Abstract

In this paper, physically-based simulations are carried out to investigate and design broadband and high-output power uni-traveling carrier (UTC) photodiodes. The physical model is first verified by comparison to experimentally measured results. The graded-bandgap structure, which can induce potential gradient, is considered to be used in the absorption layers. It is shown that the electric field in the absorption layer is increased by the gradient, thus the performance of bandwidth and saturation current is improved by 36.6% and 40% respectively for our considered photodiode. Moreover, a modified graded-bandgap structure is proposed to further increase the electric field, and an additional 9.5% improvement in bandwidth is achieved. The final proposed UTC-PD structures will result in 399-GHz bandwidth and 49-mA DC saturation current.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
    [CrossRef]
  2. J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Millimeter-wave photonic wireless links for very high data rate communication,” NPG Asia Mater.3(4), 41–48 (2011).
    [CrossRef]
  3. M. Achouche, G. Glastre, C. Caillaud, M. Lahrichi, M. Chtioui, and D. Carpentier, “InGaAs communication photodiodes: from low- to high-power-level designs,” IEEE Photonics J.2(3), 460–468 (2010).
    [CrossRef]
  4. H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP–InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron.10(4), 709–727 (2004).
    [CrossRef]
  5. T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling-carrier photodiodes,” in Ultrafast Electronics Optoelectronics OSA Spring Topical Meeting, Technical Digest (Optical Society of America, 1997), pp. 166–168.
  6. T. Ishibashi, S. Kodoma, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys.36(Part 1, No. 10), 6263–6268 (1997).
    [CrossRef]
  7. M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-performance uni-traveling-carrier photodiodes with a new collector design,” IEEE Photon. Technol. Lett.20(13), 1163–1165 (2008).
    [CrossRef]
  8. D.-H. Jun, J.-H. Jang, I. Adesida, and J.-I. Song, “Improved efficiency bandwidth product of modified uni-traveling carrier photodiode structures using an undoped photo-absorption layer,” Jpn. J. Appl. Phys.45(4B), 3475–3478 (2006).
    [CrossRef]
  9. X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs-InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett.19(16), 1272–1274 (2007).
    [CrossRef]
  10. M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. van Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett.24(4), 318–320 (2012).
    [CrossRef]
  11. Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010).
    [CrossRef]
  12. J.-W. Shi, F.-M. Kuo, and J. E. Bowers, “Design and analysis of ultra-high-speed near-ballistic uni-traveling-carrier photodiodes under a 50-Ω load for high-power performance,” IEEE Photon. Technol. Lett.24(7), 533–535 (2012).
    [CrossRef]
  13. J.-W. Shi, Y.-S. Wu, C.-Y. Wu, P.-H. Chiu, and C.-C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55-μm wavelength,” IEEE Photon. Technol. Lett.17(9), 1929–1931 (2005).
    [CrossRef]
  14. M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-power and high-linearity uni-traveling-carrier photodiodes for analog photonic links,” IEEE Photon. Technol. Lett.20(3), 202–204 (2008).
    [CrossRef]
  15. H. Fukano, Y. Muramoto, K. Takahata, and Y. Matsuoka, “High efficiency edge-illuminated unitravelling-carrier-structure refracting-facet photodiode,” Electron. Lett.35(19), 1664–1665 (1999).
    [CrossRef]
  16. S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett.15(12), 1761–1763 (2003).
    [CrossRef]
  17. J. Klamkin, S. M. Madison, D. C. Oakley, A. Napoleone, F. J. O’Donnell, M. Sheehan, L. J. Missaggia, J. M. Caissie, J. J. Plant, and P. W. Juodawlkis, “Uni-traveling-carrier variable confinement waveguide photodiodes,” Opt. Express19(11), 10199–10205 (2011).
    [CrossRef] [PubMed]
  18. M. Hosseinifar, V. Ahmadi, and G. Abaeiani, “Microring-based unitraveling carrier photodiodes for high bandwidth-efficiency product photodetection in optical communication,” J. Lightwave Technol.29(9), 1285–1292 (2011).
    [CrossRef]
  19. J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, C.-Y. Liu, C. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron.46(1), 80–86 (2010).
    [CrossRef]
  20. Y.-S. Wu, J.-W. Shi, and P.-H. Chiu, “Analytical modeling of a high-performance near-ballistic uni-traveling-carrier photodiode at a 1.55-μm wavelength,” IEEE Photon. Technol. Lett.18(8), 938–940 (2006).
    [CrossRef]
  21. R. Stratton, “Diffusion of hot and cold electrons in semiconductor barriers,” Phys. Rev.126(6), 2002–2014 (1962).
    [CrossRef]
  22. R. Stratton, “Semiconductor current-flow equations (diffusion and degeneracy),” IEEE Trans. Electron. Dev.19(12), 1288–1292 (1972).
    [CrossRef]
  23. New semiconductor materials, characteristics and properties, http://www.ioffe.rssi.ru/SVA/NSM/ .
  24. S. Adachi, Physical Properties of III–V Semiconductor Compounds InP, InAs, GaAs, GaP, InGaAs, and InGaAsP, (John Wiley and Sons, 1992).

