Abstract

We study the comparability of the two most important measurement methods used for the characterization of semiconductor saturable absorber mirrors (SESAMs). For both methods, single-pulse spectroscopy (SPS) and pump-probe spectroscopy (PPS), we analyze in detail the time-dependent saturation dynamics inside a SESAM. Based on this analysis, we find that fluence-dependent PPS at complete spatial overlap and zero time delay is equivalent to SPS. We confirm our findings experimentally by comparing data from SPS and PPS of two samples. We show how to interpret this data consistently and we give explanations for possible deviations.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, K. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron.2, 435–453 (1996).
    [CrossRef]
  2. F. Kärtner, I. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Quantum Electron.2, 540–556 (1996).
    [CrossRef]
  3. F. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers - What’s the difference?” IEEE J. Quantum Electron.4, 159–168 (1998).
    [CrossRef]
  4. J. Aus der Au, S. Schaer, R. Paschotta, C. Hönninger, U. Keller, and M. Moser, “High-power diode-pumped passively mode-locked Yb: YAG lasers,” Opt. Lett.24, 1281–1283 (1999).
    [CrossRef]
  5. J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D. H. Sutter, and T. Dekorsy, “Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry,” Opt. Express16, 20530–20539 (2008).
    [CrossRef] [PubMed]
  6. C. Lecaplain, C. Chédot, A. Hideur, B. Ortaç, and J. Limpert, “High-power all-normal-dispersion femtosecond pulse generation from a Yb-doped large-mode-area microstructure fiber laser,” Opt. Lett.32, 2738–2740 (2007).
    [CrossRef] [PubMed]
  7. O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. (2011).
  8. D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, and T. Dekorsy, “Mode-locked Yb:YAG thin-disk oscillator with 41 μJ pulse energy at 145 W average infrared power and high power frequency conversion,” Opt. Express20, 9698–9704 (2012).
    [CrossRef] [PubMed]
  9. C. Saraceno, F. Emaury, O. Heckl, C. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express20, 23535–23541 (2012).
    [CrossRef] [PubMed]
  10. J. Li, D. Hudson, Y. Liu, and S. Jackson, “Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett.37, 3747–3749 (2012).
    [PubMed]
  11. M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B: Lasers and Optics79, 331–339 (2004).
    [CrossRef]
  12. D. J. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, “High precision optical characterization of semiconductor saturable absorber mirrors,” Opt. Express16, 7571–7579 (2008).
    [CrossRef] [PubMed]
  13. F. Schättiger, D. Bauer, J. Demsar, T. Dekorsy, J. Kleinbauer, D. Sutter, J. Puustinen, and M. Guina, “Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk lasers,” Appl. Phys. B: Lasers and Optics106, 605–612 (2012).
    [CrossRef]
  14. C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds,” IEEE J. Quantum Electron.18, 29–41 (2012).
    [CrossRef]
  15. G. Spühler, K. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B: Lasers and Optics81, 27–32 (2005).
    [CrossRef]
  16. G. Agrawal and N. Olsson, “Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor-lasers and Amplifiers,” IEEE J. Quantum Electron.25, 2297–2306 (1989).
    [CrossRef]
  17. R. Gebs, G. Klatt, C. Janke, T. Dekorsy, and A. Bartels, “High-speed asynchronous optical sampling with sub-50fs time resolution,” Opt. Express18, 5974–5983 (2010).
    [CrossRef] [PubMed]

2012

D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, and T. Dekorsy, “Mode-locked Yb:YAG thin-disk oscillator with 41 μJ pulse energy at 145 W average infrared power and high power frequency conversion,” Opt. Express20, 9698–9704 (2012).
[CrossRef] [PubMed]

C. Saraceno, F. Emaury, O. Heckl, C. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express20, 23535–23541 (2012).
[CrossRef] [PubMed]

J. Li, D. Hudson, Y. Liu, and S. Jackson, “Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett.37, 3747–3749 (2012).
[PubMed]

