Abstract

Submicron tantalum pentoxide ridge and channel optical waveguides and microring resonators are demonstrated on silicon substrates by selective oxidation of the refractory metal, tantalum. The novel method eliminates the surface roughness problem normally introduced during dry etching of waveguide sidewalls and also simplifies fabrication of directional couplers. It is shown that the measured propagation loss is independent of the waveguide structure and thereby limited by the material loss of tantalum pentoxide in waveguides core regions. The achieved microring resonators have cross-sectional dimensions of ~600 nm × ~500 nm, diameters as small as 80 µm with a quality, Q, factor of 4.5 × 104, and a finesse of 120.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. •••, 2071–2102 (1969).
  2. E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. •••, 2103–2132 (1969).
  3. D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. •••, 3187–3215 (1969).
  4. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
    [CrossRef]
  5. D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs / GaAs microcavity ring and disk resonators with high f inesse and 21.6-nm f ree spectral range,” Opt. Lett. 22(16), 1244–1246 (1997).
    [CrossRef] [PubMed]
  6. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20(11), 1968–1975 (2002).
    [CrossRef]
  7. B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 1400–1415 (2006).
    [CrossRef]
  8. P. Rabiei, “Calculation of losses in micro-ring resonators with arbitrary refractive index or shape profile and its applications,” J. Lightwave Technol. 23(3), 1295–1301 (2005).
    [CrossRef]
  9. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [CrossRef] [PubMed]
  10. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001).
    [CrossRef] [PubMed]
  11. S. Fathpour, K. M. Tsia, and B. Jalali, “Two-photon photovoltaic effect in silicon,” IEEE J. Quantum Electron. 43(12), 1211–1217 (2007).
    [CrossRef]
  12. D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, M. Peccianti, B. E. Little, S. T. Chu, and D. J. Moss, “High performance, low-loss nonlinear integrated glass waveguides,” PIERS Online 6(3), 283–286 (2010).
    [CrossRef]
  13. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
  14. R. Y. Chen, M. D. Charlton, and P. G. Lagoudakis, “Chi 3 dispersion in planar tantalum pentoxide waveguides in the telecommunications window,” Opt. Lett. 34(7), 1135–1137 (2009).
    [CrossRef] [PubMed]
  15. C.-Y. Tai, J. S. Wilkinson, N. M. B. Perney, M. Netti, F. Cattaneo, C. E. Finlayson, and J. J. Baumberg, “Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation,” Opt. Express 12(21), 5110–5116 (2004).
    [CrossRef] [PubMed]
  16. Y. C. Cheng and W. D. Festwood, “Losses in tantalum pentoxide waveguides,” J. Electron. Mater. 3(1), 37–50 (1974).
    [CrossRef]
  17. H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating,” J. Lightwave Technol. 12(6), 989–995 (1994).
    [CrossRef]
  18. B. Unal, C. Y. Tai, D. P. Shepherd, J. S. Wilkinson, N. M. B. Perney, M. C. Netti, and G. J. Parker, “Nd:Ta2O5 rib waveguide lasers,” Appl. Phys. Lett. 86(2), 021110 (2005).
    [CrossRef]
  19. C. A. Steidel and D. Gerstenberg, “Thermal oxidation of sputtered Tantalum thin films between 100° and 525°C,” J. Appl. Phys. 40(9), 3828–3835 (1969).
    [CrossRef]
  20. H. F. Winters and E. Kay, “Gas incorporation into sputtered films,” J. Appl. Phys. 38(10), 3928–3934 (1967).
    [CrossRef]

2011

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

2010

D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, M. Peccianti, B. E. Little, S. T. Chu, and D. J. Moss, “High performance, low-loss nonlinear integrated glass waveguides,” PIERS Online 6(3), 283–286 (2010).
[CrossRef]

2009

2007

S. Fathpour, K. M. Tsia, and B. Jalali, “Two-photon photovoltaic effect in silicon,” IEEE J. Quantum Electron. 43(12), 1211–1217 (2007).
[CrossRef]

2006

B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 1400–1415 (2006).
[CrossRef]

2005

P. Rabiei, “Calculation of losses in micro-ring resonators with arbitrary refractive index or shape profile and its applications,” J. Lightwave Technol. 23(3), 1295–1301 (2005).
[CrossRef]

B. Unal, C. Y. Tai, D. P. Shepherd, J. S. Wilkinson, N. M. B. Perney, M. C. Netti, and G. J. Parker, “Nd:Ta2O5 rib waveguide lasers,” Appl. Phys. Lett. 86(2), 021110 (2005).
[CrossRef]

