Abstract

A process leading to a stunningly beautiful and distinctive propagating plasma emission in optical fibers was discovered by the author 25 years ago. The genie that escaped its glass bottle leaves a trail of destruction. This paper traces the history and impact of the effect, which can threaten the security of all modern communication systems.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. S. Bergano, “Undersea cables make the web world wide,” Plenary, OECC2012, Busan, Korea (2–6 July, 2012).
  2. R. Kashyap and K. J. Blow, “Spectacular demonstration of catastrophic failure in long lengths of optical fiber via self-propelled self-focusing,” Post deadline paper PD7, 8th National Quantum Electronics Conf., QE8, St. Andrews, Scotland, UK, (21–25 September 1987).
  3. J. W. Goethe, Faust: Texte und Kommentare: 2 Bände, with commentary by Albrecht Schöne (Insel Verlag, 2003).
  4. R. Kashyap, “Phase-matched periodic-electric-field-induced second-harmonic generation in optical fibers,” J. Opt. Soc. Am. B6(3), 313–328 (1989).
    [CrossRef]
  5. P. D. Maker, R. W. Terhune, and C. M. Savage, Quantum Electronics, v.III., P. Grivet and N. Blombergen (Eds.)., (Columbia Univ. Press, 1964).
  6. R. R. Alfano and S. L. Shapiro, “Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses,” Phys. Rev. Lett.24(11), 592–594 (1970).
    [CrossRef]
  7. I. A. Bufetov, POWAG '2002, Lecture 16, St. Petersburg, Russia, (June 21–24, 2002).
  8. R. Kashyap and K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibers,” Electron. Lett.24(1), 47–49 (1988).
    [CrossRef]
  9. R. Kashyap, “Self-propelled self-focusing damage in optical fibers,” in Proceedings of The Xth International Conference on Lasers, 859–866, Stateline, Lake Tahoe, Nevada, USA, Ed. F. J. Duarte, (STS Press, 1987)
  10. E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibers,” Electron. Lett.38(15), 783–784 (2009).
  11. E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibers of various composition under the laser radiation,” Quantum Electron.32(6), 476–478 (2002).
  12. S. Todoroki, “Origin of periodic void formation during fiber fuse,” Opt. Express13(17), 6381–6389 (2005).
    [CrossRef] [PubMed]
  13. R. Kashyap, “High average power effects in optical fibers and devices,” SPIE 4940, Reliability of Optical Fiber Components, Devices, Systems, and Networks, ed. H. G. Limberger, M. J. Matthewson, (SPIE, Bellingham, WA, 2003), 108–117 (2003).
  14. D. P. Hand and P. St. J. Russell, “Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse,” Opt. Lett.13(9), 767–769 (1988).
    [CrossRef] [PubMed]
  15. E. M. Dianov, V. M. Mashinskii, V. A. Myzina, Y. S. Sidorin, A. M. Streltsov, and A. V. Chickolini, “Change of refractive index profile in the process of laser-induced fiber damage,” Sov. Lightwave Commun.2, 293–299 (1992).
  16. I. A. Bufetov, A. A. Frolov, A. V. Shubin, M. E. Likhachev, S. V. Lavrishchev, and E. M. Dianov, “Propagation of an optical discharge through optical fibers upon interference of modes,” Quantum Electron.38(5), 441–444 (2008).
    [CrossRef]
  17. R. M. Atkins, P. G. Simpkins, and A. D. Yablon, “Track of a fiber fuse: a Rayleigh instability in optical waveguides,” Opt. Lett.28(12), 974–976 (2003).
    [CrossRef] [PubMed]
  18. T. J. Driscoll, J. M. Calo, and N. M. Lawandy, “Explaining the optical fuse,” Opt. Lett.16(13), 1046–1048 (1991).
    [CrossRef] [PubMed]
  19. R. Kashyap, A. Sayles, and G. F. Cornwell, “Heatflow modeling and visualisation of catastrophic self-propelled damage in single mode optical fibers,” Optical Fibers Measurement Symposium, Boulder, SPIE 2966, 586–591 (1996).
  20. R. Kashyap, US patent Number: 5,022,734 “Method of modifying an optical waveguide and waveguide so modified,” (filed 21 September 1988.)
  21. M. Facão, A. M. Rocha, and P. S. Andre, “Traveling solutions of the fuse effect in optical fibers,” J. Lightwave Technol.29(1), 109–114 (2011).
    [CrossRef]
  22. A. M. Rocha, M. Facão, A. Martins, and P. S. André, “Simulation of fiber fuse effect propagation,” International Conf. on Transparent Networks – Mediterranean Winter, Angers, France, paper FrP.12 (2009).
    [CrossRef]
  23. D. D. Davis, S. C. Mettler, and D. J. DiGiovanni, “A comparative evaluation of fiber fuse models,” Proc. SPIE2966, 592–606 (1997).
    [CrossRef]
  24. E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “Temperature of optical discharge under action of laser radiation in silica-based fibers,” Paper We3.4.4, Proceedings of ECOC 2005, 3, 469–470, Glasgow, U.K., (Sep. 25–29, 2005).
    [CrossRef]
  25. E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fibers,” IEEE Photon. Technol. Lett.18(6), 752–754 (2006).
    [CrossRef]
  26. R. Kashyap, Fiber Bragg Gratings, Second Edition (Optics and Photonics Series), (Academic Press, 2009).
  27. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am.55(10), 1205 (1965).
    [CrossRef]
  28. E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. A. Frolov, M. Ya. Schelev, and V. I. Lozovoĭ, “Detonation-like mode of the destruction of optical fibers under intense laser radiation,” JETP Lett.83(2), 75–78 (2006).
    [CrossRef]
  29. E. L. Ruden and G. F. Kiuttu, “Adiabatic, shock, and plastic work heating of solids and exploding metal cylinders,” IEEE Trans. Plasma Sci.30(5), 1692–1699 (2002).
    [CrossRef]
  30. K. S. Abedin, M. Nakazawa, and T. Miyazaki, “Backreflected radiation due to a propagating fiber fuse,” Opt. Express17(8), 6525–6531 (2009).
    [CrossRef] [PubMed]
  31. K. S. Abedin, T. Miyazaki, and M. Nakazawa, “Measurements of spectral broadening and Doppler shift of backreflections from a fiber fuse using heterodyne detection,” Opt. Lett.34(20), 3157–3159 (2009).
    [CrossRef] [PubMed]
  32. Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, “Evaluation of High-Temperature Absorption Coefficients of Optical Fibers,” IEEE Photon. Technol. Lett.16(4), 1008–1010 (2004).
    [CrossRef]
  33. R. Wyatt, R. M. Percival, and R. Kashyap, “Optical communication system and method of protecting an optical route,” US Patent 7,162,161 B2 (2007).
  34. R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko, “Calculation of velocity and threshold for a thermal wave of laser radiation absorption in a fiber optic waveguide based on the two-dimensional nonstationary heat conduction equation,” Laser Phys.14(11), 1429–1433 (2004).
  35. N. Akhmediev, P. St. J. Russell, M. Taki, and J. M. Soto-Crespo, “Heat dissipative solitons in optical fibers,” Phys. Lett. A372(9), 1531–1534 (2008).
    [CrossRef]
  36. E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibers,” Electron. Lett.38(15), 783–784 (2002).
    [CrossRef]
  37. E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber fuse effect in microstructured fibers,” IEEE Photon. Technol. Lett.16(1), 180–181 (2004).
    [CrossRef]
  38. N. Hanzawa, K. Kurokawa, K. Tsujikawa, K. Takenaga, S. Tanigawa, S. Matsuo, and S. Tomita, “Observation of a propagation mode of a fiber fuse with a long-period damage track in hole-assisted fiber,” Opt. Lett.35(12), 2004–2006 (2010).
    [CrossRef] [PubMed]
  39. W. Ha, Y. Jeong, and K. Oh, “Fiber fuse effect in hollow optical fibers,” Opt. Lett.36(9), 1536–1538 (2011).
    [CrossRef] [PubMed]
  40. R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett.24(11), 592–594 (1970).
    [CrossRef]
  41. S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nano void structures via femtosecond laser irradiation,” Nano Lett.5(8), 1591–1595 (2005).
    [CrossRef] [PubMed]
  42. J.-L. Archambault, L. Reekie, and P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibers by a single excimer laser pulse,” Electron. Lett.29(5), 453–455 (1993).
    [CrossRef]
  43. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Ultimate power limits of optical fibers,” Paper OMO6, NFOEC/OFC (2010).
  44. K. Seo, N. Nishimura, M. Shiino, R. Yuguchi, and H. Sasaki, “Evaluation of high-power endurance in optical fiber links,” Furukawa Review 24 (2003).
  45. S. Todoroki and S. Inoue, “Optical fuse made of silica glass optical fibers spliced through low-melting glass with carbon-coating,” Proceedings of XX Int. Cong. on Glass, paper O-14–010, Kyoto, Japan (2004).
  46. A. M. Rocha, P. F. Da Costa Antunes, M. D. F. F. Domingues, M. Facão, and P. S. De Brito André, “Detection of fiber fuse effect using FBG sensors,” IEEE Sens. J.B11(6), 1390–1394 (2011), doi:.
    [CrossRef]
  47. K. S. Abedin and M. Nakazawa, “Real time monitoring of a fiber fuse using an optical time-domain reflectometer,” Opt. Express18(20), 21315–21321 (2010).
    [CrossRef] [PubMed]
  48. E. M. Dianov, I. A. Bufetov, and A. A. Frolov, “Destruction of silica fiber cladding by the fuse effect,” Opt. Lett.29(16), 1852–1854 (2004).
    [CrossRef] [PubMed]
  49. F. V. Bunkin, V. I. Konov, A. M. Prohorov, and V. B. Fedorov, “Laser spark in the regime of slow burning,” JETF Letts.9, 609–612 (1969).
  50. Y. P. Raizer, Laser-Induced Discharge Phenomena (Plenum Publishing, 1977).
  51. W. Beust and W. L. Ford, “Arcing in CW transmitters,” Microwave J., MTT. 10, 91 (1961).
  52. R. Kashyap, B. J. Ainslie, and G. D. Maxwell, “Second-harmonic generation in a GeO2 ridge waveguide,” Electron. Lett.25(3), 206–208 (1989).
    [CrossRef]
  53. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
    [CrossRef]
  54. http://www.finisar.com/technical-information , “Operational issues in the deployment of Raman amplifiers (Updated November 2012),” Technical Papers: Optical Amplifiers.
  55. http://www.redcinc.com/?CategoryID=267&ArticleID=301
  56. C. H. Henry, P. M. Petroff, R. A. Logan, and F. R. Merritt, “Catastrophic damage of AlxGa1-xAs double-heterostructure laser material,” J. Appl. Phys.50(5), 3721–3732 (1979).
    [CrossRef]
  57. P. St. J. Russell, Private Communication (2012).
  58. V. P. Gapontsev, “Advances in power scaling of fiber lasers,” Paper 8601–13, Photonics West (2013).
  59. R.-J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” P.I.E.E.E100(5), 1035–1055 (2012).
  60. S. Todoroki, “Fiber fuse propagation behavior,” Optical Fibers/Book 4, ed. Y. Moh, (InTech, 2011) [Online] http://www.intechweb.org/books/ ).

