Abstract

We present calculations of the optical force on heterodimer of two gold nanorods aligned head-to-tail, under plane wave illumination that is polarized along the dimer axis. It is found that near the dipole-quadrupole Fano resonance, the optical binding force between the nanorods reverses, indicating an attractive to repulsive transition. This is in contrast to homodimer which in similar configuration shows no negative binding force. Moreover, the force spectrum features asymmetric line shape and shifts accordingly when the Fano resonance is tuned by varying the nanorods length or their gap. We show that the force reversal is associated with the strong phase variation between the hybridized dipole and quadrupole modes near the Fano dip. The numerical results may be demonstrated by a near-field optical tweezer and shall be useful for studying “optical matters” in plasmonics.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics3(8), 464–468 (2009).
    [CrossRef]
  2. V. Liu, M. Povinelli, and S. Fan, “Resonance-enhanced optical forces between coupled photonic crystal slabs,” Opt. Express17(24), 21897–21909 (2009).
    [CrossRef] [PubMed]
  3. S. B. Wang, J. Ng, H. Liu, H. H. Zheng, Z. H. Hang, and C. T. Chan, “Sizable electromagnetic forces in parallel-plate metallic cavity,” Phys. Rev. B84(7), 075114 (2011).
    [CrossRef]
  4. H. Liu, J. Ng, S. B. Wang, Z. F. Lin, Z. H. Hang, C. T. Chan, and S. N. Zhu, “Strong light-induced negative optical pressure arising from kinetic energy of conduction electrons in plasmon-type cavities,” Phys. Rev. Lett.106(8), 087401 (2011).
    [CrossRef] [PubMed]
  5. R. Zhao, P. Tassin, T. Koschny, and C. M. Soukoulis, “Optical forces in nanowire pairs and metamaterials,” Opt. Express18(25), 25665–25676 (2010).
    [CrossRef] [PubMed]
  6. J. J. Xiao, H. H. Zheng, Y. X. Sun, and Y. Yao, “Bipolar optical forces on dielectric and metallic nanoparticles by evanescent wave,” Opt. Lett.35(7), 962–964 (2010).
    [CrossRef] [PubMed]
  7. M. L. Juan, M. Righini, and R. Quidant, “Plasmonic nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011).
    [CrossRef]
  8. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
    [CrossRef] [PubMed]
  9. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonance in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
    [CrossRef]
  10. B. Gallinet and O. J. F. Martin, “Relation between near-field and far-field properties of plasmonic Fano resonances,” Opt. Express19(22), 22167–22175 (2011).
    [CrossRef] [PubMed]
  11. M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photonics Rev. advanced online paper, (2012).
  12. Y. Zhang, T. Q. Jia, H. M. Zhang, and Z. Z. Xu, “Fano resonances in disk-ring plasmonic nanostructure: strong interaction between bright dipolar and dark multipolar mode,” Opt. Lett.37(23), 4919–4921 (2012).
    [CrossRef] [PubMed]
  13. Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano6(2), 1830–1838 (2012).
    [CrossRef] [PubMed]
  14. V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: A parameter-free modeling approach,” Nano Lett.11(7), 2835–2840 (2011).
    [CrossRef] [PubMed]
  15. L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: A coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012).
    [CrossRef] [PubMed]
  16. B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B83(23), 235427 (2011).
    [CrossRef]
  17. J. M. Reed, H. Wang, W. Hu, and S. Zou, “Shape of Fano resonance line spectra calculated for silver nanorods,” Opt. Lett.36(22), 4386–4388 (2011).
    [CrossRef] [PubMed]
  18. Z. J. Yang, Z. S. Zhang, L. H. Zhang, Q. Q. Li, Z. H. Hao, and Q. Q. Wang, “Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers,” Opt. Lett.36(9), 1542–1544 (2011).
    [CrossRef] [PubMed]
  19. F. López-Tejeiral, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys.14(2), 023035 (2012).
  20. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Polarization-independent Fano resonances in arrays of core-shell nanoparticles,” Phys. Rev. B86(8), 081407 (2012).
    [CrossRef]
  21. H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett.37(18), 3780–3782 (2012).
    [CrossRef] [PubMed]
  22. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
    [CrossRef]
  23. V. D. Miljković, T. Pakizeh, B. Sepulveda, P. Johansson, and M. Käll, “Optical forces in plasmonic nanoparticle dimers,” J. Phys. Chem. C114(16), 7472–7479 (2010).
    [CrossRef]
  24. Commercial software CST Microwave Studio, http://www.cst.com .
  25. P. B. Johnson and R. W. Christy, “The optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  26. M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transf.112(13), 2234–2247 (2011).
    [CrossRef]
  27. J. J. Xiao and C. T. Chan, “Calculation of optical force on an infinite cylinder with arbitrary cross-section by the boundary element method,” J. Opt. Soc. Am. B25(9), 1553–1561 (2008).
    [CrossRef]