F. Schättiger, D. Bauer, J. Demsar, T. Dekorsy, J. Kleinbauer, D. Sutter, J. Puustinen, and M. Guina, “Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk lasers,” Appl. Phys. B: Lasers and Optics106, 605–612 (2012).
[CrossRef]

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds,” IEEE J. Quantum Electron.18, 29–41 (2012).
[CrossRef]

2010

2008

2007

2005

G. Spühler, K. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B: Lasers and Optics81, 27–32 (2005).
[CrossRef]

2004

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B: Lasers and Optics79, 331–339 (2004).
[CrossRef]

1999

1998

F. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers - What’s the difference?” IEEE J. Quantum Electron.4, 159–168 (1998).
[CrossRef]

1996

U. Keller, K. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron.2, 435–453 (1996).
[CrossRef]

F. Kärtner, I. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Quantum Electron.2, 540–556 (1996).
[CrossRef]

1989

G. Agrawal and N. Olsson, “Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor-lasers and Amplifiers,” IEEE J. Quantum Electron.25, 2297–2306 (1989).
[CrossRef]

Agrawal, G.

G. Agrawal and N. Olsson, “Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor-lasers and Amplifiers,” IEEE J. Quantum Electron.25, 2297–2306 (1989).
[CrossRef]

Aus der Au, J.

J. Aus der Au, S. Schaer, R. Paschotta, C. Hönninger, U. Keller, and M. Moser, “High-power diode-pumped passively mode-locked Yb: YAG lasers,” Opt. Lett.24, 1281–1283 (1999).
[CrossRef]

F. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers - What’s the difference?” IEEE J. Quantum Electron.4, 159–168 (1998).
[CrossRef]

U. Keller, K. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron.2, 435–453 (1996).
[CrossRef]

Baer, C.

Baer, C. R. E.

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds,” IEEE J. Quantum Electron.18, 29–41 (2012).
[CrossRef]

Bartels, A.

Bauer, D.

Bellancourt, A.-R.

Braun, B.

U. Keller, K. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron.2, 435–453 (1996).
[CrossRef]

Chédot, C.

Dekorsy, T.

Demsar, J.

F. Schättiger, D. Bauer, J. Demsar, T. Dekorsy, J. Kleinbauer, D. Sutter, J. Puustinen, and M. Guina, “Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk lasers,” Appl. Phys. B: Lasers and Optics106, 605–612 (2012).
[CrossRef]

Emaury, F.

Fluck, R.

U. Keller, K. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron.2, 435–453 (1996).
[CrossRef]

Gebs, R.

Golling, M.

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds,” IEEE J. Quantum Electron.18, 29–41 (2012).
[CrossRef]

C. Saraceno, F. Emaury, O. Heckl, C. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express20, 23535–23541 (2012).
[CrossRef] [PubMed]

G. Spühler, K. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B: Lasers and Optics81, 27–32 (2005).
[CrossRef]

Grange, R.

G. Spühler, K. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B: Lasers and Optics81, 27–32 (2005).
[CrossRef]

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B: Lasers and Optics79, 331–339 (2004).
[CrossRef]

Grudinin, A.

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. (2011).

Guina, M.

F. Schättiger, D. Bauer, J. Demsar, T. Dekorsy, J. Kleinbauer, D. Sutter, J. Puustinen, and M. Guina, “Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk lasers,” Appl. Phys. B: Lasers and Optics106, 605–612 (2012).
[CrossRef]

J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D. H. Sutter, and T. Dekorsy, “Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry,” Opt. Express16, 20530–20539 (2008).
[CrossRef] [PubMed]

Haiml, M.

G. Spühler, K. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B: Lasers and Optics81, 27–32 (2005).
[CrossRef]

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B: Lasers and Optics79, 331–339 (2004).
[CrossRef]

Heckl, O.

Heckl, O. H.

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds,” IEEE J. Quantum Electron.18, 29–41 (2012).
[CrossRef]

Hideur, A.

Hoffmann, M.

C. Saraceno, F. Emaury, O. Heckl, C. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express20, 23535–23541 (2012).
[CrossRef] [PubMed]

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds,” IEEE J. Quantum Electron.18, 29–41 (2012).
[CrossRef]

Hönninger, C.