2004

2003

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

2002

2001

1997

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs / GaAs microcavity ring and disk resonators with high f inesse and 21.6-nm f ree spectral range,” Opt. Lett. 22(16), 1244–1246 (1997).
[CrossRef] [PubMed]

1994

H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating,” J. Lightwave Technol. 12(6), 989–995 (1994).
[CrossRef]

1974

Y. C. Cheng and W. D. Festwood, “Losses in tantalum pentoxide waveguides,” J. Electron. Mater. 3(1), 37–50 (1974).
[CrossRef]

1969

C. A. Steidel and D. Gerstenberg, “Thermal oxidation of sputtered Tantalum thin films between 100° and 525°C,” J. Appl. Phys. 40(9), 3828–3835 (1969).
[CrossRef]

E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. •••, 2071–2102 (1969).

E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. •••, 2103–2132 (1969).

D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. •••, 3187–3215 (1969).

1967

H. F. Winters and E. Kay, “Gas incorporation into sputtered films,” J. Appl. Phys. 38(10), 3928–3934 (1967).
[CrossRef]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Baumberg, J. J.

Cattaneo, F.

Cerrina, F.

Charlton, M. D.

Chen, R. Y.

Cheng, Y. C.

Y. C. Cheng and W. D. Festwood, “Losses in tantalum pentoxide waveguides,” J. Electron. Mater. 3(1), 37–50 (1974).
[CrossRef]

Chu, S. T.

D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, M. Peccianti, B. E. Little, S. T. Chu, and D. J. Moss, “High performance, low-loss nonlinear integrated glass waveguides,” PIERS Online 6(3), 283–286 (2010).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Dalton, L. R.

Duchesne, D.

D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, M. Peccianti, B. E. Little, S. T. Chu, and D. J. Moss, “High performance, low-loss nonlinear integrated glass waveguides,” PIERS Online 6(3), 283–286 (2010).
[CrossRef]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Fathpour, S.

S. Fathpour, K. M. Tsia, and B. Jalali, “Two-photon photovoltaic effect in silicon,” IEEE J. Quantum Electron. 43(12), 1211–1217 (2007).
[CrossRef]

B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 1400–1415 (2006).
[CrossRef]

Ferrera, M.

D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, M. Peccianti, B. E. Little, S. T. Chu, and D. J. Moss, “High performance, low-loss nonlinear integrated glass waveguides,” PIERS Online 6(3), 283–286 (2010).
[CrossRef]

Festwood, W. D.

Y. C. Cheng and W. D. Festwood, “Losses in tantalum pentoxide waveguides,” J. Electron. Mater. 3(1), 37–50 (1974).
[CrossRef]

Finlayson, C. E.

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Gerstenberg, D.

C. A. Steidel and D. Gerstenberg, “Thermal oxidation of sputtered Tantalum thin films between 100° and 525°C,” J. Appl. Phys. 40(9), 3828–3835 (1969).
[CrossRef]

Hagness, S. C.

D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs / GaAs microcavity ring and disk resonators with high f inesse and 21.6-nm f ree spectral range,” Opt. Lett. 22(16), 1244–1246 (1997).
[CrossRef] [PubMed]

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Ho, S. T.

D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs / GaAs microcavity ring and disk resonators with high f inesse and 21.6-nm f ree spectral range,” Opt. Lett. 22(16), 1244–1246 (1997).
[CrossRef] [PubMed]

Jalali, B.

S. Fathpour, K. M. Tsia, and B. Jalali, “Two-photon photovoltaic effect in silicon,” IEEE J. Quantum Electron. 43(12), 1211–1217 (2007).
[CrossRef]

B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 1400–1415 (2006).
[CrossRef]

Kay, E.

H. F. Winters and E. Kay, “Gas incorporation into sputtered films,” J. Appl. Phys. 38(10), 3928–3934 (1967).
[CrossRef]

Kimerling, L. C.

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Lagoudakis, P. G.

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Lee, K. K.

Lim, D. R.

Little, B. E.

D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, M. Peccianti, B. E. Little, S. T. Chu, and D. J. Moss, “High performance, low-loss nonlinear integrated glass waveguides,” PIERS Online 6(3), 283–286 (2010).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Marcatili, E. A. J.

E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. •••, 2071–2102 (1969).

E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. •••, 2103–2132 (1969).

Marcuse, D.

D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. •••, 3187–3215 (1969).

Morandotti, R.