2012

R.-J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” P.I.E.E.E100(5), 1035–1055 (2012).

2011

A. M. Rocha, P. F. Da Costa Antunes, M. D. F. F. Domingues, M. Facão, and P. S. De Brito André, “Detection of fiber fuse effect using FBG sensors,” IEEE Sens. J.B11(6), 1390–1394 (2011), doi:.
[CrossRef]

M. Facão, A. M. Rocha, and P. S. Andre, “Traveling solutions of the fuse effect in optical fibers,” J. Lightwave Technol.29(1), 109–114 (2011).
[CrossRef]

W. Ha, Y. Jeong, and K. Oh, “Fiber fuse effect in hollow optical fibers,” Opt. Lett.36(9), 1536–1538 (2011).
[CrossRef] [PubMed]

2010

2009

2008

I. A. Bufetov, A. A. Frolov, A. V. Shubin, M. E. Likhachev, S. V. Lavrishchev, and E. M. Dianov, “Propagation of an optical discharge through optical fibers upon interference of modes,” Quantum Electron.38(5), 441–444 (2008).
[CrossRef]

N. Akhmediev, P. St. J. Russell, M. Taki, and J. M. Soto-Crespo, “Heat dissipative solitons in optical fibers,” Phys. Lett. A372(9), 1531–1534 (2008).
[CrossRef]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

2006

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fibers,” IEEE Photon. Technol. Lett.18(6), 752–754 (2006).
[CrossRef]

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. A. Frolov, M. Ya. Schelev, and V. I. Lozovoĭ, “Detonation-like mode of the destruction of optical fibers under intense laser radiation,” JETP Lett.83(2), 75–78 (2006).
[CrossRef]

2005

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nano void structures via femtosecond laser irradiation,” Nano Lett.5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

S. Todoroki, “Origin of periodic void formation during fiber fuse,” Opt. Express13(17), 6381–6389 (2005).
[CrossRef] [PubMed]

2004

E. M. Dianov, I. A. Bufetov, and A. A. Frolov, “Destruction of silica fiber cladding by the fuse effect,” Opt. Lett.29(16), 1852–1854 (2004).
[CrossRef] [PubMed]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber fuse effect in microstructured fibers,” IEEE Photon. Technol. Lett.16(1), 180–181 (2004).
[CrossRef]

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, “Evaluation of High-Temperature Absorption Coefficients of Optical Fibers,” IEEE Photon. Technol. Lett.16(4), 1008–1010 (2004).
[CrossRef]

R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko, “Calculation of velocity and threshold for a thermal wave of laser radiation absorption in a fiber optic waveguide based on the two-dimensional nonstationary heat conduction equation,” Laser Phys.14(11), 1429–1433 (2004).