J. Aus der Au, S. Schaer, R. Paschotta, C. Hönninger, U. Keller, and M. Moser, “High-power diode-pumped passively mode-locked Yb: YAG lasers,” Opt. Lett.24, 1281–1283 (1999).
[CrossRef]

U. Keller, K. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron.2, 435–453 (1996).
[CrossRef]

Hudson, D.

Iwaniuk, D.

Jackson, S.

Janke, C.

Jung, I.

U. Keller, K. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron.2, 435–453 (1996).
[CrossRef]

F. Kärtner, I. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Quantum Electron.2, 540–556 (1996).
[CrossRef]

Kärtner, F.

F. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers - What’s the difference?” IEEE J. Quantum Electron.4, 159–168 (1998).
[CrossRef]

F. Kärtner, I. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Quantum Electron.2, 540–556 (1996).
[CrossRef]

U. Keller, K. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron.2, 435–453 (1996).
[CrossRef]

Keller, U.

C. Saraceno, F. Emaury, O. Heckl, C. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express20, 23535–23541 (2012).
[CrossRef] [PubMed]

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds,” IEEE J. Quantum Electron.18, 29–41 (2012).
[CrossRef]

D. J. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, “High precision optical characterization of semiconductor saturable absorber mirrors,” Opt. Express16, 7571–7579 (2008).
[CrossRef] [PubMed]

G. Spühler, K. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B: Lasers and Optics81, 27–32 (2005).
[CrossRef]

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B: Lasers and Optics79, 331–339 (2004).
[CrossRef]

J. Aus der Au, S. Schaer, R. Paschotta, C. Hönninger, U. Keller, and M. Moser, “High-power diode-pumped passively mode-locked Yb: YAG lasers,” Opt. Lett.24, 1281–1283 (1999).
[CrossRef]

F. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers - What’s the difference?” IEEE J. Quantum Electron.4, 159–168 (1998).
[CrossRef]

F. Kärtner, I. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Quantum Electron.2, 540–556 (1996).
[CrossRef]

U. Keller, K. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron.2, 435–453 (1996).
[CrossRef]

Killi, A.

Klatt, G.

Kleinbauer, J.

F. Schättiger, D. Bauer, J. Demsar, T. Dekorsy, J. Kleinbauer, D. Sutter, J. Puustinen, and M. Guina, “Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk lasers,” Appl. Phys. B: Lasers and Optics106, 605–612 (2012).
[CrossRef]

J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D. H. Sutter, and T. Dekorsy, “Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry,” Opt. Express16, 20530–20539 (2008).
[CrossRef] [PubMed]

Kopf, D.

U. Keller, K. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron.2, 435–453 (1996).
[CrossRef]

Krainer, L.

G. Spühler, K. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B: Lasers and Optics81, 27–32 (2005).
[CrossRef]

Kumkar, M.

Lecaplain, C.

Li, J.

Limpert, J.

Liu, Y.

Liverini, V.

G. Spühler, K. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B: Lasers and Optics81, 27–32 (2005).
[CrossRef]

Maas, D. J.

Mangold, M.

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds,” IEEE J. Quantum Electron.18, 29–41 (2012).
[CrossRef]

Marchese, S. V.

Matuschek, N.

U. Keller, K. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron.2, 435–453 (1996).
[CrossRef]

Moser, M.

Neuhaus, J.

Okhotnikov, O.

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. (2011).

Olsson, N.

G. Agrawal and N. Olsson, “Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor-lasers and Amplifiers,” IEEE J. Quantum Electron.25, 2297–2306 (1989).
[CrossRef]

Ortaç, B.

Paschotta, R.

Pessa, M.

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. (2011).

Puustinen, J.

F. Schättiger, D. Bauer, J. Demsar, T. Dekorsy, J. Kleinbauer, D. Sutter, J. Puustinen, and M. Guina, “Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk lasers,” Appl. Phys. B: Lasers and Optics106, 605–612 (2012).
[CrossRef]

Rudin, B.