2012 (6)

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: A coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012).
[CrossRef] [PubMed]

F. López-Tejeiral, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys.14(2), 023035 (2012).

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Polarization-independent Fano resonances in arrays of core-shell nanoparticles,” Phys. Rev. B86(8), 081407 (2012).
[CrossRef]

H. Lu, X. Liu, D. Mao, and G. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett.37(18), 3780–3782 (2012).
[CrossRef] [PubMed]

Y. Zhang, T. Q. Jia, H. M. Zhang, and Z. Z. Xu, “Fano resonances in disk-ring plasmonic nanostructure: strong interaction between bright dipolar and dark multipolar mode,” Opt. Lett.37(23), 4919–4921 (2012).
[CrossRef] [PubMed]

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano6(2), 1830–1838 (2012).
[CrossRef] [PubMed]

2011 (9)

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: A parameter-free modeling approach,” Nano Lett.11(7), 2835–2840 (2011).
[CrossRef] [PubMed]

M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transf.112(13), 2234–2247 (2011).
[CrossRef]

B. Gallinet and O. J. F. Martin, “Relation between near-field and far-field properties of plasmonic Fano resonances,” Opt. Express19(22), 22167–22175 (2011).
[CrossRef] [PubMed]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B83(23), 235427 (2011).
[CrossRef]

J. M. Reed, H. Wang, W. Hu, and S. Zou, “Shape of Fano resonance line spectra calculated for silver nanorods,” Opt. Lett.36(22), 4386–4388 (2011).
[CrossRef] [PubMed]

Z. J. Yang, Z. S. Zhang, L. H. Zhang, Q. Q. Li, Z. H. Hao, and Q. Q. Wang, “Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers,” Opt. Lett.36(9), 1542–1544 (2011).
[CrossRef] [PubMed]

S. B. Wang, J. Ng, H. Liu, H. H. Zheng, Z. H. Hang, and C. T. Chan, “Sizable electromagnetic forces in parallel-plate metallic cavity,” Phys. Rev. B84(7), 075114 (2011).
[CrossRef]

H. Liu, J. Ng, S. B. Wang, Z. F. Lin, Z. H. Hang, C. T. Chan, and S. N. Zhu, “Strong light-induced negative optical pressure arising from kinetic energy of conduction electrons in plasmon-type cavities,” Phys. Rev. Lett.106(8), 087401 (2011).
[CrossRef] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmonic nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011).
[CrossRef]

2010 (5)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonance in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

R. Zhao, P. Tassin, T. Koschny, and C. M. Soukoulis, “Optical forces in nanowire pairs and metamaterials,” Opt. Express18(25), 25665–25676 (2010).
[CrossRef] [PubMed]

J. J. Xiao, H. H. Zheng, Y. X. Sun, and Y. Yao, “Bipolar optical forces on dielectric and metallic nanoparticles by evanescent wave,” Opt. Lett.35(7), 962–964 (2010).
[CrossRef] [PubMed]

V. D. Miljković, T. Pakizeh, B. Sepulveda, P. Johansson, and M. Käll, “Optical forces in plasmonic nanoparticle dimers,” J. Phys. Chem. C114(16), 7472–7479 (2010).
[CrossRef]

2009 (2)

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics3(8), 464–468 (2009).
[CrossRef]

V. Liu, M. Povinelli, and S. Fan, “Resonance-enhanced optical forces between coupled photonic crystal slabs,” Opt. Express17(24), 21897–21909 (2009).
[CrossRef] [PubMed]

2008 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “The optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
[CrossRef]

Amrania, H.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: A parameter-free modeling approach,” Nano Lett.11(7), 2835–2840 (2011).
[CrossRef] [PubMed]

Catrysse, P. B.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: A coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012).
[CrossRef] [PubMed]

Chan, C. T.