2012 (2)

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. van Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett.24(4), 318–320 (2012).
[CrossRef]

J.-W. Shi, F.-M. Kuo, and J. E. Bowers, “Design and analysis of ultra-high-speed near-ballistic uni-traveling-carrier photodiodes under a 50-Ω load for high-power performance,” IEEE Photon. Technol. Lett.24(7), 533–535 (2012).
[CrossRef]

2011 (3)

2010 (3)

M. Achouche, G. Glastre, C. Caillaud, M. Lahrichi, M. Chtioui, and D. Carpentier, “InGaAs communication photodiodes: from low- to high-power-level designs,” IEEE Photonics J.2(3), 460–468 (2010).
[CrossRef]

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, C.-Y. Liu, C. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron.46(1), 80–86 (2010).
[CrossRef]

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010).
[CrossRef]

2008 (2)

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-performance uni-traveling-carrier photodiodes with a new collector design,” IEEE Photon. Technol. Lett.20(13), 1163–1165 (2008).
[CrossRef]

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-power and high-linearity uni-traveling-carrier photodiodes for analog photonic links,” IEEE Photon. Technol. Lett.20(3), 202–204 (2008).
[CrossRef]

2007 (1)

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs-InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett.19(16), 1272–1274 (2007).
[CrossRef]

2006 (3)

C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
[CrossRef]

D.-H. Jun, J.-H. Jang, I. Adesida, and J.-I. Song, “Improved efficiency bandwidth product of modified uni-traveling carrier photodiode structures using an undoped photo-absorption layer,” Jpn. J. Appl. Phys.45(4B), 3475–3478 (2006).
[CrossRef]

Y.-S. Wu, J.-W. Shi, and P.-H. Chiu, “Analytical modeling of a high-performance near-ballistic uni-traveling-carrier photodiode at a 1.55-μm wavelength,” IEEE Photon. Technol. Lett.18(8), 938–940 (2006).
[CrossRef]

2005 (1)

J.-W. Shi, Y.-S. Wu, C.-Y. Wu, P.-H. Chiu, and C.-C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55-μm wavelength,” IEEE Photon. Technol. Lett.17(9), 1929–1931 (2005).
[CrossRef]

2004 (1)

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP–InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron.10(4), 709–727 (2004).
[CrossRef]

2003 (1)

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett.15(12), 1761–1763 (2003).
[CrossRef]

1999 (1)

H. Fukano, Y. Muramoto, K. Takahata, and Y. Matsuoka, “High efficiency edge-illuminated unitravelling-carrier-structure refracting-facet photodiode,” Electron. Lett.35(19), 1664–1665 (1999).
[CrossRef]