Saraceno, C.

Saraceno, C. J.

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds,” IEEE J. Quantum Electron.18, 29–41 (2012).
[CrossRef]

Schaer, S.

Schättiger, F.

F. Schättiger, D. Bauer, J. Demsar, T. Dekorsy, J. Kleinbauer, D. Sutter, J. Puustinen, and M. Guina, “Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk lasers,” Appl. Phys. B: Lasers and Optics106, 605–612 (2012).
[CrossRef]

Schön, S.

G. Spühler, K. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B: Lasers and Optics81, 27–32 (2005).
[CrossRef]

Schriber, C.

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds,” IEEE J. Quantum Electron.18, 29–41 (2012).
[CrossRef]

C. Saraceno, F. Emaury, O. Heckl, C. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express20, 23535–23541 (2012).
[CrossRef] [PubMed]

Spühler, G.

G. Spühler, K. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B: Lasers and Optics81, 27–32 (2005).
[CrossRef]

Südmeyer, T.

Sutter, D.

F. Schättiger, D. Bauer, J. Demsar, T. Dekorsy, J. Kleinbauer, D. Sutter, J. Puustinen, and M. Guina, “Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk lasers,” Appl. Phys. B: Lasers and Optics106, 605–612 (2012).
[CrossRef]

Sutter, D. H.

Weiler, S.

Weingarten, K.

G. Spühler, K. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B: Lasers and Optics81, 27–32 (2005).
[CrossRef]

U. Keller, K. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron.2, 435–453 (1996).
[CrossRef]

Zawischa, I.

Zhang, J.

Appl. Phys. B: Lasers and Optics

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B: Lasers and Optics79, 331–339 (2004).
[CrossRef]

F. Schättiger, D. Bauer, J. Demsar, T. Dekorsy, J. Kleinbauer, D. Sutter, J. Puustinen, and M. Guina, “Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk lasers,” Appl. Phys. B: Lasers and Optics106, 605–612 (2012).
[CrossRef]

G. Spühler, K. Weingarten, R. Grange, L. Krainer, M. Haiml, V. Liverini, M. Golling, S. Schön, and U. Keller, “Semiconductor saturable absorber mirror structures with low saturation fluence,” Appl. Phys. B: Lasers and Optics81, 27–32 (2005).
[CrossRef]

IEEE J. Quantum Electron.

G. Agrawal and N. Olsson, “Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor-lasers and Amplifiers,” IEEE J. Quantum Electron.25, 2297–2306 (1989).
[CrossRef]

C. J. Saraceno, C. Schriber, M. Mangold, M. Hoffmann, O. H. Heckl, C. R. E. Baer, M. Golling, T. Südmeyer, and U. Keller, “SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds,” IEEE J. Quantum Electron.18, 29–41 (2012).
[CrossRef]

U. Keller, K. Weingarten, F. Kärtner, D. Kopf, B. Braun, I. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron.2, 435–453 (1996).
[CrossRef]

F. Kärtner, I. Jung, and U. Keller, “Soliton mode-locking with saturable absorbers,” IEEE J. Quantum Electron.2, 540–556 (1996).
[CrossRef]

F. Kärtner, J. Aus der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers - What’s the difference?” IEEE J. Quantum Electron.4, 159–168 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Other

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys. (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Overview of the two discussed measurement schemes. In SPS shown on the left side, a single pulse is split and incident both on a SESAM and on a highly reflective (HR) mirror. A chopper is positioned such that no pulse, only one, or both reflected pulses are detected. In PPS shown on the right side, a pump pulse (solid line) and a time-delayed probe pulse (dashed line) are incident on a SESAM. Only the probe pulse is detected.

