Abstract

We propose and demonstrate all-optical amplitude regeneration for the wavelength division multiplexing and polarization division multiplexing (WDM-PDM) return-to-zero phase shift keying (RZ-PSK) signals using a single semiconductor optical amplifier (SOA) and subsequent filtering. The regeneration is based on the cross phase modulation (XPM) effect in the saturated SOA and the subsequent narrow filtering. The spectrum of the distorted signal can be broadened due to the phase modulation induced by the synchronous optical clock signal. A narrow band pass filter is utilized to extract part of the broadened spectrum and remove the amplitude noise, while preserving the phase information. The working principle for multi-channel and polarization orthogonality preserving is analyzed. 4-channel dual polarization signals can be simultaneously amplitude regenerated without introducing wavelength and polarization demultiplexing. An average power penalty improvement of 1.75dB can be achieved for the WDM-PDM signals.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer and R.-J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol.24(12), 4711–4728 (2006).
    [CrossRef]
  2. M. I. Hayee, M. C. Cardakli, A. B. Sahin, and A. E. Willner, “Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme,” IEEE Photon. Technol. Lett.13(8), 881–883 (2001).
    [CrossRef]
  3. G. Charlet, H. Mardoyan, P. Tran, A. Klekamp, M. Astruc, M. Lefrancois, and S. Bigo, “Upgrade of 10Gbit/s ultra-long-haul system to 40Gbit/s with A Pol RZ-DPSK modulation format,” Electron. Lett.41(22), 1240–1241 (2005).
    [CrossRef]
  4. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), PDP5C.1.
  5. J.-C. Simon, M. Gay, L. Bramerie, V. Roncin, M. Joindot, T. Chartier, S. Lobo, G. Girault, Q. T. Le, T. N. Nguyen, and M. N. Ngo, “Long distance transmission using optical regeneration” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2008), paper OWS1.
    [CrossRef]
  6. J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett.15(23), 1351–1353 (1990).
    [CrossRef] [PubMed]
  7. M. Matsumoto, “Performance improvement of phase-shift-keying signal transmission by means of optical limiters using four-wave mixing in fibers,” J. Lightwave Technol.23(9), 2696–2701 (2005).
    [CrossRef]
  8. K. Croussore and G. Li, “Amplitude regeneration of RZ-DPSK signals based on four-wave mixing in fibre,” Electron. Lett.43(3), 177–178 (2007).
    [CrossRef]
  9. K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror,” IEEE Photon. Technol. Lett.19(3), 146–148 (2007).
    [CrossRef]
  10. C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Gruner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett.21(13), 872–874 (2009).
    [CrossRef]
  11. M. P. Fok and C. Shu, “Recent advances in optical processing techniques using highly nonlinear bismuth oxide fiber,” IEEE J. Sel. Top. Quantum Electron.14(3), 587–598 (2008).
    [CrossRef]
  12. K. Cvecek, K. Sponsel, C. Stephan, G. Onishchukov, R. Ludwig, C. Schubert, B. Schmauss, and G. Leuchs, “Phase-preserving amplitude regeneration for a WDM RZ-DPSK signal using a nonlinear amplifying loop mirror,” Opt. Express16(3), 1923–1928 (2008).
    [CrossRef] [PubMed]
  13. A. Yi, L. Yan, B. Luo, W. Pan, J. Ye, and Z. Chen, “RZ to NRZ format conversion for two tributaries of a PDM signal simultaneously utilizing a single section of HNLF” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.89.
  14. A. Yi, L. Yan, B. Luo, W. Pan, and J. Ye, “All-optical signal regeneration in polarization-division-multiplexing systems,” IEEE Photon. Journal3(4), 703–712 (2011).
    [CrossRef]
  15. L. Yan, A. E. Willner, X. Wu, A. Yi, A. Bogoni, Z.-Y. Chen, and H.-Y. Jiang, “All-optical signal processing for ultra-high speed optical systems and networks,” J. Lightwave Technol.30(24), 3760–3770 (2012).
    [CrossRef]
  16. A. Striegler and B. Schmauss, “All-optical DPSK signal regeneration based on cross-phase modulation,” IEEE Photon. Technol. Lett.16(4), 1083–1085 (2004).
    [CrossRef]
  17. Y. Yu, W. Wu, X. Huang, B. Zou, and X. Zhang, “6*40Gb/s all-optical RZ-DPSK amplitude regeneration based on XPM effect in a single SOA” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.82.
  18. X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. Zhang, “Optimized quantum-well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron.47(6), 819–826 (2011).
    [CrossRef]
  19. J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R regeneration of 4× 40-Gbit/s WDM signals in a single fiber,” IEEE Photon. Journal4(5), 1816–1822 (2012).
    [CrossRef]
  20. J. Lasri, P. Devgan, V. Grigoryan, and P. Kumar, “Multiwavelength NRZ-to-RZ conversion with timing-jitter suppression” in Conference on Lasers and Electro-Optics, 2004, p. CFG2.
    [CrossRef]
  21. Q. Nguyen-The, H. N. Tan, M. Matsuura, and N. Kishi, “All-optical WDM-to-OTDM conversion using a multiwavelength picosecond pulse generation in Raman compression,” IEEE Photon. Technol. Lett.24(24), 2235–2238 (2012).
    [CrossRef]
  22. H. Nguyen Tan, M. Matsuura, T. Katafuchi, and N. Kishi, “Multiple-channel optical signal processing with wavelength-waveform conversions, pulsewidth tunability, and signal regeneration,” Opt. Express17(25), 22960–22973 (2009).
    [CrossRef] [PubMed]
  23. Y. Yu, W. Wu, X. Huang, B. Zou, S. Hu, and X. Zhang, “Multi-channel all-optical RZ-PSK amplitude regeneration based on the XPM effect in a single SOA,” J. Lightwave Technol.30(23), 3633–3639 (2012).
    [CrossRef]