1997 (1)

T. Ishibashi, S. Kodoma, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys.36(Part 1, No. 10), 6263–6268 (1997).
[CrossRef]

1972 (1)

R. Stratton, “Semiconductor current-flow equations (diffusion and degeneracy),” IEEE Trans. Electron. Dev.19(12), 1288–1292 (1972).
[CrossRef]

1962 (1)

R. Stratton, “Diffusion of hot and cold electrons in semiconductor barriers,” Phys. Rev.126(6), 2002–2014 (1962).
[CrossRef]

Abaeiani, G.

Achouche, M.

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. van Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett.24(4), 318–320 (2012).
[CrossRef]

M. Achouche, G. Glastre, C. Caillaud, M. Lahrichi, M. Chtioui, and D. Carpentier, “InGaAs communication photodiodes: from low- to high-power-level designs,” IEEE Photonics J.2(3), 460–468 (2010).
[CrossRef]

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-performance uni-traveling-carrier photodiodes with a new collector design,” IEEE Photon. Technol. Lett.20(13), 1163–1165 (2008).
[CrossRef]

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-power and high-linearity uni-traveling-carrier photodiodes for analog photonic links,” IEEE Photon. Technol. Lett.20(3), 202–204 (2008).
[CrossRef]

Ackerman, E.

C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
[CrossRef]

Adesida, I.

D.-H. Jun, J.-H. Jang, I. Adesida, and J.-I. Song, “Improved efficiency bandwidth product of modified uni-traveling carrier photodiode structures using an undoped photo-absorption layer,” Jpn. J. Appl. Phys.45(4B), 3475–3478 (2006).
[CrossRef]

Ahmadi, V.

Anselm, A.

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett.15(12), 1761–1763 (2003).
[CrossRef]

Beling, A.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010).
[CrossRef]

Bernard, S.

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-power and high-linearity uni-traveling-carrier photodiodes for analog photonic links,” IEEE Photon. Technol. Lett.20(3), 202–204 (2008).
[CrossRef]

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-performance uni-traveling-carrier photodiodes with a new collector design,” IEEE Photon. Technol. Lett.20(13), 1163–1165 (2008).
[CrossRef]

Betts, G.

C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
[CrossRef]

Bowers, J. E.

J.-W. Shi, F.-M. Kuo, and J. E. Bowers, “Design and analysis of ultra-high-speed near-ballistic uni-traveling-carrier photodiodes under a 50-Ω load for high-power performance,” IEEE Photon. Technol. Lett.24(7), 533–535 (2012).
[CrossRef]

Caillaud, C.

M. Achouche, G. Glastre, C. Caillaud, M. Lahrichi, M. Chtioui, and D. Carpentier, “InGaAs communication photodiodes: from low- to high-power-level designs,” IEEE Photonics J.2(3), 460–468 (2010).
[CrossRef]

Caissie, J. M.

Campbell, J. C.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010).
[CrossRef]

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs-InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett.19(16), 1272–1274 (2007).
[CrossRef]

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett.15(12), 1761–1763 (2003).
[CrossRef]

Carpentier, D.

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. van Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett.24(4), 318–320 (2012).
[CrossRef]

M. Achouche, G. Glastre, C. Caillaud, M. Lahrichi, M. Chtioui, and D. Carpentier, “InGaAs communication photodiodes: from low- to high-power-level designs,” IEEE Photonics J.2(3), 460–468 (2010).
[CrossRef]

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-performance uni-traveling-carrier photodiodes with a new collector design,” IEEE Photon. Technol. Lett.20(13), 1163–1165 (2008).
[CrossRef]

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-power and high-linearity uni-traveling-carrier photodiodes for analog photonic links,” IEEE Photon. Technol. Lett.20(3), 202–204 (2008).
[CrossRef]

Chang, C. L.