2003

2002

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibers,” Electron. Lett.38(15), 783–784 (2002).
[CrossRef]

E. L. Ruden and G. F. Kiuttu, “Adiabatic, shock, and plastic work heating of solids and exploding metal cylinders,” IEEE Trans. Plasma Sci.30(5), 1692–1699 (2002).
[CrossRef]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibers of various composition under the laser radiation,” Quantum Electron.32(6), 476–478 (2002).

1997

D. D. Davis, S. C. Mettler, and D. J. DiGiovanni, “A comparative evaluation of fiber fuse models,” Proc. SPIE2966, 592–606 (1997).
[CrossRef]

1993

J.-L. Archambault, L. Reekie, and P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibers by a single excimer laser pulse,” Electron. Lett.29(5), 453–455 (1993).
[CrossRef]

1992

E. M. Dianov, V. M. Mashinskii, V. A. Myzina, Y. S. Sidorin, A. M. Streltsov, and A. V. Chickolini, “Change of refractive index profile in the process of laser-induced fiber damage,” Sov. Lightwave Commun.2, 293–299 (1992).

1991

1989

R. Kashyap, “Phase-matched periodic-electric-field-induced second-harmonic generation in optical fibers,” J. Opt. Soc. Am. B6(3), 313–328 (1989).
[CrossRef]

R. Kashyap, B. J. Ainslie, and G. D. Maxwell, “Second-harmonic generation in a GeO2 ridge waveguide,” Electron. Lett.25(3), 206–208 (1989).
[CrossRef]

1988

D. P. Hand and P. St. J. Russell, “Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse,” Opt. Lett.13(9), 767–769 (1988).
[CrossRef] [PubMed]

R. Kashyap and K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibers,” Electron. Lett.24(1), 47–49 (1988).
[CrossRef]

1979

C. H. Henry, P. M. Petroff, R. A. Logan, and F. R. Merritt, “Catastrophic damage of AlxGa1-xAs double-heterostructure laser material,” J. Appl. Phys.50(5), 3721–3732 (1979).
[CrossRef]

1970

R. R. Alfano and S. L. Shapiro, “Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses,” Phys. Rev. Lett.24(11), 592–594 (1970).
[CrossRef]

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett.24(11), 592–594 (1970).
[CrossRef]

1969

F. V. Bunkin, V. I. Konov, A. M. Prohorov, and V. B. Fedorov, “Laser spark in the regime of slow burning,” JETF Letts.9, 609–612 (1969).

1965

1961

W. Beust and W. L. Ford, “Arcing in CW transmitters,” Microwave J., MTT. 10, 91 (1961).

Abedin, K. S.

Ainslie, B. J.

R. Kashyap, B. J. Ainslie, and G. D. Maxwell, “Second-harmonic generation in a GeO2 ridge waveguide,” Electron. Lett.25(3), 206–208 (1989).
[CrossRef]

Akhmediev, N.

N. Akhmediev, P. St. J. Russell, M. Taki, and J. M. Soto-Crespo, “Heat dissipative solitons in optical fibers,” Phys. Lett. A372(9), 1531–1534 (2008).
[CrossRef]

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, “Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses,” Phys. Rev. Lett.24(11), 592–594 (1970).
[CrossRef]

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett.24(11), 592–594 (1970).
[CrossRef]

Andre, P. S.

Archambault, J.-L.

J.-L. Archambault, L. Reekie, and P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibers by a single excimer laser pulse,” Electron. Lett.29(5), 453–455 (1993).
[CrossRef]

Asakawa, S.

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, “Evaluation of High-Temperature Absorption Coefficients of Optical Fibers,” IEEE Photon. Technol. Lett.16(4), 1008–1010 (2004).
[CrossRef]

Atkins, R. M.

Beust, W.

W. Beust and W. L. Ford, “Arcing in CW transmitters,” Microwave J., MTT. 10, 91 (1961).

Blow, K. J.

R. Kashyap and K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibers,” Electron. Lett.24(1), 47–49 (1988).
[CrossRef]

Bufetov, I. A.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibers,” Electron. Lett.38(15), 783–784 (2009).

I. A. Bufetov, A. A. Frolov, A. V. Shubin, M. E. Likhachev, S. V. Lavrishchev, and E. M. Dianov, “Propagation of an optical discharge through optical fibers upon interference of modes,” Quantum Electron.38(5), 441–444 (2008).
[CrossRef]

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. A. Frolov, M. Ya. Schelev, and V. I. Lozovoĭ, “Detonation-like mode of the destruction of optical fibers under intense laser radiation,” JETP Lett.83(2), 75–78 (2006).
[CrossRef]

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fibers,” IEEE Photon. Technol. Lett.18(6), 752–754 (2006).
[CrossRef]

E. M. Dianov, I. A. Bufetov, and A. A. Frolov, “Destruction of silica fiber cladding by the fuse effect,” Opt. Lett.29(16), 1852–1854 (2004).
[CrossRef] [PubMed]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber fuse effect in microstructured fibers,” IEEE Photon. Technol. Lett.16(1), 180–181 (2004).
[CrossRef]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibers,” Electron. Lett.38(15), 783–784 (2002).
[CrossRef]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibers of various composition under the laser radiation,” Quantum Electron.32(6), 476–478 (2002).

Bunkin, F. V.

F. V. Bunkin, V. I. Konov, A. M. Prohorov, and V. B. Fedorov, “Laser spark in the regime of slow burning,” JETF Letts.9, 609–612 (1969).

Calo, J. M.

Chamorovsky, Y. K.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber fuse effect in microstructured fibers,” IEEE Photon. Technol. Lett.16(1), 180–181 (2004).
[CrossRef]

Chickolini, A. V.