S. B. Wang, J. Ng, H. Liu, H. H. Zheng, Z. H. Hang, and C. T. Chan, “Sizable electromagnetic forces in parallel-plate metallic cavity,” Phys. Rev. B84(7), 075114 (2011).
[CrossRef]

H. Liu, J. Ng, S. B. Wang, Z. F. Lin, Z. H. Hang, C. T. Chan, and S. N. Zhu, “Strong light-induced negative optical pressure arising from kinetic energy of conduction electrons in plasmon-type cavities,” Phys. Rev. Lett.106(8), 087401 (2011).
[CrossRef] [PubMed]

J. J. Xiao and C. T. Chan, “Calculation of optical force on an infinite cylinder with arbitrary cross-section by the boundary element method,” J. Opt. Soc. Am. B25(9), 1553–1561 (2008).
[CrossRef]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “The optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Fan, S.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: A coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012).
[CrossRef] [PubMed]

V. Liu, M. Povinelli, and S. Fan, “Resonance-enhanced optical forces between coupled photonic crystal slabs,” Opt. Express17(24), 21897–21909 (2009).
[CrossRef] [PubMed]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
[CrossRef]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonance in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Francescato, Y.

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano6(2), 1830–1838 (2012).
[CrossRef] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: A parameter-free modeling approach,” Nano Lett.11(7), 2835–2840 (2011).
[CrossRef] [PubMed]

Gallinet, B.

B. Gallinet and O. J. F. Martin, “Relation between near-field and far-field properties of plasmonic Fano resonances,” Opt. Express19(22), 22167–22175 (2011).
[CrossRef] [PubMed]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B83(23), 235427 (2011).
[CrossRef]

Giannini, V.

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano6(2), 1830–1838 (2012).
[CrossRef] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: A parameter-free modeling approach,” Nano Lett.11(7), 2835–2840 (2011).
[CrossRef] [PubMed]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Hang, Z. H.

S. B. Wang, J. Ng, H. Liu, H. H. Zheng, Z. H. Hang, and C. T. Chan, “Sizable electromagnetic forces in parallel-plate metallic cavity,” Phys. Rev. B84(7), 075114 (2011).
[CrossRef]

H. Liu, J. Ng, S. B. Wang, Z. F. Lin, Z. H. Hang, C. T. Chan, and S. N. Zhu, “Strong light-induced negative optical pressure arising from kinetic energy of conduction electrons in plasmon-type cavities,” Phys. Rev. Lett.106(8), 087401 (2011).
[CrossRef] [PubMed]

Hao, Z. H.

Hoekstra, A. G.

M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transf.112(13), 2234–2247 (2011).
[CrossRef]

Hu, W.

Jia, T. Q.

Johansson, P.

V. D. Miljković, T. Pakizeh, B. Sepulveda, P. Johansson, and M. Käll, “Optical forces in plasmonic nanoparticle dimers,” J. Phys. Chem. C114(16), 7472–7479 (2010).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “The optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmonic nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011).
[CrossRef]

Käll, M.

V. D. Miljković, T. Pakizeh, B. Sepulveda, P. Johansson, and M. Käll, “Optical forces in plasmonic nanoparticle dimers,” J. Phys. Chem. C114(16), 7472–7479 (2010).
[CrossRef]

Kivshar, Y. S.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Polarization-independent Fano resonances in arrays of core-shell nanoparticles,” Phys. Rev. B86(8), 081407 (2012).
[CrossRef]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonance in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Koschny, T.

Li, M.

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics3(8), 464–468 (2009).
[CrossRef]

Li, Q. Q.

Lin, Z. F.

H. Liu, J. Ng, S. B. Wang, Z. F. Lin, Z. H. Hang, C. T. Chan, and S. N. Zhu, “Strong light-induced negative optical pressure arising from kinetic energy of conduction electrons in plasmon-type cavities,” Phys. Rev. Lett.106(8), 087401 (2011).
[CrossRef] [PubMed]

Liu, H.

H. Liu, J. Ng, S. B. Wang, Z. F. Lin, Z. H. Hang, C. T. Chan, and S. N. Zhu, “Strong light-induced negative optical pressure arising from kinetic energy of conduction electrons in plasmon-type cavities,” Phys. Rev. Lett.106(8), 087401 (2011).
[CrossRef] [PubMed]

S. B. Wang, J. Ng, H. Liu, H. H. Zheng, Z. H. Hang, and C. T. Chan, “Sizable electromagnetic forces in parallel-plate metallic cavity,” Phys. Rev. B84(7), 075114 (2011).
[CrossRef]

Liu, V.

Liu, W.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Polarization-independent Fano resonances in arrays of core-shell nanoparticles,” Phys. Rev. B86(8), 081407 (2012).
[CrossRef]

Liu, X.

López-Tejeiral, F.

F. López-Tejeiral, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys.14(2), 023035 (2012).

Lu, H.

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Maier, S. A.