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, C.-Y. Liu, C. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron.46(1), 80–86 (2010).
[CrossRef]

Chen, C. Y.

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, C.-Y. Liu, C. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron.46(1), 80–86 (2010).
[CrossRef]

Chen, H.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010).
[CrossRef]

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs-InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett.19(16), 1272–1274 (2007).
[CrossRef]

Chiu, P.-H.

Y.-S. Wu, J.-W. Shi, and P.-H. Chiu, “Analytical modeling of a high-performance near-ballistic uni-traveling-carrier photodiode at a 1.55-μm wavelength,” IEEE Photon. Technol. Lett.18(8), 938–940 (2006).
[CrossRef]

J.-W. Shi, Y.-S. Wu, C.-Y. Wu, P.-H. Chiu, and C.-C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55-μm wavelength,” IEEE Photon. Technol. Lett.17(9), 1929–1931 (2005).
[CrossRef]

Chtioui, M.

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. van Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett.24(4), 318–320 (2012).
[CrossRef]

M. Achouche, G. Glastre, C. Caillaud, M. Lahrichi, M. Chtioui, and D. Carpentier, “InGaAs communication photodiodes: from low- to high-power-level designs,” IEEE Photonics J.2(3), 460–468 (2010).
[CrossRef]

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-performance uni-traveling-carrier photodiodes with a new collector design,” IEEE Photon. Technol. Lett.20(13), 1163–1165 (2008).
[CrossRef]

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-power and high-linearity uni-traveling-carrier photodiodes for analog photonic links,” IEEE Photon. Technol. Lett.20(3), 202–204 (2008).
[CrossRef]

Chyi, J.-I.

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, C.-Y. Liu, C. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron.46(1), 80–86 (2010).
[CrossRef]

Cox, C.

C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
[CrossRef]

Demiguel, S.

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett.15(12), 1761–1763 (2003).
[CrossRef]

Duan, N.

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs-InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett.19(16), 1272–1274 (2007).
[CrossRef]

Enard, A.

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. van Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett.24(4), 318–320 (2012).
[CrossRef]

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-power and high-linearity uni-traveling-carrier photodiodes for analog photonic links,” IEEE Photon. Technol. Lett.20(3), 202–204 (2008).
[CrossRef]

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-performance uni-traveling-carrier photodiodes with a new collector design,” IEEE Photon. Technol. Lett.20(13), 1163–1165 (2008).
[CrossRef]

Fukano, H.

H. Fukano, Y. Muramoto, K. Takahata, and Y. Matsuoka, “High efficiency edge-illuminated unitravelling-carrier-structure refracting-facet photodiode,” Electron. Lett.35(19), 1664–1665 (1999).
[CrossRef]

Furuta, T.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP–InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron.10(4), 709–727 (2004).
[CrossRef]

T. Ishibashi, S. Kodoma, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys.36(Part 1, No. 10), 6263–6268 (1997).
[CrossRef]

Glastre, G.

M. Achouche, G. Glastre, C. Caillaud, M. Lahrichi, M. Chtioui, and D. Carpentier, “InGaAs communication photodiodes: from low- to high-power-level designs,” IEEE Photonics J.2(3), 460–468 (2010).
[CrossRef]

Hong, C.-C.

J.-W. Shi, Y.-S. Wu, C.-Y. Wu, P.-H. Chiu, and C.-C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55-μm wavelength,” IEEE Photon. Technol. Lett.17(9), 1929–1931 (2005).
[CrossRef]

Hosseinifar, M.

Huang, C.-B.

J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Millimeter-wave photonic wireless links for very high data rate communication,” NPG Asia Mater.3(4), 41–48 (2011).
[CrossRef]

Ishibashi, T.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP–InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron.10(4), 709–727 (2004).
[CrossRef]

T. Ishibashi, S. Kodoma, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys.36(Part 1, No. 10), 6263–6268 (1997).
[CrossRef]

Ito, H.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP–InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron.10(4), 709–727 (2004).
[CrossRef]

Jang, J.-H.

