Abstract

We propose a device that can take an arbitrary monochromatic input beam and, automatically and without any calculations, couple it into a single-mode guide or beam. Simple feedback loops from detectors to modulator elements allow the device to adapt to any specific input beam form. Potential applications include automatic compensation for misalignment and defocusing of an input beam, coupling of complex modes or multiple beams from fibers or free space to single-mode guides, and retaining coupling to a moving source. Straightforward extensions allow multiple different overlapping orthogonal input beams to be separated simultaneously to different single-mode guides with no splitting loss in principle. The approach is suitable for implementation in integrated optics platforms that offer elements such as phase shifters, Mach-Zehnder interferometers, grating couplers, and integrated monitoring detectors, and the basic approach is applicable in principle to other types of waves, such as microwaves or acoustics.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle., “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6x6 MIMO processing,” J. Lightwave Technol.30(4), 521–531 (2012).
    [CrossRef]
  2. A. E. Willner, J. Wang, and H. Huang, “Applied physics. A different angle on light communications,” Science337(6095), 655–656 (2012).
    [CrossRef] [PubMed]
  3. T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, and S. J. B. Yoo, “Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express20(9), 9396–9402 (2012).
    [CrossRef] [PubMed]
  4. Y. Jiao, S. Fan, and D. A. B. Miller, “Demonstration of systematic photonic crystal device design and optimization by low-rank adjustments: an extremely compact mode separator,” Opt. Lett.30(2), 141–143 (2005).
    [CrossRef] [PubMed]
  5. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012), doi:.
    [CrossRef]
  6. D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Joint Tx-Rx beamforming design for multicarrier MIMO channels: A unified framework for convex optimization,” IEEE Trans. Signal Process.51(9), 2381–2401 (2003).
    [CrossRef]
  7. S. Azam, T. Yasui, and K. Jinguji, “Synthesis algorithm of a multi-channel lattice-form optical delay-line circuit,” Optik (Stuttg.)121(12), 1075–1083 (2010).
    [CrossRef]
  8. S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express19(14), 13245–13256 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-13245 .
    [CrossRef] [PubMed]
  9. R. N. Mahalati, D. Askarov, J. P. Wilde, and J. M. Kahn, “Adaptive control of input field to achieve desired output intensity profile in multimode fiber with random mode coupling,” Opt. Express20(13), 14321–14337 (2012).
    [CrossRef] [PubMed]
  10. T. M. Shay, “Theory of electronically phased coherent beam combination without a reference beam,” Opt. Express14(25), 12188–12195 (2006).
    [CrossRef] [PubMed]
  11. S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 x 32 optical matrix switch,” European Conference on Optical Communications (ECOC 2006), Cannes, France, 24 – 28 Sept. 2006, Paper OThV4. 10.1109/ECOC.2006.4801113
    [CrossRef]
  12. G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, and D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Quantum Electron.17(3), 571–580 (2011).
    [CrossRef]
  13. K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-Insulator,” Opt. Express18(13), 13655–13660 (2010).
    [CrossRef] [PubMed]
  14. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express15(4), 1567–1578 (2007).
    [CrossRef] [PubMed]
  15. G. Roelkens, D. Van Thourhout, and R. Baets, “Silicon-on-insulator ultra-compact duplexer based on a diffractive grating structure,” Opt. Express15(16), 10091–10096 (2007).
    [CrossRef] [PubMed]
  16. F. Van Laere, W. Bogaerts, P. Dumon, G. Roelkens, D. Van Thourhout, and R. Baets, “Focusing polarization diversity grating couplers in silicon-on-insulator,” J. Lightwave Technol.27(5), 612–618 (2009).
    [CrossRef]
  17. T. Baehr-Jones, M. Hochberg, and A. Scherer, “Photodetection in silicon beyond the band edge with surface states,” Opt. Express16(3), 1659–1668 (2008).
    [CrossRef] [PubMed]
  18. J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett.86(24), 241103 (2005), doi:.
    [CrossRef]
  19. D. F. Logan, P. E. Jessop, and A. P. Knights, “Modeling defect enhanced detection at 1550 nm in integrated silicon waveguide photodetectors,” J. Lightwave Technol.27(7), 930–937 (2009).
    [CrossRef]
  20. M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express17(7), 5193–5204 (2009).
    [CrossRef] [PubMed]
  21. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
    [CrossRef] [PubMed]
  22. D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express20(21), 23985–23993 (2012).
    [CrossRef] [PubMed]
  23. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493(7431), 195–199 (2013), doi:.
    [CrossRef] [PubMed]
  24. A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett.37(20), 4236–4238 (2012).
    [CrossRef] [PubMed]
  25. D. A. B. Miller, “How complicated must an optical component be?” J. Opt. Soc. Am. A30(2), 238–251 (2013).
    [CrossRef]
  26. K. Chang, ed., Handbook of RF/Microwave Components and Engineering (Wiley, 2003).
  27. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008), doi:.
    [CrossRef]
  28. D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics1(1), 9–16 (2012), doi:.
    [CrossRef]
  29. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
    [CrossRef] [PubMed]
  30. D. A. B. Miller, “Self-configuring universal linear optical component,” Photonics Research. (to be published).