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano6(2), 1830–1838 (2012).
[CrossRef] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: A parameter-free modeling approach,” Nano Lett.11(7), 2835–2840 (2011).
[CrossRef] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Mao, D.

Martin, O. J. F.

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B83(23), 235427 (2011).
[CrossRef]

B. Gallinet and O. J. F. Martin, “Relation between near-field and far-field properties of plasmonic Fano resonances,” Opt. Express19(22), 22167–22175 (2011).
[CrossRef] [PubMed]

Miljkovic, V. D.

V. D. Miljković, T. Pakizeh, B. Sepulveda, P. Johansson, and M. Käll, “Optical forces in plasmonic nanoparticle dimers,” J. Phys. Chem. C114(16), 7472–7479 (2010).
[CrossRef]

Miroshnichenko, A. E.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Polarization-independent Fano resonances in arrays of core-shell nanoparticles,” Phys. Rev. B86(8), 081407 (2012).
[CrossRef]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonance in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Neshev, D. N.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Polarization-independent Fano resonances in arrays of core-shell nanoparticles,” Phys. Rev. B86(8), 081407 (2012).
[CrossRef]

Ng, J.

H. Liu, J. Ng, S. B. Wang, Z. F. Lin, Z. H. Hang, C. T. Chan, and S. N. Zhu, “Strong light-induced negative optical pressure arising from kinetic energy of conduction electrons in plasmon-type cavities,” Phys. Rev. Lett.106(8), 087401 (2011).
[CrossRef] [PubMed]

S. B. Wang, J. Ng, H. Liu, H. H. Zheng, Z. H. Hang, and C. T. Chan, “Sizable electromagnetic forces in parallel-plate metallic cavity,” Phys. Rev. B84(7), 075114 (2011).
[CrossRef]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Pakizeh, T.

V. D. Miljković, T. Pakizeh, B. Sepulveda, P. Johansson, and M. Käll, “Optical forces in plasmonic nanoparticle dimers,” J. Phys. Chem. C114(16), 7472–7479 (2010).
[CrossRef]

Paniagua-Domínguez, R.

F. López-Tejeiral, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys.14(2), 023035 (2012).

Pernice, W. H. P.

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics3(8), 464–468 (2009).
[CrossRef]

Phillips, C. C.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: A parameter-free modeling approach,” Nano Lett.11(7), 2835–2840 (2011).
[CrossRef] [PubMed]

Povinelli, M.

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmonic nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011).
[CrossRef]

Reed, J. M.

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmonic nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011).
[CrossRef]

Rodríguez-Oliveros, R.

F. López-Tejeiral, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys.14(2), 023035 (2012).

Ruan, Z.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: A coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012).
[CrossRef] [PubMed]

Sánchez-Gil, J. A.

F. López-Tejeiral, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys.14(2), 023035 (2012).

Sepulveda, B.

V. D. Miljković, T. Pakizeh, B. Sepulveda, P. Johansson, and M. Käll, “Optical forces in plasmonic nanoparticle dimers,” J. Phys. Chem. C114(16), 7472–7479 (2010).
[CrossRef]

Soukoulis, C. M.

Sun, Y. X.

Tang, H. X.

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics3(8), 464–468 (2009).
[CrossRef]

Tassin, P.

Verslegers, L.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: A coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012).
[CrossRef] [PubMed]

Wang, G.

Wang, H.

Wang, Q. Q.

Wang, S. B.

S. B. Wang, J. Ng, H. Liu, H. H. Zheng, Z. H. Hang, and C. T. Chan, “Sizable electromagnetic forces in parallel-plate metallic cavity,” Phys. Rev. B84(7), 075114 (2011).
[CrossRef]

H. Liu, J. Ng, S. B. Wang, Z. F. Lin, Z. H. Hang, C. T. Chan, and S. N. Zhu, “Strong light-induced negative optical pressure arising from kinetic energy of conduction electrons in plasmon-type cavities,” Phys. Rev. Lett.106(8), 087401 (2011).
[CrossRef] [PubMed]

Xiao, J. J.

Xu, Z. Z.

Yang, Z. J.

Yao, Y.

Yu, Z.

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: A coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012).
[CrossRef] [PubMed]

Yurkin, M. A.

M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transf.112(13), 2234–2247 (2011).
[CrossRef]

Zhang, H. M.

Zhang, L. H.

Zhang, Y.

Zhang, Z. S.

Zhao, R.

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Zheng, H. H.