D.-H. Jun, J.-H. Jang, I. Adesida, and J.-I. Song, “Improved efficiency bandwidth product of modified uni-traveling carrier photodiode structures using an undoped photo-absorption layer,” Jpn. J. Appl. Phys.45(4B), 3475–3478 (2006).
[CrossRef]

Jun, D.-H.

D.-H. Jun, J.-H. Jang, I. Adesida, and J.-I. Song, “Improved efficiency bandwidth product of modified uni-traveling carrier photodiode structures using an undoped photo-absorption layer,” Jpn. J. Appl. Phys.45(4B), 3475–3478 (2006).
[CrossRef]

Juodawlkis, P. W.

Kim, J.

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett.15(12), 1761–1763 (2003).
[CrossRef]

Klamkin, J.

Kodama, S.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP–InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron.10(4), 709–727 (2004).
[CrossRef]

Kodoma, S.

T. Ishibashi, S. Kodoma, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys.36(Part 1, No. 10), 6263–6268 (1997).
[CrossRef]

Kuo, F.-M.

J.-W. Shi, F.-M. Kuo, and J. E. Bowers, “Design and analysis of ultra-high-speed near-ballistic uni-traveling-carrier photodiodes under a 50-Ω load for high-power performance,” IEEE Photon. Technol. Lett.24(7), 533–535 (2012).
[CrossRef]

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, C.-Y. Liu, C. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron.46(1), 80–86 (2010).
[CrossRef]

Lahrichi, M.

M. Achouche, G. Glastre, C. Caillaud, M. Lahrichi, M. Chtioui, and D. Carpentier, “InGaAs communication photodiodes: from low- to high-power-level designs,” IEEE Photonics J.2(3), 460–468 (2010).
[CrossRef]

Lelarge, F.

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. van Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett.24(4), 318–320 (2012).
[CrossRef]

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-power and high-linearity uni-traveling-carrier photodiodes for analog photonic links,” IEEE Photon. Technol. Lett.20(3), 202–204 (2008).
[CrossRef]

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-performance uni-traveling-carrier photodiodes with a new collector design,” IEEE Photon. Technol. Lett.20(13), 1163–1165 (2008).
[CrossRef]

Li, N.

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett.15(12), 1761–1763 (2003).
[CrossRef]

Li, X.

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett.15(12), 1761–1763 (2003).
[CrossRef]

Li, Z.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010).
[CrossRef]

Liu, C.-Y.

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, C.-Y. Liu, C. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron.46(1), 80–86 (2010).
[CrossRef]

Lu, H.

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett.15(12), 1761–1763 (2003).
[CrossRef]

Madison, S. M.

Marceaux, A.

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. van Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett.24(4), 318–320 (2012).
[CrossRef]

Matsuoka, Y.

H. Fukano, Y. Muramoto, K. Takahata, and Y. Matsuoka, “High efficiency edge-illuminated unitravelling-carrier-structure refracting-facet photodiode,” Electron. Lett.35(19), 1664–1665 (1999).
[CrossRef]

Missaggia, L. J.

Muramoto, Y.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP–InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron.10(4), 709–727 (2004).
[CrossRef]

H. Fukano, Y. Muramoto, K. Takahata, and Y. Matsuoka, “High efficiency edge-illuminated unitravelling-carrier-structure refracting-facet photodiode,” Electron. Lett.35(19), 1664–1665 (1999).
[CrossRef]

Nagatsuma, T.

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP–InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron.10(4), 709–727 (2004).
[CrossRef]

Napoleone, A.

O’Donnell, F. J.

Oakley, D. C.

Pan, C.-L.

J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Millimeter-wave photonic wireless links for very high data rate communication,” NPG Asia Mater.3(4), 41–48 (2011).
[CrossRef]

Pan, H.