2012

L. Yan, A. E. Willner, X. Wu, A. Yi, A. Bogoni, Z.-Y. Chen, and H.-Y. Jiang, “All-optical signal processing for ultra-high speed optical systems and networks,” J. Lightwave Technol.30(24), 3760–3770 (2012).
[CrossRef]

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R regeneration of 4× 40-Gbit/s WDM signals in a single fiber,” IEEE Photon. Journal4(5), 1816–1822 (2012).
[CrossRef]

Q. Nguyen-The, H. N. Tan, M. Matsuura, and N. Kishi, “All-optical WDM-to-OTDM conversion using a multiwavelength picosecond pulse generation in Raman compression,” IEEE Photon. Technol. Lett.24(24), 2235–2238 (2012).
[CrossRef]

Y. Yu, W. Wu, X. Huang, B. Zou, S. Hu, and X. Zhang, “Multi-channel all-optical RZ-PSK amplitude regeneration based on the XPM effect in a single SOA,” J. Lightwave Technol.30(23), 3633–3639 (2012).
[CrossRef]

2011

X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. Zhang, “Optimized quantum-well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron.47(6), 819–826 (2011).
[CrossRef]

A. Yi, L. Yan, B. Luo, W. Pan, and J. Ye, “All-optical signal regeneration in polarization-division-multiplexing systems,” IEEE Photon. Journal3(4), 703–712 (2011).
[CrossRef]

2009

H. Nguyen Tan, M. Matsuura, T. Katafuchi, and N. Kishi, “Multiple-channel optical signal processing with wavelength-waveform conversions, pulsewidth tunability, and signal regeneration,” Opt. Express17(25), 22960–22973 (2009).
[CrossRef] [PubMed]

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Gruner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett.21(13), 872–874 (2009).
[CrossRef]

2008

2007

K. Croussore and G. Li, “Amplitude regeneration of RZ-DPSK signals based on four-wave mixing in fibre,” Electron. Lett.43(3), 177–178 (2007).
[CrossRef]

K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror,” IEEE Photon. Technol. Lett.19(3), 146–148 (2007).
[CrossRef]

2006

2005

G. Charlet, H. Mardoyan, P. Tran, A. Klekamp, M. Astruc, M. Lefrancois, and S. Bigo, “Upgrade of 10Gbit/s ultra-long-haul system to 40Gbit/s with A Pol RZ-DPSK modulation format,” Electron. Lett.41(22), 1240–1241 (2005).
[CrossRef]