S. B. Wang, J. Ng, H. Liu, H. H. Zheng, Z. H. Hang, and C. T. Chan, “Sizable electromagnetic forces in parallel-plate metallic cavity,” Phys. Rev. B84(7), 075114 (2011).
[CrossRef]

J. J. Xiao, H. H. Zheng, Y. X. Sun, and Y. Yao, “Bipolar optical forces on dielectric and metallic nanoparticles by evanescent wave,” Opt. Lett.35(7), 962–964 (2010).
[CrossRef] [PubMed]

Zhu, S. N.

H. Liu, J. Ng, S. B. Wang, Z. F. Lin, Z. H. Hang, C. T. Chan, and S. N. Zhu, “Strong light-induced negative optical pressure arising from kinetic energy of conduction electrons in plasmon-type cavities,” Phys. Rev. Lett.106(8), 087401 (2011).
[CrossRef] [PubMed]

Zou, S.

ACS Nano (1)

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano6(2), 1830–1838 (2012).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

V. D. Miljković, T. Pakizeh, B. Sepulveda, P. Johansson, and M. Käll, “Optical forces in plasmonic nanoparticle dimers,” J. Phys. Chem. C114(16), 7472–7479 (2010).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (1)

M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transf.112(13), 2234–2247 (2011).
[CrossRef]

Nano Lett. (1)

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: A parameter-free modeling approach,” Nano Lett.11(7), 2835–2840 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater.9(9), 707–715 (2010).
[CrossRef] [PubMed]

Nat. Photonics (2)

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics3(8), 464–468 (2009).
[CrossRef]

M. L. Juan, M. Righini, and R. Quidant, “Plasmonic nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011).
[CrossRef]

New J. Phys. (1)

F. López-Tejeiral, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys.14(2), 023035 (2012).

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
[CrossRef]

Phys. Rev. B (4)

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Polarization-independent Fano resonances in arrays of core-shell nanoparticles,” Phys. Rev. B86(8), 081407 (2012).
[CrossRef]

S. B. Wang, J. Ng, H. Liu, H. H. Zheng, Z. H. Hang, and C. T. Chan, “Sizable electromagnetic forces in parallel-plate metallic cavity,” Phys. Rev. B84(7), 075114 (2011).
[CrossRef]

B. Gallinet and O. J. F. Martin, “Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials,” Phys. Rev. B83(23), 235427 (2011).
[CrossRef]

P. B. Johnson and R. W. Christy, “The optical constants of noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (2)

L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From electromagnetically induced transparency to superscattering with a single structure: A coupled-mode theory for doubly resonant structures,” Phys. Rev. Lett.108(8), 083902 (2012).
[CrossRef] [PubMed]

H. Liu, J. Ng, S. B. Wang, Z. F. Lin, Z. H. Hang, C. T. Chan, and S. N. Zhu, “Strong light-induced negative optical pressure arising from kinetic energy of conduction electrons in plasmon-type cavities,” Phys. Rev. Lett.106(8), 087401 (2011).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonance in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Other (2)

M. Rahmani, B. Luk’yanchuk, and M. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photonics Rev. advanced online paper, (2012).

Commercial software CST Microwave Studio, http://www.cst.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The geometry of the system and the incoming light configuration. The plasmonic dimer consists of two nanorods with L 1 =100 nm, L 2 =280 nm, and gap g=10 nm. The diameter of the nanorods is d=40 nm.

Fig. 2
Fig. 2

Optical features associated with the DQ Fano resonance. (a) Optical extinction cross sections and optical scattering cross sections. (b) Optical forces between the two nanorods and along the k-direction.

Fig. 3
Fig. 3

Snapshot of steady-state current density in the yz plane through the nanorod center. (a)–(d) are for the frequencies of 473 THz, 448 THz, 420 THz, and 385 THz, respectively, corresponding to the positions marked with (A), (B), (C), and (D) in Fig. 2(b). The contour is for the dominatingzcomponent of the current.

Fig. 4
Fig. 4

Spectra of optical forces for nanorod heterodimers in the parallel configuration. (a) The total scattering force and (b) the relative interparticle force. The lengths are kept as L 1 =100 nm and L 2 =250 nm.

Fig. 5
Fig. 5

Same as Fig. 2 while keeping the gap g=10 nm but varying the nanorod length. (a) and (c) for L 1 =100 nm and various L 2 ; (b) and (d) for L 2 =250 nm and various L 1 .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F (i) = S i T n ^ ds
T = 1 2 Re[ ε ε 0 E E +μ μ 0 H H I 2 (ε ε 0 | Ε | 2 +μ μ 0 | H | 2 ) ].

Metrics