E. M. Dianov, V. M. Mashinskii, V. A. Myzina, Y. S. Sidorin, A. M. Streltsov, and A. V. Chickolini, “Change of refractive index profile in the process of laser-induced fiber damage,” Sov. Lightwave Commun.2, 293–299 (1992).

Chu, S.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Churbanov, M. F.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibers,” Electron. Lett.38(15), 783–784 (2009).

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibers,” Electron. Lett.38(15), 783–784 (2002).
[CrossRef]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibers of various composition under the laser radiation,” Quantum Electron.32(6), 476–478 (2002).

Da Costa Antunes, P. F.

A. M. Rocha, P. F. Da Costa Antunes, M. D. F. F. Domingues, M. Facão, and P. S. De Brito André, “Detection of fiber fuse effect using FBG sensors,” IEEE Sens. J.B11(6), 1390–1394 (2011), doi:.
[CrossRef]

Davis, D. D.

D. D. Davis, S. C. Mettler, and D. J. DiGiovanni, “A comparative evaluation of fiber fuse models,” Proc. SPIE2966, 592–606 (1997).
[CrossRef]

De Brito André, P. S.

A. M. Rocha, P. F. Da Costa Antunes, M. D. F. F. Domingues, M. Facão, and P. S. De Brito André, “Detection of fiber fuse effect using FBG sensors,” IEEE Sens. J.B11(6), 1390–1394 (2011), doi:.
[CrossRef]

Dianov, E. M.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibers,” Electron. Lett.38(15), 783–784 (2009).

I. A. Bufetov, A. A. Frolov, A. V. Shubin, M. E. Likhachev, S. V. Lavrishchev, and E. M. Dianov, “Propagation of an optical discharge through optical fibers upon interference of modes,” Quantum Electron.38(5), 441–444 (2008).
[CrossRef]

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. A. Frolov, M. Ya. Schelev, and V. I. Lozovoĭ, “Detonation-like mode of the destruction of optical fibers under intense laser radiation,” JETP Lett.83(2), 75–78 (2006).
[CrossRef]

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fibers,” IEEE Photon. Technol. Lett.18(6), 752–754 (2006).
[CrossRef]

E. M. Dianov, I. A. Bufetov, and A. A. Frolov, “Destruction of silica fiber cladding by the fuse effect,” Opt. Lett.29(16), 1852–1854 (2004).
[CrossRef] [PubMed]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber fuse effect in microstructured fibers,” IEEE Photon. Technol. Lett.16(1), 180–181 (2004).
[CrossRef]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibers,” Electron. Lett.38(15), 783–784 (2002).
[CrossRef]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibers of various composition under the laser radiation,” Quantum Electron.32(6), 476–478 (2002).

E. M. Dianov, V. M. Mashinskii, V. A. Myzina, Y. S. Sidorin, A. M. Streltsov, and A. V. Chickolini, “Change of refractive index profile in the process of laser-induced fiber damage,” Sov. Lightwave Commun.2, 293–299 (1992).

DiGiovanni, D. J.

D. D. Davis, S. C. Mettler, and D. J. DiGiovanni, “A comparative evaluation of fiber fuse models,” Proc. SPIE2966, 592–606 (1997).
[CrossRef]

Domingues, M. D. F. F.

A. M. Rocha, P. F. Da Costa Antunes, M. D. F. F. Domingues, M. Facão, and P. S. De Brito André, “Detection of fiber fuse effect using FBG sensors,” IEEE Sens. J.B11(6), 1390–1394 (2011), doi:.
[CrossRef]

Driscoll, T. J.

Duchesne, D.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Efremov, V. P.

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fibers,” IEEE Photon. Technol. Lett.18(6), 752–754 (2006).
[CrossRef]

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. A. Frolov, M. Ya. Schelev, and V. I. Lozovoĭ, “Detonation-like mode of the destruction of optical fibers under intense laser radiation,” JETP Lett.83(2), 75–78 (2006).
[CrossRef]

Essiambre, R.-J.

R.-J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” P.I.E.E.E100(5), 1035–1055 (2012).

Facão, M.

A. M. Rocha, P. F. Da Costa Antunes, M. D. F. F. Domingues, M. Facão, and P. S. De Brito André, “Detection of fiber fuse effect using FBG sensors,” IEEE Sens. J.B11(6), 1390–1394 (2011), doi:.
[CrossRef]

M. Facão, A. M. Rocha, and P. S. Andre, “Traveling solutions of the fuse effect in optical fibers,” J. Lightwave Technol.29(1), 109–114 (2011).
[CrossRef]

Fedorov, V. B.

F. V. Bunkin, V. I. Konov, A. M. Prohorov, and V. B. Fedorov, “Laser spark in the regime of slow burning,” JETF Letts.9, 609–612 (1969).

Ferrera, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Ford, W. L.

W. Beust and W. L. Ford, “Arcing in CW transmitters,” Microwave J., MTT. 10, 91 (1961).

Fortov, V. E.

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. A. Frolov, M. Ya. Schelev, and V. I. Lozovoĭ, “Detonation-like mode of the destruction of optical fibers under intense laser radiation,” JETP Lett.83(2), 75–78 (2006).
[CrossRef]

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fibers,” IEEE Photon. Technol. Lett.18(6), 752–754 (2006).
[CrossRef]

Frolov, A. A.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibers,” Electron. Lett.38(15), 783–784 (2009).

I. A. Bufetov, A. A. Frolov, A. V. Shubin, M. E. Likhachev, S. V. Lavrishchev, and E. M. Dianov, “Propagation of an optical discharge through optical fibers upon interference of modes,” Quantum Electron.38(5), 441–444 (2008).
[CrossRef]

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fibers,” IEEE Photon. Technol. Lett.18(6), 752–754 (2006).
[CrossRef]

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. A. Frolov, M. Ya. Schelev, and V. I. Lozovoĭ, “Detonation-like mode of the destruction of optical fibers under intense laser radiation,” JETP Lett.83(2), 75–78 (2006).
[CrossRef]

E. M. Dianov, I. A. Bufetov, and A. A. Frolov, “Destruction of silica fiber cladding by the fuse effect,” Opt. Lett.29(16), 1852–1854 (2004).
[CrossRef] [PubMed]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber fuse effect in microstructured fibers,” IEEE Photon. Technol. Lett.16(1), 180–181 (2004).
[CrossRef]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibers,” Electron. Lett.38(15), 783–784 (2002).
[CrossRef]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibers of various composition under the laser radiation,” Quantum Electron.32(6), 476–478 (2002).

