chen, J. Pelouard, and S. Collin, “λ3/1000 plasmonic nanocavities for biosensing fabricated by soft uv nanoimprint lithography,” Nano Lett.11, 3557–3563 (2011).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83, 165107 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

F. Pardo, P. Bouchon, R. Haïdar, and J. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett.107, 93902 (2011).
[CrossRef]

J. Shen, P. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. lett.94, 197401 (2005).
[CrossRef] [PubMed]

Other (1)

E. Palik and G. Ghosh, Handbook of optical constants of solids (Academic press, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Scheme of a periodic MIM resonator of width w, dielectric thickness hI, period d. Metal is taken as gold, and the upper layer has a thickness hAu = 50 nm. (b) The MIM structure is equivalent to a half MIM resonator with an extremity closed by a perfect mirror and disposed with a period d/2 (c) Equivalent structure made of an effective medium of index n̄ + ik̄, and thickness t̄ on a perfect mirror index (d) Computed absorption spectra of a MIM structure with parameters nI = 4, w = 1.087 μm, hI = 200 nm, d = 3.8 μm in blue straight line and of the equivalent metamaterial with n̄+ik̄ = 33.76+0.508i and t̄ = 74 nm in red dashed line. The incoming light is normally incident and TM polarized.

Fig. 2
Fig. 2

(a) Scheme of a periodic C-shape MIM resonator of width w, dielectric thickness hI, and period d. (b) Computed absorption spectra of a C-shape MIM structure with parameters nI = 4 + 0.2i, w = 0.552 μm, hI = 250 nm, d = 0.7 μm in red and of the equivalent metamaterial with n̄+ik̄ = 9.98+0.61i and t̄ = 251 nm in blue dashed line (c) Scheme of a periodic slit MIM resonator of depth w, dielectric width hI, and period d (d) Computed absorption spectra of a slit MIM structure with parameters nI = 4, w = 0.55 μm, hI = 200 nm, d = 1.9 μm in red and of the equivalent metamaterial with n̄ + ik̄ = 34.9 + 0.63i and t̄ = 72 nm in blue dashed line

Fig. 3
Fig. 3

Period-insulator thickness abacus for various insulator index nI giving the nearly total absorption condition at 10 μm for a MIM resonator according to our analytical model (plain lines). Comparison with the period that allows to perform numerically 99.9% absorption (stars).

Fig. 4
Fig. 4

(a) Quality factor of various MIM structures with nI = 4 (red) and nI = 2 (blue) versus hI, obtained numerically (stars) and analytically (circles). One can note that the quality factor depends linearly and only on hI. (b) Analytically calculated spectra of four MIM structures. Their period d and width w have been optimized to perform nearly total absorption at 10 μm.

Fig. 5
Fig. 5

(a) Scheme of a structure combining two MIM resonators of width w1 and w2 inserted in the same subwavelength period d. (b–d) Absorption spectra computed numerically (blue plain line) and analytically (blue dashed line) for various values of w1 and w2. The insulator thickness, index, and period are respectively hI = 250 nm, nI = 4, and d = 5.8 μm. Resonators widths are (b) w1 = 0.987 μm, w2 = 1.216 μm, (c) w1 = 1.073 μm, w2 = 1.13 μm, and (d) w1 = 1.079 μm, w2 = 1.125 μm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n eff + i k eff = n I 1 + i λ π h I ε A u
n ¯ + i k ¯ = ( n eff + i k eff ) d / 2 ( h I + 2 δ )
t ¯ = 2 n eff w + λ ϕ 4 n ¯
r = r 12 e 4 i π ( n ¯ + i k ¯ ) t ¯ / λ 1 r 12 e 4 i π ( n ¯ + i k ¯ ) t ¯ / λ
n ¯ = 1 e π k eff / n eff 1 + e π k eff / n eff .
A = 1 ( 1 A 1 ) × ( 1 A 2 )

Metrics