2013 (2)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493(7431), 195–199 (2013), doi:.
[CrossRef] [PubMed]

D. A. B. Miller, “How complicated must an optical component be?” J. Opt. Soc. Am. A30(2), 238–251 (2013).
[CrossRef]

2012 (8)

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle., “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6x6 MIMO processing,” J. Lightwave Technol.30(4), 521–531 (2012).
[CrossRef]

T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, and S. J. B. Yoo, “Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express20(9), 9396–9402 (2012).
[CrossRef] [PubMed]

R. N. Mahalati, D. Askarov, J. P. Wilde, and J. M. Kahn, “Adaptive control of input field to achieve desired output intensity profile in multimode fiber with random mode coupling,” Opt. Express20(13), 14321–14337 (2012).
[CrossRef] [PubMed]

D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express20(21), 23985–23993 (2012).
[CrossRef] [PubMed]

A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett.37(20), 4236–4238 (2012).
[CrossRef] [PubMed]

A. E. Willner, J. Wang, and H. Huang, “Applied physics. A different angle on light communications,” Science337(6095), 655–656 (2012).
[CrossRef] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012), doi:.
[CrossRef]

D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics1(1), 9–16 (2012), doi:.
[CrossRef]

2011 (3)

G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, and D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Quantum Electron.17(3), 571–580 (2011).
[CrossRef]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express19(14), 13245–13256 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-13245 .
[CrossRef] [PubMed]

2010 (3)

K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-Insulator,” Opt. Express18(13), 13655–13660 (2010).
[CrossRef] [PubMed]

S. Azam, T. Yasui, and K. Jinguji, “Synthesis algorithm of a multi-channel lattice-form optical delay-line circuit,” Optik (Stuttg.)121(12), 1075–1083 (2010).
[CrossRef]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (2)

T. Baehr-Jones, M. Hochberg, and A. Scherer, “Photodetection in silicon beyond the band edge with surface states,” Opt. Express16(3), 1659–1668 (2008).
[CrossRef] [PubMed]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008), doi:.
[CrossRef]

2007 (2)

2006 (1)

2005 (2)

Y. Jiao, S. Fan, and D. A. B. Miller, “Demonstration of systematic photonic crystal device design and optimization by low-rank adjustments: an extremely compact mode separator,” Opt. Lett.30(2), 141–143 (2005).
[CrossRef] [PubMed]

J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett.86(24), 241103 (2005), doi:.
[CrossRef]

2003 (1)

D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Joint Tx-Rx beamforming design for multicarrier MIMO channels: A unified framework for convex optimization,” IEEE Trans. Signal Process.51(9), 2381–2401 (2003).
[CrossRef]

Askarov, D.

Azam, S.

S. Azam, T. Yasui, and K. Jinguji, “Synthesis algorithm of a multi-channel lattice-form optical delay-line circuit,” Optik (Stuttg.)121(12), 1075–1083 (2010).
[CrossRef]

Baehr-Jones, T.

Baets, R.

Balram, K. C.

D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics1(1), 9–16 (2012), doi:.
[CrossRef]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Biberman, A.

Bogaerts, W.

Bolle, C.

Bradley, J. D. B.

J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett.86(24), 241103 (2005), doi:.
[CrossRef]

Brongersma, M. L.

D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics1(1), 9–16 (2012), doi:.
[CrossRef]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Burrows, E. C.

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Cai, X.

Cheung, S.

Cioffi, J. M.