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010).
[CrossRef]

Plant, J. J.

Pommereau, F.

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. van Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett.24(4), 318–320 (2012).
[CrossRef]

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-power and high-linearity uni-traveling-carrier photodiodes for analog photonic links,” IEEE Photon. Technol. Lett.20(3), 202–204 (2008).
[CrossRef]

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-performance uni-traveling-carrier photodiodes with a new collector design,” IEEE Photon. Technol. Lett.20(13), 1163–1165 (2008).
[CrossRef]

Prince, J.

C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
[CrossRef]

Rousseau, B.

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-performance uni-traveling-carrier photodiodes with a new collector design,” IEEE Photon. Technol. Lett.20(13), 1163–1165 (2008).
[CrossRef]

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-power and high-linearity uni-traveling-carrier photodiodes for analog photonic links,” IEEE Photon. Technol. Lett.20(3), 202–204 (2008).
[CrossRef]

Sheehan, M.

Shi, J.-W.

J.-W. Shi, F.-M. Kuo, and J. E. Bowers, “Design and analysis of ultra-high-speed near-ballistic uni-traveling-carrier photodiodes under a 50-Ω load for high-power performance,” IEEE Photon. Technol. Lett.24(7), 533–535 (2012).
[CrossRef]

J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Millimeter-wave photonic wireless links for very high data rate communication,” NPG Asia Mater.3(4), 41–48 (2011).
[CrossRef]

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, C.-Y. Liu, C. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron.46(1), 80–86 (2010).
[CrossRef]

Y.-S. Wu, J.-W. Shi, and P.-H. Chiu, “Analytical modeling of a high-performance near-ballistic uni-traveling-carrier photodiode at a 1.55-μm wavelength,” IEEE Photon. Technol. Lett.18(8), 938–940 (2006).
[CrossRef]

J.-W. Shi, Y.-S. Wu, C.-Y. Wu, P.-H. Chiu, and C.-C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55-μm wavelength,” IEEE Photon. Technol. Lett.17(9), 1929–1931 (2005).
[CrossRef]

Shimizu, N.

T. Ishibashi, S. Kodoma, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys.36(Part 1, No. 10), 6263–6268 (1997).
[CrossRef]

Song, J.-I.

D.-H. Jun, J.-H. Jang, I. Adesida, and J.-I. Song, “Improved efficiency bandwidth product of modified uni-traveling carrier photodiode structures using an undoped photo-absorption layer,” Jpn. J. Appl. Phys.45(4B), 3475–3478 (2006).
[CrossRef]

Stratton, R.

R. Stratton, “Semiconductor current-flow equations (diffusion and degeneracy),” IEEE Trans. Electron. Dev.19(12), 1288–1292 (1972).
[CrossRef]

R. Stratton, “Diffusion of hot and cold electrons in semiconductor barriers,” Phys. Rev.126(6), 2002–2014 (1962).
[CrossRef]

Takahata, K.

H. Fukano, Y. Muramoto, K. Takahata, and Y. Matsuoka, “High efficiency edge-illuminated unitravelling-carrier-structure refracting-facet photodiode,” Electron. Lett.35(19), 1664–1665 (1999).
[CrossRef]

van Dijk, F.

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. van Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett.24(4), 318–320 (2012).
[CrossRef]

Wang, X.

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs-InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett.19(16), 1272–1274 (2007).
[CrossRef]

Wu, C.-J.

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, C.-Y. Liu, C. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron.46(1), 80–86 (2010).
[CrossRef]

Wu, C.-Y.

J.-W. Shi, Y.-S. Wu, C.-Y. Wu, P.-H. Chiu, and C.-C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55-μm wavelength,” IEEE Photon. Technol. Lett.17(9), 1929–1931 (2005).
[CrossRef]

Wu, Y.-S.