M. Matsumoto, “Performance improvement of phase-shift-keying signal transmission by means of optical limiters using four-wave mixing in fibers,” J. Lightwave Technol.23(9), 2696–2701 (2005).
[CrossRef]

2004

A. Striegler and B. Schmauss, “All-optical DPSK signal regeneration based on cross-phase modulation,” IEEE Photon. Technol. Lett.16(4), 1083–1085 (2004).
[CrossRef]

2001

M. I. Hayee, M. C. Cardakli, A. B. Sahin, and A. E. Willner, “Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme,” IEEE Photon. Technol. Lett.13(8), 881–883 (2001).
[CrossRef]

1990

Astruc, M.

G. Charlet, H. Mardoyan, P. Tran, A. Klekamp, M. Astruc, M. Lefrancois, and S. Bigo, “Upgrade of 10Gbit/s ultra-long-haul system to 40Gbit/s with A Pol RZ-DPSK modulation format,” Electron. Lett.41(22), 1240–1241 (2005).
[CrossRef]

Bigo, S.

G. Charlet, H. Mardoyan, P. Tran, A. Klekamp, M. Astruc, M. Lefrancois, and S. Bigo, “Upgrade of 10Gbit/s ultra-long-haul system to 40Gbit/s with A Pol RZ-DPSK modulation format,” Electron. Lett.41(22), 1240–1241 (2005).
[CrossRef]

Bogoni, A.

Cardakli, M. C.

M. I. Hayee, M. C. Cardakli, A. B. Sahin, and A. E. Willner, “Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme,” IEEE Photon. Technol. Lett.13(8), 881–883 (2001).
[CrossRef]

Charlet, G.

G. Charlet, H. Mardoyan, P. Tran, A. Klekamp, M. Astruc, M. Lefrancois, and S. Bigo, “Upgrade of 10Gbit/s ultra-long-haul system to 40Gbit/s with A Pol RZ-DPSK modulation format,” Electron. Lett.41(22), 1240–1241 (2005).
[CrossRef]

Chen, Z.-Y.

Croussore, K.

K. Croussore and G. Li, “Amplitude regeneration of RZ-DPSK signals based on four-wave mixing in fibre,” Electron. Lett.43(3), 177–178 (2007).
[CrossRef]

Cvecek, K.

K. Cvecek, K. Sponsel, C. Stephan, G. Onishchukov, R. Ludwig, C. Schubert, B. Schmauss, and G. Leuchs, “Phase-preserving amplitude regeneration for a WDM RZ-DPSK signal using a nonlinear amplifying loop mirror,” Opt. Express16(3), 1923–1928 (2008).
[CrossRef] [PubMed]

K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror,” IEEE Photon. Technol. Lett.19(3), 146–148 (2007).
[CrossRef]

Essiambre, R.-J.

Fok, M. P.

M. P. Fok and C. Shu, “Recent advances in optical processing techniques using highly nonlinear bismuth oxide fiber,” IEEE J. Sel. Top. Quantum Electron.14(3), 587–598 (2008).
[CrossRef]

Gordon, J. P.

Gruner-Nielsen, L.

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Gruner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett.21(13), 872–874 (2009).
[CrossRef]

Hayee, M. I.

M. I. Hayee, M. C. Cardakli, A. B. Sahin, and A. E. Willner, “Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme,” IEEE Photon. Technol. Lett.13(8), 881–883 (2001).
[CrossRef]

Hu, S.

Huang, X.

Y. Yu, W. Wu, X. Huang, B. Zou, S. Hu, and X. Zhang, “Multi-channel all-optical RZ-PSK amplitude regeneration based on the XPM effect in a single SOA,” J. Lightwave Technol.30(23), 3633–3639 (2012).
[CrossRef]

X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. Zhang, “Optimized quantum-well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron.47(6), 819–826 (2011).
[CrossRef]

Jiang, H.-Y.

Katafuchi, T.

Kishi, N.