D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Joint Tx-Rx beamforming design for multicarrier MIMO channels: A unified framework for convex optimization,” IEEE Trans. Signal Process.51(9), 2381–2401 (2003).
[CrossRef]

Danziger, S.

Desiatov, B.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Ding, Z.

Djordjevic, S. S.

Dumon, P.

Esmaeelpour, M.

Essiambre, R.-J.

Fan, S.

Fink, M.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012), doi:.
[CrossRef]

Fontaine, N. K.

Geis, M. W.

Geisler, D. J.

Gnauck, A. H.

Goykhman, I.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Grein, M. E.

Guan, B.

Halir, R.

G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, and D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Quantum Electron.17(3), 571–580 (2011).
[CrossRef]

Hill, C. M.

Hochberg, M.

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493(7431), 195–199 (2013), doi:.
[CrossRef] [PubMed]

Huang, H.

A. E. Willner, J. Wang, and H. Huang, “Applied physics. A different angle on light communications,” Science337(6095), 655–656 (2012).
[CrossRef] [PubMed]

Ibrahim, S.

Jessop, P. E.

D. F. Logan, P. E. Jessop, and A. P. Knights, “Modeling defect enhanced detection at 1550 nm in integrated silicon waveguide photodetectors,” J. Lightwave Technol.27(7), 930–937 (2009).
[CrossRef]

J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett.86(24), 241103 (2005), doi:.
[CrossRef]

Jiao, Y.

Jinguji, K.

S. Azam, T. Yasui, and K. Jinguji, “Synthesis algorithm of a multi-channel lattice-form optical delay-line circuit,” Optik (Stuttg.)121(12), 1075–1083 (2010).
[CrossRef]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Kahn, J. M.

Khurgin, J.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Knights, A. P.

D. F. Logan, P. E. Jessop, and A. P. Knights, “Modeling defect enhanced detection at 1550 nm in integrated silicon waveguide photodetectors,” J. Lightwave Technol.27(7), 930–937 (2009).
[CrossRef]

J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett.86(24), 241103 (2005), doi:.
[CrossRef]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008), doi:.
[CrossRef]

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012), doi:.
[CrossRef]

Lagunas, M. A.

D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Joint Tx-Rx beamforming design for multicarrier MIMO channels: A unified framework for convex optimization,” IEEE Trans. Signal Process.51(9), 2381–2401 (2003).
[CrossRef]

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008), doi:.
[CrossRef]

Lennon, D. M.

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012), doi:.
[CrossRef]

Levy, U.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Lingle, R.

Logan, D. F.

Ly-Gagnon, D.-S.

D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics1(1), 9–16 (2012), doi:.
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008), doi:.
[CrossRef]

Lyszczarz, T. M.

Mahalati, R. N.

McCurdy, A. H.

Miller, D. A. B.

D. A. B. Miller, “How complicated must an optical component be?” J. Opt. Soc. Am. A30(2), 238–251 (2013).
[CrossRef]

D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express20(21), 23985–23993 (2012).
[CrossRef] [PubMed]

D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics1(1), 9–16 (2012), doi:.
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008), doi:.
[CrossRef]

Y. Jiao, S. Fan, and D. A. B. Miller, “Demonstration of systematic photonic crystal device design and optimization by low-rank adjustments: an extremely compact mode separator,” Opt. Lett.30(2), 141–143 (2005).
[CrossRef] [PubMed]

D. A. B. Miller, “Self-configuring universal linear optical component,” Photonics Research. (to be published).

Mosk, A. P.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012), doi:.
[CrossRef]

Mumtaz, S.

Okamoto, K.

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008), doi:.
[CrossRef]

Palomar, D. P.

D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Joint Tx-Rx beamforming design for multicarrier MIMO channels: A unified framework for convex optimization,” IEEE Trans. Signal Process.51(9), 2381–2401 (2003).
[CrossRef]

Peckham, D. W.

Pluk, E.

Pomerene, A. T.

Randel, S.

Roelkens, G.

Rogier, H.

Ryf, R.

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008), doi:.
[CrossRef]

Scherer, A.

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Scott, R. P.

Seaford, L. L.

Selvaraja, S.

G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, and D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Quantum Electron.17(3), 571–580 (2011).
[CrossRef]

Shappir, J.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Shaw, M. J.

Shay, T. M.

Sierra, A.