Fig. 2
Fig. 2

A pulsed light field intensity (left y-axis) is shown together with the corresponding SESAM reflectivity (right y-axis). A strongly saturating pulse I(0,t) (blue solid line) changes the instantaneous reflectivity Rinst(t) (red solid line) and the outgoing pulse I(L, t) (dark-shaded area) is modulated accordingly. A much weaker probe pulse Ĩ(0,t) (blue dashed line and light-shaded area, drawn scaled and for two different time delays) can then experience a higher overall reflectivity at a later time. It traces the instantaneous reflectivity but convolves it with its pulse shape to Rconv(t) (red dashed line).

Fig. 3
Fig. 3

Complete experimental data taken with PPS from sample A. The individual time traces (thin black lines) show the reflectivity for different time delays each at a fixed pump-pulse fluence. The set of time traces has been connected to a single surface in three dimensions where the reflectivity has been color coded. On the rear-left side the autocorrelation of the pump pulse is shown (thick blue line). It fixes the zero time delay at which the fluence-dependent reflectivity can be extracted from the PPS data (circular markers on surface). The extracted fluence-dependent reflectivity is also projected on the rear-right side (circular markers) and compared to a fit based on the corresponding SPS data (red line). A thick dashed black line marks the fluence limit where the sample became permanently damaged.

Fig. 4
Fig. 4

Zoom in of the PPS data from sample A around zero time delay. The reflectivity time traces (black solid lines, left y-axis) for increasing pump fluences (arrow) are shown together with the autocorrelation data (grey shaded area) and a corresponding fit (thick blue line, right y-axis). The first local maximum is marked by blue dots whereas the zero time delay (red dashed line) and two more earlier and later time delays (black dashed lines) are each marked by a vertical line annotated (a)–(e).

Fig. 5
Fig. 5

Data from PPS and SPS of sample A. The PPS data which is the basis for fit curves (a)–(e) (dot markers for data, thin black lines for fit curves, thick black line for zero time delay fit) has been extracted at the corresponding time delays marked in Fig. 4. Fit curves (d) and (e) are nearly indistinguishable since the corresponding data is very similar. The SPS measurement (circular markers for data, red line for fit) has been repeated with a high-reflectivity mirror (100 % line, circular markers) to show the accuracy. All fits have been done including only data points for fluence values smaller than the limit of permanent damage (dashed black line).

Fig. 6
Fig. 6

Data from PPS and SPS of sample B. The PPS data which is the basis for fit curves (a)–(e) (dot markers for data, thin black lines for fit curves, thick black line for zero time delay fit) has been extracted from the time traces analogous to the procedure for sample A. The SPS measurement (circular markers for data, red line for fit) has again been repeated with a high-reflectivity mirror (100 % line, circular markers) to show the accuracy.

Tables (1)

Tables Icon

Table 1 Fit parameters resulting from the PPS and SPS data of sample A and B.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I ( z , t ) z = ( α ( z , t ) + α 0 ) I ( z , t ) ,
α ( z , t ) t = I ( z , t ) F sat α ( z , t ) ,
I ( z , t ) = I ( 0 , t ) × R inst ( z , t )
R inst ( z , t ) = R ns ( z ) 1 + ( R ns ( z ) R lin ( z ) 1 ) e S ( t ) ,
S ( t ) = 1 F sat 0 t I ( 0 , t ) d t
R ( F ) = I ( L , t ) d t I ( 0 , t ) d t = R ns F sat F ln [ 1 + R lin R ns ( e F F sat 1 ) ] e F F 2 ,
F ( r ) = 2 F p e 2 r 2 w 2
R SPS ( F p ) = 0 R ( F ( r ) ) F ( r ) 2 π r d r 0 F ( r ) 2 π r d r = = 0 1 R ( 2 F p y ) d y .
R conv ( F , t ) = 1 F ˜ I ˜ ( 0 , t t ) R ns 1 + ( R ns R lin 1 ) e S ( t ) d t ,
R PPS ( F p , t ) = 0 R conv ( F ( r ) , t ) F ˜ ( r ) 2 π r d r 0 F ˜ ( r ) 2 π r d r ,
R conv ( F , t = 0 ) = R ( F ) ,
R PPS ( F p , t ) | t = 0 = 0 1 R conv ( 2 F p y , 0 ) d y = R SPS ( F p ) ,

Metrics