Fujita, K.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nano void structures via femtosecond laser irradiation,” Nano Lett.5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

Golyatina, R. I.

R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko, “Calculation of velocity and threshold for a thermal wave of laser radiation absorption in a fiber optic waveguide based on the two-dimensional nonstationary heat conduction equation,” Laser Phys.14(11), 1429–1433 (2004).

Ha, W.

Hand, D. P.

Hanzawa, N.

Henry, C. H.

C. H. Henry, P. M. Petroff, R. A. Logan, and F. R. Merritt, “Catastrophic damage of AlxGa1-xAs double-heterostructure laser material,” J. Appl. Phys.50(5), 3721–3732 (1979).
[CrossRef]

Hirao, K.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nano void structures via femtosecond laser irradiation,” Nano Lett.5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

Ivanov, G. A.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber fuse effect in microstructured fibers,” IEEE Photon. Technol. Lett.16(1), 180–181 (2004).
[CrossRef]

Jeong, Y.

Kanehira, S.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nano void structures via femtosecond laser irradiation,” Nano Lett.5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

Kashyap, R.

R. Kashyap, B. J. Ainslie, and G. D. Maxwell, “Second-harmonic generation in a GeO2 ridge waveguide,” Electron. Lett.25(3), 206–208 (1989).
[CrossRef]

R. Kashyap, “Phase-matched periodic-electric-field-induced second-harmonic generation in optical fibers,” J. Opt. Soc. Am. B6(3), 313–328 (1989).
[CrossRef]

R. Kashyap and K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibers,” Electron. Lett.24(1), 47–49 (1988).
[CrossRef]

Kiuttu, G. F.

E. L. Ruden and G. F. Kiuttu, “Adiabatic, shock, and plastic work heating of solids and exploding metal cylinders,” IEEE Trans. Plasma Sci.30(5), 1692–1699 (2002).
[CrossRef]

Kobayashi, M.

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, “Evaluation of High-Temperature Absorption Coefficients of Optical Fibers,” IEEE Photon. Technol. Lett.16(4), 1008–1010 (2004).
[CrossRef]

Konov, V. I.

F. V. Bunkin, V. I. Konov, A. M. Prohorov, and V. B. Fedorov, “Laser spark in the regime of slow burning,” JETF Letts.9, 609–612 (1969).

Kulish, M. I.

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fibers,” IEEE Photon. Technol. Lett.18(6), 752–754 (2006).
[CrossRef]

Kurokawa, K.

Lavrishchev, S. V.

I. A. Bufetov, A. A. Frolov, A. V. Shubin, M. E. Likhachev, S. V. Lavrishchev, and E. M. Dianov, “Propagation of an optical discharge through optical fibers upon interference of modes,” Quantum Electron.38(5), 441–444 (2008).
[CrossRef]

Lawandy, N. M.

Likhachev, M. E.

I. A. Bufetov, A. A. Frolov, A. V. Shubin, M. E. Likhachev, S. V. Lavrishchev, and E. M. Dianov, “Propagation of an optical discharge through optical fibers upon interference of modes,” Quantum Electron.38(5), 441–444 (2008).
[CrossRef]

Liscidini, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Little, B. E.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Logan, R. A.

C. H. Henry, P. M. Petroff, R. A. Logan, and F. R. Merritt, “Catastrophic damage of AlxGa1-xAs double-heterostructure laser material,” J. Appl. Phys.50(5), 3721–3732 (1979).
[CrossRef]

Lozovoi, V. I.

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. A. Frolov, M. Ya. Schelev, and V. I. Lozovoĭ, “Detonation-like mode of the destruction of optical fibers under intense laser radiation,” JETP Lett.83(2), 75–78 (2006).
[CrossRef]

Malitson, I. H.

Mashinskii, V. M.

E. M. Dianov, V. M. Mashinskii, V. A. Myzina, Y. S. Sidorin, A. M. Streltsov, and A. V. Chickolini, “Change of refractive index profile in the process of laser-induced fiber damage,” Sov. Lightwave Commun.2, 293–299 (1992).

Mashinsky, V. M.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibers,” Electron. Lett.38(15), 783–784 (2009).

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibers,” Electron. Lett.38(15), 783–784 (2002).
[CrossRef]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibers of various composition under the laser radiation,” Quantum Electron.32(6), 476–478 (2002).

Matsuo, S.

Maxwell, G. D.

R. Kashyap, B. J. Ainslie, and G. D. Maxwell, “Second-harmonic generation in a GeO2 ridge waveguide,” Electron. Lett.25(3), 206–208 (1989).
[CrossRef]

Melkumov, M. A.

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fibers,” IEEE Photon. Technol. Lett.18(6), 752–754 (2006).
[CrossRef]

Merritt, F. R.

C. H. Henry, P. M. Petroff, R. A. Logan, and F. R. Merritt, “Catastrophic damage of AlxGa1-xAs double-heterostructure laser material,” J. Appl. Phys.50(5), 3721–3732 (1979).
[CrossRef]

Mettler, S. C.

D. D. Davis, S. C. Mettler, and D. J. DiGiovanni, “A comparative evaluation of fiber fuse models,” Proc. SPIE2966, 592–606 (1997).
[CrossRef]

Miyazaki, T.

Morandotti, R.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Moss, D. J.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Myzina, V. A.

E. M. Dianov, V. M. Mashinskii, V. A. Myzina, Y. S. Sidorin, A. M. Streltsov, and A. V. Chickolini, “Change of refractive index profile in the process of laser-induced fiber damage,” Sov. Lightwave Commun.2, 293–299 (1992).

Nagase, R.

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, “Evaluation of High-Temperature Absorption Coefficients of Optical Fibers,” IEEE Photon. Technol. Lett.16(4), 1008–1010 (2004).
[CrossRef]

Nakazawa, M.

Oh, K.

Petroff, P. M.

C. H. Henry, P. M. Petroff, R. A. Logan, and F. R. Merritt, “Catastrophic damage of AlxGa1-xAs double-heterostructure laser material,” J. Appl. Phys.50(5), 3721–3732 (1979).
[CrossRef]

Plotnichenko, V. G.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibers,” Electron. Lett.38(15), 783–784 (2009).

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibers,” Electron. Lett.38(15), 783–784 (2002).
[CrossRef]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibers of various composition under the laser radiation,” Quantum Electron.32(6), 476–478 (2002).

Prohorov, A. M.

F. V. Bunkin, V. I. Konov, A. M. Prohorov, and V. B. Fedorov, “Laser spark in the regime of slow burning,” JETF Letts.9, 609–612 (1969).