Spector, S. J.

Su, T.

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493(7431), 195–199 (2013), doi:.
[CrossRef] [PubMed]

Taillaert, D.

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008), doi:.
[CrossRef]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493(7431), 195–199 (2013), doi:.
[CrossRef] [PubMed]

A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett.37(20), 4236–4238 (2012).
[CrossRef] [PubMed]

Van Acoleyen, K.

Van Laere, F.

Van Thourhout, D.

Vermeulen, D.

G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, and D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Quantum Electron.17(3), 571–580 (2011).
[CrossRef]

Wahl, P.

D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics1(1), 9–16 (2012), doi:.
[CrossRef]

Wang, J.

A. E. Willner, J. Wang, and H. Huang, “Applied physics. A different angle on light communications,” Science337(6095), 655–656 (2012).
[CrossRef] [PubMed]

Watts, M. R.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493(7431), 195–199 (2013), doi:.
[CrossRef] [PubMed]

A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett.37(20), 4236–4238 (2012).
[CrossRef] [PubMed]

White, J. S.

D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics1(1), 9–16 (2012), doi:.
[CrossRef]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Wilde, J. P.

Willner, A. E.

A. E. Willner, J. Wang, and H. Huang, “Applied physics. A different angle on light communications,” Science337(6095), 655–656 (2012).
[CrossRef] [PubMed]

Winzer, P. J.

Wright, J. B.

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493(7431), 195–199 (2013), doi:.
[CrossRef] [PubMed]

Yasui, T.

S. Azam, T. Yasui, and K. Jinguji, “Synthesis algorithm of a multi-channel lattice-form optical delay-line circuit,” Optik (Stuttg.)121(12), 1075–1083 (2010).
[CrossRef]

Yoo, S. J. B.

Yoon, J. U.

Appl. Phys. Lett. (1)

J. D. B. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett.86(24), 241103 (2005), doi:.
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Roelkens, D. Vermeulen, S. Selvaraja, R. Halir, W. Bogaerts, and D. Van Thourhout, “Grating-based optical fiber interfaces for silicon-on-insulator photonic integrated circuits,” IEEE J. Quantum Electron.17(3), 571–580 (2011).
[CrossRef]

IEEE Trans. Signal Process. (1)

D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, “Joint Tx-Rx beamforming design for multicarrier MIMO channels: A unified framework for convex optimization,” IEEE Trans. Signal Process.51(9), 2381–2401 (2003).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Nanophotonics (1)

D.-S. Ly-Gagnon, K. C. Balram, J. S. White, P. Wahl, M. L. Brongersma, and D. A. B. Miller, “Routing and photodetection in subwavelength plasmonic slot waveguides,” Nanophotonics1(1), 9–16 (2012), doi:.
[CrossRef]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Nat. Photonics (2)

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012), doi:.
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008), doi:.
[CrossRef]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature493(7431), 195–199 (2013), doi:.
[CrossRef] [PubMed]

Opt. Express (10)

D. A. B. Miller, “All linear optical devices are mode converters,” Opt. Express20(21), 23985–23993 (2012).
[CrossRef] [PubMed]

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express17(7), 5193–5204 (2009).
[CrossRef] [PubMed]

T. Su, R. P. Scott, S. S. Djordjevic, N. K. Fontaine, D. J. Geisler, X. Cai, and S. J. B. Yoo, “Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices,” Opt. Express20(9), 9396–9402 (2012).
[CrossRef] [PubMed]

S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. B. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express19(14), 13245–13256 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-14-13245 .
[CrossRef] [PubMed]

R. N. Mahalati, D. Askarov, J. P. Wilde, and J. M. Kahn, “Adaptive control of input field to achieve desired output intensity profile in multimode fiber with random mode coupling,” Opt. Express20(13), 14321–14337 (2012).
[CrossRef] [PubMed]

T. M. Shay, “Theory of electronically phased coherent beam combination without a reference beam,” Opt. Express14(25), 12188–12195 (2006).
[CrossRef] [PubMed]

T. Baehr-Jones, M. Hochberg, and A. Scherer, “Photodetection in silicon beyond the band edge with surface states,” Opt. Express16(3), 1659–1668 (2008).
[CrossRef] [PubMed]

K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-Insulator,” Opt. Express18(13), 13655–13660 (2010).
[CrossRef] [PubMed]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express15(4), 1567–1578 (2007).
[CrossRef] [PubMed]