Y.-S. Wu, J.-W. Shi, and P.-H. Chiu, “Analytical modeling of a high-performance near-ballistic uni-traveling-carrier photodiode at a 1.55-μm wavelength,” IEEE Photon. Technol. Lett.18(8), 938–940 (2006).
[CrossRef]

J.-W. Shi, Y.-S. Wu, C.-Y. Wu, P.-H. Chiu, and C.-C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55-μm wavelength,” IEEE Photon. Technol. Lett.17(9), 1929–1931 (2005).
[CrossRef]

Zheng, X.

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett.15(12), 1761–1763 (2003).
[CrossRef]

Electron. Lett. (1)

H. Fukano, Y. Muramoto, K. Takahata, and Y. Matsuoka, “High efficiency edge-illuminated unitravelling-carrier-structure refracting-facet photodiode,” Electron. Lett.35(19), 1664–1665 (1999).
[CrossRef]

IEEE J. Quantum Electron. (2)

Z. Li, H. Pan, H. Chen, A. Beling, and J. C. Campbell, “High-saturation-current modified uni-traveling-carrier photodiode with cliff layer,” IEEE J. Quantum Electron.46(5), 626–632 (2010).
[CrossRef]

J.-W. Shi, F.-M. Kuo, C.-J. Wu, C. L. Chang, C.-Y. Liu, C. Y. Chen, and J.-I. Chyi, “Extremely high saturation current-bandwidth product performance of a near-ballistic uni-traveling-carrier photodiode with a flip-chip bonding structure,” IEEE J. Quantum Electron.46(1), 80–86 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, and T. Ishibashi, “High-speed and high-output InP–InGaAs unitraveling-carrier photodiodes,” IEEE J. Sel. Top. Quantum Electron.10(4), 709–727 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (8)

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-performance uni-traveling-carrier photodiodes with a new collector design,” IEEE Photon. Technol. Lett.20(13), 1163–1165 (2008).
[CrossRef]

J.-W. Shi, F.-M. Kuo, and J. E. Bowers, “Design and analysis of ultra-high-speed near-ballistic uni-traveling-carrier photodiodes under a 50-Ω load for high-power performance,” IEEE Photon. Technol. Lett.24(7), 533–535 (2012).
[CrossRef]

J.-W. Shi, Y.-S. Wu, C.-Y. Wu, P.-H. Chiu, and C.-C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55-μm wavelength,” IEEE Photon. Technol. Lett.17(9), 1929–1931 (2005).
[CrossRef]

M. Chtioui, A. Enard, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, and M. Achouche, “High-power and high-linearity uni-traveling-carrier photodiodes for analog photonic links,” IEEE Photon. Technol. Lett.20(3), 202–204 (2008).
[CrossRef]

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photon. Technol. Lett.15(12), 1761–1763 (2003).
[CrossRef]

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs-InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett.19(16), 1272–1274 (2007).
[CrossRef]

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. van Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett.24(4), 318–320 (2012).
[CrossRef]

Y.-S. Wu, J.-W. Shi, and P.-H. Chiu, “Analytical modeling of a high-performance near-ballistic uni-traveling-carrier photodiode at a 1.55-μm wavelength,” IEEE Photon. Technol. Lett.18(8), 938–940 (2006).
[CrossRef]

IEEE Photonics J. (1)

M. Achouche, G. Glastre, C. Caillaud, M. Lahrichi, M. Chtioui, and D. Carpentier, “InGaAs communication photodiodes: from low- to high-power-level designs,” IEEE Photonics J.2(3), 460–468 (2010).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

R. Stratton, “Semiconductor current-flow equations (diffusion and degeneracy),” IEEE Trans. Electron. Dev.19(12), 1288–1292 (1972).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

C. Cox, E. Ackerman, G. Betts, and J. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (2)

T. Ishibashi, S. Kodoma, N. Shimizu, and T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys.36(Part 1, No. 10), 6263–6268 (1997).
[CrossRef]