Q. Nguyen-The, H. N. Tan, M. Matsuura, and N. Kishi, “All-optical WDM-to-OTDM conversion using a multiwavelength picosecond pulse generation in Raman compression,” IEEE Photon. Technol. Lett.24(24), 2235–2238 (2012).
[CrossRef]

H. Nguyen Tan, M. Matsuura, T. Katafuchi, and N. Kishi, “Multiple-channel optical signal processing with wavelength-waveform conversions, pulsewidth tunability, and signal regeneration,” Opt. Express17(25), 22960–22973 (2009).
[CrossRef] [PubMed]

Klekamp, A.

G. Charlet, H. Mardoyan, P. Tran, A. Klekamp, M. Astruc, M. Lefrancois, and S. Bigo, “Upgrade of 10Gbit/s ultra-long-haul system to 40Gbit/s with A Pol RZ-DPSK modulation format,” Electron. Lett.41(22), 1240–1241 (2005).
[CrossRef]

Lefrancois, M.

G. Charlet, H. Mardoyan, P. Tran, A. Klekamp, M. Astruc, M. Lefrancois, and S. Bigo, “Upgrade of 10Gbit/s ultra-long-haul system to 40Gbit/s with A Pol RZ-DPSK modulation format,” Electron. Lett.41(22), 1240–1241 (2005).
[CrossRef]

Leuchs, G.

K. Cvecek, K. Sponsel, C. Stephan, G. Onishchukov, R. Ludwig, C. Schubert, B. Schmauss, and G. Leuchs, “Phase-preserving amplitude regeneration for a WDM RZ-DPSK signal using a nonlinear amplifying loop mirror,” Opt. Express16(3), 1923–1928 (2008).
[CrossRef] [PubMed]

K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror,” IEEE Photon. Technol. Lett.19(3), 146–148 (2007).
[CrossRef]

Li, G.

K. Croussore and G. Li, “Amplitude regeneration of RZ-DPSK signals based on four-wave mixing in fibre,” Electron. Lett.43(3), 177–178 (2007).
[CrossRef]

Lorenzen, M.

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Gruner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett.21(13), 872–874 (2009).
[CrossRef]

Ludwig, R.

Luo, B.

A. Yi, L. Yan, B. Luo, W. Pan, and J. Ye, “All-optical signal regeneration in polarization-division-multiplexing systems,” IEEE Photon. Journal3(4), 703–712 (2011).
[CrossRef]

Mardoyan, H.

G. Charlet, H. Mardoyan, P. Tran, A. Klekamp, M. Astruc, M. Lefrancois, and S. Bigo, “Upgrade of 10Gbit/s ultra-long-haul system to 40Gbit/s with A Pol RZ-DPSK modulation format,” Electron. Lett.41(22), 1240–1241 (2005).
[CrossRef]

Matsumoto, M.

Matsuura, M.

Q. Nguyen-The, H. N. Tan, M. Matsuura, and N. Kishi, “All-optical WDM-to-OTDM conversion using a multiwavelength picosecond pulse generation in Raman compression,” IEEE Photon. Technol. Lett.24(24), 2235–2238 (2012).
[CrossRef]

H. Nguyen Tan, M. Matsuura, T. Katafuchi, and N. Kishi, “Multiple-channel optical signal processing with wavelength-waveform conversions, pulsewidth tunability, and signal regeneration,” Opt. Express17(25), 22960–22973 (2009).
[CrossRef] [PubMed]

Meng, T.

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R regeneration of 4× 40-Gbit/s WDM signals in a single fiber,” IEEE Photon. Journal4(5), 1816–1822 (2012).
[CrossRef]

Miao, W.

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R regeneration of 4× 40-Gbit/s WDM signals in a single fiber,” IEEE Photon. Journal4(5), 1816–1822 (2012).
[CrossRef]

Mollenauer, L. F.

Nguyen Tan, H.

Nguyen-The, Q.

Q. Nguyen-The, H. N. Tan, M. Matsuura, and N. Kishi, “All-optical WDM-to-OTDM conversion using a multiwavelength picosecond pulse generation in Raman compression,” IEEE Photon. Technol. Lett.24(24), 2235–2238 (2012).
[CrossRef]

Nielsen, C. V.