G. Roelkens, D. Van Thourhout, and R. Baets, “Silicon-on-insulator ultra-compact duplexer based on a diffractive grating structure,” Opt. Express15(16), 10091–10096 (2007).
[CrossRef] [PubMed]

Opt. Lett. (2)

Optik (Stuttg.) (1)

S. Azam, T. Yasui, and K. Jinguji, “Synthesis algorithm of a multi-channel lattice-form optical delay-line circuit,” Optik (Stuttg.)121(12), 1075–1083 (2010).
[CrossRef]

Photonics Research. (1)

D. A. B. Miller, “Self-configuring universal linear optical component,” Photonics Research. (to be published).

Science (1)

A. E. Willner, J. Wang, and H. Huang, “Applied physics. A different angle on light communications,” Science337(6095), 655–656 (2012).
[CrossRef] [PubMed]

Other (2)

S. Sohma, T. Watanabe, N. Ooba, M. Itoh, T. Shibata, and H. Takahashi, “Silica-based PLC type 32 x 32 optical matrix switch,” European Conference on Optical Communications (ECOC 2006), Cannes, France, 24 – 28 Sept. 2006, Paper OThV4. 10.1109/ECOC.2006.4801113
[CrossRef]

K. Chang, ed., Handbook of RF/Microwave Components and Engineering (Wiley, 2003).

Supplementary Material (1)

» Media 1: MOV (3822 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of the device structure. Diagonal grey rectangles represent controllable partial reflectors. Vertical clear rectangles represent controllable phase shifters.. (a) Coupler for a single input beam with four beamsplitter blocks (numbered 1 – 4), phase shifters P1 – P4 and reflectors R1 - R3 (Media 1). (b) Coupler for two simultaneous orthogonal input beams (connections from detectors to feedback electronics omitted for clarity).

Fig. 2
Fig. 2

Flow diagram for the self-aligning algorithm for the four-element device of Fig. 1(a).

Fig. 3
Fig. 3

Mach-Zehnder implementation with detectors. Device numberings correspond to those of Fig. 1. (a) Coupler for a single input beam. (b) Coupler as in (a) with dummy devices added to ensure equal path lengths and background losses. (c) Coupler for two simultaneous modes. The greyed-out lower portions in the bottom row of Mach-Zehnder devices are optional arms for symmetry only; simple controllable phase shifters could be substituted for these Mach-Zehnder devices.

Fig. 4
Fig. 4

(a) Figurative top-view schematic of an array of grating couplers with a set of Mach-Zehnder devices to produce one beam at the output waveguide, analogous to Fig. 3(a). For graphic simplicity, we omit here any additional lengths of waveguide and possible dummy Mach-Zehnder devices to equalize path lengths and losses. (b) Illustration of the addition of a lenslet array to improve the fill factor. The input beam is shone onto the grating coupler surface or onto the lenslet array.

Fig. 5
Fig. 5

Alternative binary approach for coupling one arbitrary input beam to a single output beam. P1 – P4 are controllable phase shifters, MA1 – MC1 are controllable MZ interferometers, and DA1 – DC1 are detectors used to give the signals for feedback loops. The dummy phase shifters are optional and could be included for equality of path lengths and/or loss.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

t n = 1 r n 2
E n = E no exp( i ϕ n )
ϕ 4 + θ 4 = ϕ 3 + π 2 π+2mπ
ϕ 4 + θ 4 = ϕ 3 π/2
θ 4 = ϕ 3 ϕ 4 π/2
E 4o r 3 = E 3o t 3
r 3 = E 3o / E 4o 2 + E 30 2 and t 3 = E 4o / E 4o 2 + E 30 2
E P3 = E 4o exp[ i( ϕ 4 + θ 4 ) ] t 3 exp( iπ/2 )+ E 3o exp( i ϕ 3 ) r 3
E P3 = E P3o exp( i ϕ 3 )
E P3o = E 4o 2 + E 3o 2
E P2 = E 4o 2 + E 3o 2 + E 2o 2 exp( i ϕ 2 )
E P1 = E 4o 2 + E 3o 2 + E 2o 2 + E 1o 2 exp( i ϕ 1 )
I n = E no 2
I out = | E P1 | 2 = I 1 + I 2 + I 3 + I 4

Metrics