Qiu, J.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nano void structures via femtosecond laser irradiation,” Nano Lett.5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

Rakitin, A. E.

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fibers,” IEEE Photon. Technol. Lett.18(6), 752–754 (2006).
[CrossRef]

Razzari, L.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Reekie, L.

J.-L. Archambault, L. Reekie, and P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibers by a single excimer laser pulse,” Electron. Lett.29(5), 453–455 (1993).
[CrossRef]

Rocha, A. M.

M. Facão, A. M. Rocha, and P. S. Andre, “Traveling solutions of the fuse effect in optical fibers,” J. Lightwave Technol.29(1), 109–114 (2011).
[CrossRef]

A. M. Rocha, P. F. Da Costa Antunes, M. D. F. F. Domingues, M. Facão, and P. S. De Brito André, “Detection of fiber fuse effect using FBG sensors,” IEEE Sens. J.B11(6), 1390–1394 (2011), doi:.
[CrossRef]

Ruden, E. L.

E. L. Ruden and G. F. Kiuttu, “Adiabatic, shock, and plastic work heating of solids and exploding metal cylinders,” IEEE Trans. Plasma Sci.30(5), 1692–1699 (2002).
[CrossRef]

Russell, P. St. J.

N. Akhmediev, P. St. J. Russell, M. Taki, and J. M. Soto-Crespo, “Heat dissipative solitons in optical fibers,” Phys. Lett. A372(9), 1531–1534 (2008).
[CrossRef]

J.-L. Archambault, L. Reekie, and P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibers by a single excimer laser pulse,” Electron. Lett.29(5), 453–455 (1993).
[CrossRef]

D. P. Hand and P. St. J. Russell, “Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse,” Opt. Lett.13(9), 767–769 (1988).
[CrossRef] [PubMed]

Schelev, M. Ya.

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. A. Frolov, M. Ya. Schelev, and V. I. Lozovoĭ, “Detonation-like mode of the destruction of optical fibers under intense laser radiation,” JETP Lett.83(2), 75–78 (2006).
[CrossRef]

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses,” Phys. Rev. Lett.24(11), 592–594 (1970).
[CrossRef]

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett.24(11), 592–594 (1970).
[CrossRef]

Shubin, A. V.

I. A. Bufetov, A. A. Frolov, A. V. Shubin, M. E. Likhachev, S. V. Lavrishchev, and E. M. Dianov, “Propagation of an optical discharge through optical fibers upon interference of modes,” Quantum Electron.38(5), 441–444 (2008).
[CrossRef]

Shuto, Y.

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, “Evaluation of High-Temperature Absorption Coefficients of Optical Fibers,” IEEE Photon. Technol. Lett.16(4), 1008–1010 (2004).
[CrossRef]

Si, J.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nano void structures via femtosecond laser irradiation,” Nano Lett.5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

Sidorin, Y. S.

E. M. Dianov, V. M. Mashinskii, V. A. Myzina, Y. S. Sidorin, A. M. Streltsov, and A. V. Chickolini, “Change of refractive index profile in the process of laser-induced fiber damage,” Sov. Lightwave Commun.2, 293–299 (1992).

Simpkins, P. G.

Sipe, J. E.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Snopatin, G. E.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibers,” Electron. Lett.38(15), 783–784 (2009).

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibers,” Electron. Lett.38(15), 783–784 (2002).
[CrossRef]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibers of various composition under the laser radiation,” Quantum Electron.32(6), 476–478 (2002).

Soto-Crespo, J. M.

N. Akhmediev, P. St. J. Russell, M. Taki, and J. M. Soto-Crespo, “Heat dissipative solitons in optical fibers,” Phys. Lett. A372(9), 1531–1534 (2008).
[CrossRef]

Streltsov, A. M.

E. M. Dianov, V. M. Mashinskii, V. A. Myzina, Y. S. Sidorin, A. M. Streltsov, and A. V. Chickolini, “Change of refractive index profile in the process of laser-induced fiber damage,” Sov. Lightwave Commun.2, 293–299 (1992).

Takenaga, K.

Taki, M.

N. Akhmediev, P. St. J. Russell, M. Taki, and J. M. Soto-Crespo, “Heat dissipative solitons in optical fibers,” Phys. Lett. A372(9), 1531–1534 (2008).
[CrossRef]

Tanigawa, S.

Tkach, R. W.

R.-J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” P.I.E.E.E100(5), 1035–1055 (2012).

Tkachev, A. N.

R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko, “Calculation of velocity and threshold for a thermal wave of laser radiation absorption in a fiber optic waveguide based on the two-dimensional nonstationary heat conduction equation,” Laser Phys.14(11), 1429–1433 (2004).

Todoroki, S.

Tomita, S.

Tsujikawa, K.

Vorobjev, I. L.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber fuse effect in microstructured fibers,” IEEE Photon. Technol. Lett.16(1), 180–181 (2004).
[CrossRef]

Yablon, A. D.

Yakovlenko, S. I.

R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko, “Calculation of velocity and threshold for a thermal wave of laser radiation absorption in a fiber optic waveguide based on the two-dimensional nonstationary heat conduction equation,” Laser Phys.14(11), 1429–1433 (2004).

Yanagi, S.

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, “Evaluation of High-Temperature Absorption Coefficients of Optical Fibers,” IEEE Photon. Technol. Lett.16(4), 1008–1010 (2004).
[CrossRef]

Yang, Z.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Electron. Lett.

R. Kashyap and K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibers,” Electron. Lett.24(1), 47–49 (1988).
[CrossRef]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibers,” Electron. Lett.38(15), 783–784 (2009).

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinsky, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of fluoride and chalcogenide optical fibers,” Electron. Lett.38(15), 783–784 (2002).
[CrossRef]

J.-L. Archambault, L. Reekie, and P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibers by a single excimer laser pulse,” Electron. Lett.29(5), 453–455 (1993).
[CrossRef]

R. Kashyap, B. J. Ainslie, and G. D. Maxwell, “Second-harmonic generation in a GeO2 ridge waveguide,” Electron. Lett.25(3), 206–208 (1989).
[CrossRef]

IEEE Photon. Technol. Lett.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev, “Fiber fuse effect in microstructured fibers,” IEEE Photon. Technol. Lett.16(1), 180–181 (2004).
[CrossRef]

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, “Evaluation of High-Temperature Absorption Coefficients of Optical Fibers,” IEEE Photon. Technol. Lett.16(4), 1008–1010 (2004).
[CrossRef]

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fibers,” IEEE Photon. Technol. Lett.18(6), 752–754 (2006).
[CrossRef]

IEEE Sens. J.