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Gruner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett.21(13), 872–874 (2009).
[CrossRef]

Noordegraaf, D.

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Gruner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett.21(13), 872–874 (2009).
[CrossRef]

Onishchukov, G.

K. Cvecek, K. Sponsel, C. Stephan, G. Onishchukov, R. Ludwig, C. Schubert, B. Schmauss, and G. Leuchs, “Phase-preserving amplitude regeneration for a WDM RZ-DPSK signal using a nonlinear amplifying loop mirror,” Opt. Express16(3), 1923–1928 (2008).
[CrossRef] [PubMed]

K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror,” IEEE Photon. Technol. Lett.19(3), 146–148 (2007).
[CrossRef]

Pan, W.

A. Yi, L. Yan, B. Luo, W. Pan, and J. Ye, “All-optical signal regeneration in polarization-division-multiplexing systems,” IEEE Photon. Journal3(4), 703–712 (2011).
[CrossRef]

Peucheret, C.

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Gruner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett.21(13), 872–874 (2009).
[CrossRef]

Qin, C.

X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. Zhang, “Optimized quantum-well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron.47(6), 819–826 (2011).
[CrossRef]

Rottwitt, K.

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Gruner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett.21(13), 872–874 (2009).
[CrossRef]

Sahin, A. B.

M. I. Hayee, M. C. Cardakli, A. B. Sahin, and A. E. Willner, “Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme,” IEEE Photon. Technol. Lett.13(8), 881–883 (2001).
[CrossRef]

Schmauss, B.

K. Cvecek, K. Sponsel, C. Stephan, G. Onishchukov, R. Ludwig, C. Schubert, B. Schmauss, and G. Leuchs, “Phase-preserving amplitude regeneration for a WDM RZ-DPSK signal using a nonlinear amplifying loop mirror,” Opt. Express16(3), 1923–1928 (2008).
[CrossRef] [PubMed]

K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror,” IEEE Photon. Technol. Lett.19(3), 146–148 (2007).
[CrossRef]

A. Striegler and B. Schmauss, “All-optical DPSK signal regeneration based on cross-phase modulation,” IEEE Photon. Technol. Lett.16(4), 1083–1085 (2004).
[CrossRef]

Schubert, C.

Seoane, J.

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Gruner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett.21(13), 872–874 (2009).
[CrossRef]

Shu, C.

M. P. Fok and C. Shu, “Recent advances in optical processing techniques using highly nonlinear bismuth oxide fiber,” IEEE J. Sel. Top. Quantum Electron.14(3), 587–598 (2008).
[CrossRef]

Sponsel, K.

K. Cvecek, K. Sponsel, C. Stephan, G. Onishchukov, R. Ludwig, C. Schubert, B. Schmauss, and G. Leuchs, “Phase-preserving amplitude regeneration for a WDM RZ-DPSK signal using a nonlinear amplifying loop mirror,” Opt. Express16(3), 1923–1928 (2008).
[CrossRef] [PubMed]

K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror,” IEEE Photon. Technol. Lett.19(3), 146–148 (2007).
[CrossRef]

Stephan, C.

Striegler, A.

A. Striegler and B. Schmauss, “All-optical DPSK signal regeneration based on cross-phase modulation,” IEEE Photon. Technol. Lett.16(4), 1083–1085 (2004).
[CrossRef]

Sun, B.

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R regeneration of 4× 40-Gbit/s WDM signals in a single fiber,” IEEE Photon. Journal4(5), 1816–1822 (2012).
[CrossRef]

Tan, H. N.

Q. Nguyen-The, H. N. Tan, M. Matsuura, and N. Kishi, “All-optical WDM-to-OTDM conversion using a multiwavelength picosecond pulse generation in Raman compression,” IEEE Photon. Technol. Lett.24(24), 2235–2238 (2012).
[CrossRef]

Tran, P.

G. Charlet, H. Mardoyan, P. Tran, A. Klekamp, M. Astruc, M. Lefrancois, and S. Bigo, “Upgrade of 10Gbit/s ultra-long-haul system to 40Gbit/s with A Pol RZ-DPSK modulation format,” Electron. Lett.41(22), 1240–1241 (2005).
[CrossRef]

Wang, J.