D.-H. Jun, J.-H. Jang, I. Adesida, and J.-I. Song, “Improved efficiency bandwidth product of modified uni-traveling carrier photodiode structures using an undoped photo-absorption layer,” Jpn. J. Appl. Phys.45(4B), 3475–3478 (2006).
[CrossRef]

NPG Asia Mater. (1)

J.-W. Shi, C.-B. Huang, and C.-L. Pan, “Millimeter-wave photonic wireless links for very high data rate communication,” NPG Asia Mater.3(4), 41–48 (2011).
[CrossRef]

Opt. Express (1)

Phys. Rev. (1)

R. Stratton, “Diffusion of hot and cold electrons in semiconductor barriers,” Phys. Rev.126(6), 2002–2014 (1962).
[CrossRef]

Other (3)

New semiconductor materials, characteristics and properties, http://www.ioffe.rssi.ru/SVA/NSM/ .

S. Adachi, Physical Properties of III–V Semiconductor Compounds InP, InAs, GaAs, GaP, InGaAs, and InGaAsP, (John Wiley and Sons, 1992).

T. Ishibashi, N. Shimizu, S. Kodama, H. Ito, T. Nagatsuma, and T. Furuta, “Uni-traveling-carrier photodiodes,” in Ultrafast Electronics Optoelectronics OSA Spring Topical Meeting, Technical Digest (Optical Society of America, 1997), pp. 166–168.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Simulated modulation response of (a) PA with diameters of 28, 34, 40, and 56 μm at −6 V bias voltage and measured bandwidth [11], and (b) PB (16 μm2) at bias voltages of −2 V and −5 V and measured response [12] (y-axis keeps the same scale with Fig. 2b in [12], and the inset shows only the simulated results). The dip at 135 GHz in the experimental curve is caused by the integrated coplanar waveguide [12].

Fig. 2
Fig. 2

Simulated modulation response of PA (28 μm) under different illumination power densities.

Fig. 3
Fig. 3

Distribution of electric field in the absorption layer of PB with and without graded-bandgap design. Inset shows the band diagram of the absorption layer with and without graded bandgap design. External bias voltage: −2 V.

Fig. 4
Fig. 4

Simulated modulation response for (a) PA (28-μm diameter) at −6V bias, (b) PB at −2V bias, using and without using graded-bandgap absorption layer.

Fig. 5
Fig. 5

Distribution of electric field in absorption layer of PB with graded and modified graded bandgap. Inset is a large-scale view in y axis.

Fig. 6
Fig. 6

Simulated modulation response of (a) PA (28-μm diameter) at −6V bias voltage (b) PB at −2V bias voltage using modified graded bandgap with comparison to graded bandgap.

Fig. 7
Fig. 7

Under DC illumination, simulated photocurrent versus illumination power of PB.

Fig. 8
Fig. 8

Band diagrams (solid) and electron distributions (dashed) under different illumination levels for ungraded and graded bandgap structures. The bias voltage is −2 V. (a) Ungraded, no illumination, (b) Ungraded, illumination power: 105 W/cm2 (c) Ungraded, illumination power: 106 W/cm2 (d) Ungraded, illumination power: 2 × 106 W/cm2 (e) Graded, illumination power: 2 × 106 W/cm2 (f) Comparison of electron concentrations, illumination power: 2 × 106 W/cm2. The position of each layer is marked in the figures.

Tables (2)

Tables Icon

Table 1 Layer Parameters of PA in [11] and PA with Graded-bandgap Absorption Layer

Tables Icon

Table 2 Layer Parameters of PB in [12] and PB with Graded-bandgap Absorption Layer

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E g ( In 1-x Ga x As y P 1y )=1.35+( 0.642+0.758x )x+( 0.101y1.101 )y ( 0.28x0.109y+0.159 )xy.
x= 0.1896y 0.41760.0125y .

Metrics