A. M. Rocha, P. F. Da Costa Antunes, M. D. F. F. Domingues, M. Facão, and P. S. De Brito André, “Detection of fiber fuse effect using FBG sensors,” IEEE Sens. J.B11(6), 1390–1394 (2011), doi:.
[CrossRef]

IEEE Trans. Plasma Sci.

E. L. Ruden and G. F. Kiuttu, “Adiabatic, shock, and plastic work heating of solids and exploding metal cylinders,” IEEE Trans. Plasma Sci.30(5), 1692–1699 (2002).
[CrossRef]

J. Appl. Phys.

C. H. Henry, P. M. Petroff, R. A. Logan, and F. R. Merritt, “Catastrophic damage of AlxGa1-xAs double-heterostructure laser material,” J. Appl. Phys.50(5), 3721–3732 (1979).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am.

J. Opt. Soc. Am. B

JETF Letts.

F. V. Bunkin, V. I. Konov, A. M. Prohorov, and V. B. Fedorov, “Laser spark in the regime of slow burning,” JETF Letts.9, 609–612 (1969).

JETP Lett.

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. A. Frolov, M. Ya. Schelev, and V. I. Lozovoĭ, “Detonation-like mode of the destruction of optical fibers under intense laser radiation,” JETP Lett.83(2), 75–78 (2006).
[CrossRef]

Laser Phys.

R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko, “Calculation of velocity and threshold for a thermal wave of laser radiation absorption in a fiber optic waveguide based on the two-dimensional nonstationary heat conduction equation,” Laser Phys.14(11), 1429–1433 (2004).

Nano Lett.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nano void structures via femtosecond laser irradiation,” Nano Lett.5(8), 1591–1595 (2005).
[CrossRef] [PubMed]

Nat. Photonics

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

P.I.E.E.E

R.-J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication networks,” P.I.E.E.E100(5), 1035–1055 (2012).

Phys. Lett. A

N. Akhmediev, P. St. J. Russell, M. Taki, and J. M. Soto-Crespo, “Heat dissipative solitons in optical fibers,” Phys. Lett. A372(9), 1531–1534 (2008).
[CrossRef]

Phys. Rev. Lett.

R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crystals and glasses,” Phys. Rev. Lett.24(11), 592–594 (1970).
[CrossRef]

R. R. Alfano and S. L. Shapiro, “Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses,” Phys. Rev. Lett.24(11), 592–594 (1970).
[CrossRef]

Proc. SPIE

D. D. Davis, S. C. Mettler, and D. J. DiGiovanni, “A comparative evaluation of fiber fuse models,” Proc. SPIE2966, 592–606 (1997).
[CrossRef]

Quantum Electron.

I. A. Bufetov, A. A. Frolov, A. V. Shubin, M. E. Likhachev, S. V. Lavrishchev, and E. M. Dianov, “Propagation of an optical discharge through optical fibers upon interference of modes,” Quantum Electron.38(5), 441–444 (2008).
[CrossRef]

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinsky, M. F. Churbanov, and G. E. Snopatin, “Catastrophic destruction of optical fibers of various composition under the laser radiation,” Quantum Electron.32(6), 476–478 (2002).

Sov. Lightwave Commun.

E. M. Dianov, V. M. Mashinskii, V. A. Myzina, Y. S. Sidorin, A. M. Streltsov, and A. V. Chickolini, “Change of refractive index profile in the process of laser-induced fiber damage,” Sov. Lightwave Commun.2, 293–299 (1992).

Other

P. D. Maker, R. W. Terhune, and C. M. Savage, Quantum Electronics, v.III., P. Grivet and N. Blombergen (Eds.)., (Columbia Univ. Press, 1964).

A. M. Rocha, M. Facão, A. Martins, and P. S. André, “Simulation of fiber fuse effect propagation,” International Conf. on Transparent Networks – Mediterranean Winter, Angers, France, paper FrP.12 (2009).
[CrossRef]

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “Temperature of optical discharge under action of laser radiation in silica-based fibers,” Paper We3.4.4, Proceedings of ECOC 2005, 3, 469–470, Glasgow, U.K., (Sep. 25–29, 2005).
[CrossRef]

R. Kashyap, Fiber Bragg Gratings, Second Edition (Optics and Photonics Series), (Academic Press, 2009).

N. S. Bergano, “Undersea cables make the web world wide,” Plenary, OECC2012, Busan, Korea (2–6 July, 2012).

R. Kashyap and K. J. Blow, “Spectacular demonstration of catastrophic failure in long lengths of optical fiber via self-propelled self-focusing,” Post deadline paper PD7, 8th National Quantum Electronics Conf., QE8, St. Andrews, Scotland, UK, (21–25 September 1987).

J. W. Goethe, Faust: Texte und Kommentare: 2 Bände, with commentary by Albrecht Schöne (Insel Verlag, 2003).

R. Kashyap, “High average power effects in optical fibers and devices,” SPIE 4940, Reliability of Optical Fiber Components, Devices, Systems, and Networks, ed. H. G. Limberger, M. J. Matthewson, (SPIE, Bellingham, WA, 2003), 108–117 (2003).

I. A. Bufetov, POWAG '2002, Lecture 16, St. Petersburg, Russia, (June 21–24, 2002).

R. Kashyap, “Self-propelled self-focusing damage in optical fibers,” in Proceedings of The Xth International Conference on Lasers, 859–866, Stateline, Lake Tahoe, Nevada, USA, Ed. F. J. Duarte, (STS Press, 1987)

R. Wyatt, R. M. Percival, and R. Kashyap, “Optical communication system and method of protecting an optical route,” US Patent 7,162,161 B2 (2007).

Y. P. Raizer, Laser-Induced Discharge Phenomena (Plenum Publishing, 1977).

W. Beust and W. L. Ford, “Arcing in CW transmitters,” Microwave J., MTT. 10, 91 (1961).

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Ultimate power limits of optical fibers,” Paper OMO6, NFOEC/OFC (2010).

K. Seo, N. Nishimura, M. Shiino, R. Yuguchi, and H. Sasaki, “Evaluation of high-power endurance in optical fiber links,” Furukawa Review 24 (2003).

S. Todoroki and S. Inoue, “Optical fuse made of silica glass optical fibers spliced through low-melting glass with carbon-coating,” Proceedings of XX Int. Cong. on Glass, paper O-14–010, Kyoto, Japan (2004).

S. Todoroki, “Fiber fuse propagation behavior,” Optical Fibers/Book 4, ed. Y. Moh, (InTech, 2011) [Online] http://www.intechweb.org/books/ ).