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R regeneration of 4× 40-Gbit/s WDM signals in a single fiber,” IEEE Photon. Journal4(5), 1816–1822 (2012).
[CrossRef]

Wang, W.

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R regeneration of 4× 40-Gbit/s WDM signals in a single fiber,” IEEE Photon. Journal4(5), 1816–1822 (2012).
[CrossRef]

Willner, A. E.

L. Yan, A. E. Willner, X. Wu, A. Yi, A. Bogoni, Z.-Y. Chen, and H.-Y. Jiang, “All-optical signal processing for ultra-high speed optical systems and networks,” J. Lightwave Technol.30(24), 3760–3770 (2012).
[CrossRef]

M. I. Hayee, M. C. Cardakli, A. B. Sahin, and A. E. Willner, “Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme,” IEEE Photon. Technol. Lett.13(8), 881–883 (2001).
[CrossRef]

Winzer, P. J.

Wu, W.

Wu, X.

Yan, L.

L. Yan, A. E. Willner, X. Wu, A. Yi, A. Bogoni, Z.-Y. Chen, and H.-Y. Jiang, “All-optical signal processing for ultra-high speed optical systems and networks,” J. Lightwave Technol.30(24), 3760–3770 (2012).
[CrossRef]

A. Yi, L. Yan, B. Luo, W. Pan, and J. Ye, “All-optical signal regeneration in polarization-division-multiplexing systems,” IEEE Photon. Journal3(4), 703–712 (2011).
[CrossRef]

Yang, E.

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R regeneration of 4× 40-Gbit/s WDM signals in a single fiber,” IEEE Photon. Journal4(5), 1816–1822 (2012).
[CrossRef]

Ye, J.

A. Yi, L. Yan, B. Luo, W. Pan, and J. Ye, “All-optical signal regeneration in polarization-division-multiplexing systems,” IEEE Photon. Journal3(4), 703–712 (2011).
[CrossRef]

Yi, A.

L. Yan, A. E. Willner, X. Wu, A. Yi, A. Bogoni, Z.-Y. Chen, and H.-Y. Jiang, “All-optical signal processing for ultra-high speed optical systems and networks,” J. Lightwave Technol.30(24), 3760–3770 (2012).
[CrossRef]

A. Yi, L. Yan, B. Luo, W. Pan, and J. Ye, “All-optical signal regeneration in polarization-division-multiplexing systems,” IEEE Photon. Journal3(4), 703–712 (2011).
[CrossRef]

Yu, J.

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R regeneration of 4× 40-Gbit/s WDM signals in a single fiber,” IEEE Photon. Journal4(5), 1816–1822 (2012).
[CrossRef]

Yu, Y.

Y. Yu, W. Wu, X. Huang, B. Zou, S. Hu, and X. Zhang, “Multi-channel all-optical RZ-PSK amplitude regeneration based on the XPM effect in a single SOA,” J. Lightwave Technol.30(23), 3633–3639 (2012).
[CrossRef]

X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. Zhang, “Optimized quantum-well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron.47(6), 819–826 (2011).
[CrossRef]

Zhang, X.

Y. Yu, W. Wu, X. Huang, B. Zou, S. Hu, and X. Zhang, “Multi-channel all-optical RZ-PSK amplitude regeneration based on the XPM effect in a single SOA,” J. Lightwave Technol.30(23), 3633–3639 (2012).
[CrossRef]

X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. Zhang, “Optimized quantum-well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron.47(6), 819–826 (2011).
[CrossRef]

Zhang, Z.

X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. Zhang, “Optimized quantum-well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron.47(6), 819–826 (2011).
[CrossRef]

Zou, B.

Electron. Lett.

G. Charlet, H. Mardoyan, P. Tran, A. Klekamp, M. Astruc, M. Lefrancois, and S. Bigo, “Upgrade of 10Gbit/s ultra-long-haul system to 40Gbit/s with A Pol RZ-DPSK modulation format,” Electron. Lett.41(22), 1240–1241 (2005).
[CrossRef]

K. Croussore and G. Li, “Amplitude regeneration of RZ-DPSK signals based on four-wave mixing in fibre,” Electron. Lett.43(3), 177–178 (2007).
[CrossRef]

IEEE J. Quantum Electron.