D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, M. Peccianti, B. E. Little, S. T. Chu, and D. J. Moss, “High performance, low-loss nonlinear integrated glass waveguides,” PIERS Online 6(3), 283–286 (2010).
[CrossRef]

Moss, D. J.

D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, M. Peccianti, B. E. Little, S. T. Chu, and D. J. Moss, “High performance, low-loss nonlinear integrated glass waveguides,” PIERS Online 6(3), 283–286 (2010).
[CrossRef]

Netti, M.

Netti, M. C.

B. Unal, C. Y. Tai, D. P. Shepherd, J. S. Wilkinson, N. M. B. Perney, M. C. Netti, and G. J. Parker, “Nd:Ta2O5 rib waveguide lasers,” Appl. Phys. Lett. 86(2), 021110 (2005).
[CrossRef]

Nishi, I.

H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating,” J. Lightwave Technol. 12(6), 989–995 (1994).
[CrossRef]

Parker, G. J.

B. Unal, C. Y. Tai, D. P. Shepherd, J. S. Wilkinson, N. M. B. Perney, M. C. Netti, and G. J. Parker, “Nd:Ta2O5 rib waveguide lasers,” Appl. Phys. Lett. 86(2), 021110 (2005).
[CrossRef]

Peccianti, M.

D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, M. Peccianti, B. E. Little, S. T. Chu, and D. J. Moss, “High performance, low-loss nonlinear integrated glass waveguides,” PIERS Online 6(3), 283–286 (2010).
[CrossRef]

Perney, N. M. B.

Rabiei, P.

P. Rabiei, “Calculation of losses in micro-ring resonators with arbitrary refractive index or shape profile and its applications,” J. Lightwave Technol. 23(3), 1295–1301 (2005).
[CrossRef]

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20(11), 1968–1975 (2002).
[CrossRef]

Rafizadeh, D.

D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs / GaAs microcavity ring and disk resonators with high f inesse and 21.6-nm f ree spectral range,” Opt. Lett. 22(16), 1244–1246 (1997).
[CrossRef] [PubMed]

Razzari, L.

D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, M. Peccianti, B. E. Little, S. T. Chu, and D. J. Moss, “High performance, low-loss nonlinear integrated glass waveguides,” PIERS Online 6(3), 283–286 (2010).
[CrossRef]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Shepherd, D. P.

B. Unal, C. Y. Tai, D. P. Shepherd, J. S. Wilkinson, N. M. B. Perney, M. C. Netti, and G. J. Parker, “Nd:Ta2O5 rib waveguide lasers,” Appl. Phys. Lett. 86(2), 021110 (2005).
[CrossRef]

Shin, J.

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Stair, K. A.

D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs / GaAs microcavity ring and disk resonators with high f inesse and 21.6-nm f ree spectral range,” Opt. Lett. 22(16), 1244–1246 (1997).
[CrossRef] [PubMed]

Steidel, C. A.

C. A. Steidel and D. Gerstenberg, “Thermal oxidation of sputtered Tantalum thin films between 100° and 525°C,” J. Appl. Phys. 40(9), 3828–3835 (1969).
[CrossRef]

Steier, W. H.

Suzuki, S.

H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating,” J. Lightwave Technol. 12(6), 989–995 (1994).
[CrossRef]

Taflove, A.

D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs / GaAs microcavity ring and disk resonators with high f inesse and 21.6-nm f ree spectral range,” Opt. Lett. 22(16), 1244–1246 (1997).
[CrossRef] [PubMed]

Tai, C. Y.

B. Unal, C. Y. Tai, D. P. Shepherd, J. S. Wilkinson, N. M. B. Perney, M. C. Netti, and G. J. Parker, “Nd:Ta2O5 rib waveguide lasers,” Appl. Phys. Lett. 86(2), 021110 (2005).
[CrossRef]

Tai, C.-Y.

Takahashi, H.

H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating,” J. Lightwave Technol. 12(6), 989–995 (1994).
[CrossRef]

Tiberio, R. C.

D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs / GaAs microcavity ring and disk resonators with high f inesse and 21.6-nm f ree spectral range,” Opt. Lett. 22(16), 1244–1246 (1997).
[CrossRef] [PubMed]

Tsia, K. M.

S. Fathpour, K. M. Tsia, and B. Jalali, “Two-photon photovoltaic effect in silicon,” IEEE J. Quantum Electron. 43(12), 1211–1217 (2007).
[CrossRef]

Unal, B.