R. Kashyap, A. Sayles, and G. F. Cornwell, “Heatflow modeling and visualisation of catastrophic self-propelled damage in single mode optical fibers,” Optical Fibers Measurement Symposium, Boulder, SPIE 2966, 586–591 (1996).

R. Kashyap, US patent Number: 5,022,734 “Method of modifying an optical waveguide and waveguide so modified,” (filed 21 September 1988.)

http://www.finisar.com/technical-information , “Operational issues in the deployment of Raman amplifiers (Updated November 2012),” Technical Papers: Optical Amplifiers.

http://www.redcinc.com/?CategoryID=267&ArticleID=301

P. St. J. Russell, Private Communication (2012).

V. P. Gapontsev, “Advances in power scaling of fiber lasers,” Paper 8601–13, Photonics West (2013).

Supplementary Material (1)

» Media 1: AVI (2620 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (28)

Fig. 1
Fig. 1

A magnified photograph of the HCB used in the first observation of propagating damage in optical fibers. The dimensions of the bullet marks: ~3 microns in the vertical direction by ~10 microns long (Note: Vertical scale is different to horizontal scale).

Fig. 2
Fig. 2

Self-focusing induced plasma in air. The velocity of propagation is 105 m/s and the optical intensity is ~1011 W-cm−2. Adapted from Ref [7].

Fig. 3
Fig. 3

(a) Original movie of optical damage from 1987 (Media 1). (b) 125 micron diameter fiber, with a hole in the core after the damage terminated at the input end - adapted from Ref [8].

Fig. 4
Fig. 4

The output end of the optical fiber at the point where the fusion arc from a splicer was struck.

Fig. 5
Fig. 5

The experimental arrangement to measure the velocity of propagation of the damage.

Fig. 6
Fig. 6

Velocity of plasma propagation vs power density. (From Ref. 9). Also shown are the three measured threshold values (a, b, c) below which the damage does not propagate. Fibers A, B & C are with 1064nm radiation, Fiber B: with 514nm radiation.

Fig. 7
Fig. 7

Transmission loss vs. temperature of various fibers: (1) Chalcogenide, (2) Fluoride, (3) Silica/Germania fiber [7]. Adapted from Ref [10].

Fig. 8
Fig. 8

A frame of the video taken by Todoroki [11], showing how the long void self assembles into periodic voids. The void just being formed detaches itself from the long section, and freezes as the heat zone moves on. Note that the laser light is propagating from the left.

Fig. 9
Fig. 9

(a) A micro-Raman measurement of the damage cavity, showing the presence of molecular oxygen’s vibrational mode [9] estimated to be under 4 atmospheres pressure. The release of oxygen is from a breakdown of the silica and Germania into sub-oxides, SiOx and GeOx. (b) Formation of a capillary after heat is applied to the cavities in the fiber.

Fig. 10
Fig. 10

Refractive index profile of the fiber before and after damage. The increase in refractive index is clearly differentiated and seen to be 10x in region 1 in (b), decreasing towards the laser in region 2 and 2 in (b). Adapted from Ref [15].

Fig. 11
Fig. 11

Effect on the cavity shape with different pulse widths from an Nd:YAG laser.

Fig. 12
Fig. 12

The scheme used for the measurement of periodic emission from the plasma. b). The periodic emission correlated with the spatial distance between cavities in the fiber [9].

Fig. 13
Fig. 13

The temperature profile of the fiber in the inset, for different input power densities. T is the core and θ, is the cladding temperature. From Ref [13].

Fig. 14
Fig. 14

(a) The temperature contour of a plasma in a fiber generated with a power density of 10MW-cm−2. with a lateral dimension of 125 microns. The total horizontal length scale is approximately100 microns. (b) Solitonic temperature profile of the plasma. Adapted from Ref [18].

Fig. 15
Fig. 15

Comparison between plasma velocity made by difference researchers. Adapted from Davies et al. [17], with the author’s annotations in color.

Fig. 16
Fig. 16

Idealized refractive index of the core (Solid red line) and the v-value (Long dashed black line) of a standard optical fiber as a function of temperature, assuming a constant positive refractive index coefficient below and a negative refractive index coefficient above 1773°C. The cladding refractive index (short dashed blue line) is assumed to remain constant.

Fig. 17
Fig. 17

(a) Blackbody radiation and measured spectra of the plasma emission at various powers for fibers with mode diameters of 4 (Fiber 1) and 5.75 microns (Fiber 2). (b) Plasma propagation velocity and its corresponding plasma temperature. Adapted from Ref [23].

Fig. 18
Fig. 18

Formation of the bubbles at the damage propagates [From Ref [30].).

Fig. 19
Fig. 19

Absorption increase due to electron (plasma) generation in silica (a). (b) shows the contributions to absorption due to different mechanisms as a function of temperature. From Ref [31].

Fig. 20
Fig. 20

The experimental arrangement to observe backscattered light from the moving plasma (a). Periodic moving reflection from the cavities produces a spectra of Doppler shifted frequencies (b). From Abedin et al. [30].

Fig. 21
Fig. 21

Damage propagation velocity vs. mode field width. Adapted from Ref [9].

Fig. 22
Fig. 22

The end of a fluoride fiber after damage at a power of 0.5 W at 1064 nm wavelength (a). Adapted from Dianov et. al. [35]. SEM of microstructured fiber before damage (b). Damage sustained by 9W of 1064nm radiation (c). Adapted from Dianov et. al. [36].

Fig. 23
Fig. 23

(a) shows the pristine HAF before damage. (b) shows the collapse of the holes into one central hole at a certain position in the fiber after damage. (c) shows an intermediate region. Adapted from Ref [37].

Fig. 24
Fig. 24

Collapse of a laser beam in a multimode optical fiber as a function of peak energy launched. The change in refractive index in the core is only ~10−6. Adapted from Ref [39].

Fig. 25
Fig. 25

Damage propagation initiated by self-guidance in a glass slide. A fs pulse self-writes a waveguide which allows the pulse to propagate to the end of the slide, at which point dielectric-breakdown in air generates heat, causing the fiber-fuse to be initiated. Adapted from Ref [40].

Fig. 26
Fig. 26

Damage diffractive optical element fabricated in optical fiber above a critical optical threshold. The graph shows the “effective” induced refractive index change as a function of pulse energy, indicating a distinct threshold above which damage ensues. Adapted from Ref [41].

Fig. 27
Fig. 27

Power handling capacity of optical fibers. Modified from Ref [42].

Fig. 28
Fig. 28

A real fiber fuse, which damages above a certain optical power and effectively breaks the optical circuit. From Ref [44].

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T r = k( r,λ )W π r 2 ρ c p ν

Metrics