X. Huang, Z. Zhang, C. Qin, Y. Yu, and X. Zhang, “Optimized quantum-well semiconductor optical amplifier for RZ-DPSK signal regeneration,” IEEE J. Quantum Electron.47(6), 819–826 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. P. Fok and C. Shu, “Recent advances in optical processing techniques using highly nonlinear bismuth oxide fiber,” IEEE J. Sel. Top. Quantum Electron.14(3), 587–598 (2008).
[CrossRef]

IEEE Photon. Journal

A. Yi, L. Yan, B. Luo, W. Pan, and J. Ye, “All-optical signal regeneration in polarization-division-multiplexing systems,” IEEE Photon. Journal3(4), 703–712 (2011).
[CrossRef]

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R regeneration of 4× 40-Gbit/s WDM signals in a single fiber,” IEEE Photon. Journal4(5), 1816–1822 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Striegler and B. Schmauss, “All-optical DPSK signal regeneration based on cross-phase modulation,” IEEE Photon. Technol. Lett.16(4), 1083–1085 (2004).
[CrossRef]

K. Cvecek, K. Sponsel, G. Onishchukov, B. Schmauss, and G. Leuchs, “2R-regeneration of an RZ-DPSK signal using a nonlinear amplifying loop mirror,” IEEE Photon. Technol. Lett.19(3), 146–148 (2007).
[CrossRef]

C. Peucheret, M. Lorenzen, J. Seoane, D. Noordegraaf, C. V. Nielsen, L. Gruner-Nielsen, and K. Rottwitt, “Amplitude regeneration of RZ-DPSK signals in single-pump fiber-optic parametric amplifiers,” IEEE Photon. Technol. Lett.21(13), 872–874 (2009).
[CrossRef]

M. I. Hayee, M. C. Cardakli, A. B. Sahin, and A. E. Willner, “Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme,” IEEE Photon. Technol. Lett.13(8), 881–883 (2001).
[CrossRef]

Q. Nguyen-The, H. N. Tan, M. Matsuura, and N. Kishi, “All-optical WDM-to-OTDM conversion using a multiwavelength picosecond pulse generation in Raman compression,” IEEE Photon. Technol. Lett.24(24), 2235–2238 (2012).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Other

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), PDP5C.1.

J.-C. Simon, M. Gay, L. Bramerie, V. Roncin, M. Joindot, T. Chartier, S. Lobo, G. Girault, Q. T. Le, T. N. Nguyen, and M. N. Ngo, “Long distance transmission using optical regeneration” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2008), paper OWS1.
[CrossRef]

A. Yi, L. Yan, B. Luo, W. Pan, J. Ye, and Z. Chen, “RZ to NRZ format conversion for two tributaries of a PDM signal simultaneously utilizing a single section of HNLF” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.89.

Y. Yu, W. Wu, X. Huang, B. Zou, and X. Zhang, “6*40Gb/s all-optical RZ-DPSK amplitude regeneration based on XPM effect in a single SOA” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper JW2A.82.

J. Lasri, P. Devgan, V. Grigoryan, and P. Kumar, “Multiwavelength NRZ-to-RZ conversion with timing-jitter suppression” in Conference on Lasers and Electro-Optics, 2004, p. CFG2.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The experimental setup and operation principle.

Fig. 2
Fig. 2

The schematic diagram for the polarization orthogonality preserving

Fig. 3
Fig. 3

Measured spectra of (a) Before the SOA (b) After the SOA (c) One of the input RZ-PSK (d) One of the regenerated RZ-PSK (Res: 0.05nm)

Fig. 4
Fig. 4

The measured polarization states for the input and output signals

Fig. 5
Fig. 5

The measured eye diagrams for two of the input channels.

Fig. 6
Fig. 6

The average BER curves for the 4 channels signals.

Fig. 7
Fig. 7

The regeneration tolerance of the proposed scheme

Metrics