B. Unal, C. Y. Tai, D. P. Shepherd, J. S. Wilkinson, N. M. B. Perney, M. C. Netti, and G. J. Parker, “Nd:Ta2O5 rib waveguide lasers,” Appl. Phys. Lett. 86(2), 021110 (2005).
[CrossRef]

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Wilkinson, J. S.

Winters, H. F.

H. F. Winters and E. Kay, “Gas incorporation into sputtered films,” J. Appl. Phys. 38(10), 3928–3934 (1967).
[CrossRef]

Zhang, C.

Zhang, J. P.

D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs / GaAs microcavity ring and disk resonators with high f inesse and 21.6-nm f ree spectral range,” Opt. Lett. 22(16), 1244–1246 (1997).
[CrossRef] [PubMed]

Appl. Phys. Lett.

B. Unal, C. Y. Tai, D. P. Shepherd, J. S. Wilkinson, N. M. B. Perney, M. C. Netti, and G. J. Parker, “Nd:Ta2O5 rib waveguide lasers,” Appl. Phys. Lett. 86(2), 021110 (2005).
[CrossRef]

Bell Syst. Tech. J.

E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. •••, 2071–2102 (1969).

E. A. J. Marcatili, “Bends in optical dielectric guides,” Bell Syst. Tech. J. •••, 2103–2132 (1969).

D. Marcuse, “Mode conversion caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. Tech. J. •••, 3187–3215 (1969).

IEEE J. Quantum Electron.

S. Fathpour, K. M. Tsia, and B. Jalali, “Two-photon photovoltaic effect in silicon,” IEEE J. Quantum Electron. 43(12), 1211–1217 (2007).
[CrossRef]

J. Lightwave Technol.

B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 1400–1415 (2006).
[CrossRef]

P. Rabiei, “Calculation of losses in micro-ring resonators with arbitrary refractive index or shape profile and its applications,” J. Lightwave Technol. 23(3), 1295–1301 (2005).
[CrossRef]

J. Appl. Phys.

C. A. Steidel and D. Gerstenberg, “Thermal oxidation of sputtered Tantalum thin films between 100° and 525°C,” J. Appl. Phys. 40(9), 3828–3835 (1969).
[CrossRef]

H. F. Winters and E. Kay, “Gas incorporation into sputtered films,” J. Appl. Phys. 38(10), 3928–3934 (1967).
[CrossRef]

J. Electron. Mater.

Y. C. Cheng and W. D. Festwood, “Losses in tantalum pentoxide waveguides,” J. Electron. Mater. 3(1), 37–50 (1974).
[CrossRef]

J. Lightwave Technol.

H. Takahashi, S. Suzuki, and I. Nishi, “Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating,” J. Lightwave Technol. 12(6), 989–995 (1994).
[CrossRef]

P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters and modulators,” J. Lightwave Technol. 20(11), 1968–1975 (2002).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15(6), 998–1005 (1997).
[CrossRef]

Nat. Photonics

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).

Nature

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Opt. Lett.

D. Rafizadeh, J. P. Zhang, S. C. Hagness, A. Taflove, K. A. Stair, S. T. Ho, and R. C. Tiberio, “Waveguide-coupled AlGaAs / GaAs microcavity ring and disk resonators with high f inesse and 21.6-nm f ree spectral range,” Opt. Lett. 22(16), 1244–1246 (1997).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

PIERS Online

D. Duchesne, M. Ferrera, L. Razzari, R. Morandotti, M. Peccianti, B. E. Little, S. T. Chu, and D. J. Moss, “High performance, low-loss nonlinear integrated glass waveguides,” PIERS Online 6(3), 283–286 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The processing steps of the proposed SORM waveguide fabrication technique.

Fig. 2
Fig. 2

The SEM cross-section images of the fabricated devices: (a) ridge and (b) channel waveguides.

Fig. 3
Fig. 3

Microscope image of fabricated microring resonator with input and output coupled waveguides.

Fig. 4
Fig. 4

(a) TE transmission spectrum of a device with 300-µm diameter and for two coupling strengths (colored lines) and the fitted spectra (black lines) around 1550 nm; (b) Measured and fitted coupling coefficient times length (κ × l) as a function of the coupling gap for two different microring radii.

Fig. 5
Fig. 5

(a) Transmission spectrum of a channel-waveguide-based microresonator with 80 µm diameter for TE and TM modes around 1550 nm; (b) Transmission spectrum of a channel-waveguide-based microresonator with 40 µm diameter for TM modes around 1550 nm. The bending loss is considerable in this case.

Metrics