Abstract

The combination of photoluminescence (PL) and cholesteric liquid crystal (CLC) provides interesting complementary features for an optimized display application. Distortion of the Bragg lattice of CLCs decreases selective reflection but increases fluorescence intensity; recovery of a uniform lattice in turn results in increased reflection and decreased fluorescence. This complementary relationship between the fluorescence and the Bragg reflection gives rise to self-compensations for color shifts due to either dynamic slow response of CLC helix or mismatch of oblique incidence of light with respect to the helical axis. These color shifts have long been intrinsic unsolved limitations of conventional CLC devices. Thus, the complementary coupling between the fluorescence and the CLC Bragg reflections plays an important role in improving the color performance and the quality of moving images.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: Drive scheme and contrast,” Appl. Phys. Lett.64(15), 1905–1907 (1994).
    [CrossRef]
  2. D. M. Makow, “Peak reflectance and color gamut of superimposed left and right-handed cholesteric liquid crystals,” Appl. Opt.19(8), 1274–1277 (1980).
    [CrossRef] [PubMed]
  3. M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater.5(5), 361–364 (2006).
    [CrossRef] [PubMed]
  4. D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
    [CrossRef]
  5. P. Watson, V. Sergan, J. E. Anderson, J. Ruth, and P. J. Bos, “Characteristic times in the homeotropic to planar transition in cholesteric liquid crystals,” Liq. Cryst.26(5), 731–736 (1999).
    [CrossRef]
  6. Y. C. Yang, M. H. Lee, J. E. Kim, H. Y. Park, and J. C. Lee, “Theoretical Study on the Homeotropic-Transient Planar Transition of Cholesteric Liquid Crystals,” Jpn. J. Appl. Phys.40(Part 1, No. 2A), 649–653 (2001).
    [CrossRef]
  7. W. D. St. John, Z. J. Lu, and J. W. Doane, “Characterization of reflective cholesteric liquid-crystal displays,” J. Appl. Phys.78, 5253–5265 (1995).
    [CrossRef]
  8. W. D. S. John, W. J. Fritz, Z. J. Lu, and D. K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics51(2), 1191–1198 (1995).
  9. L. J. Yu and M. M. Labes, “Fluorescent liquid-crystal display utilizing an electric-field-induced cholesteric-nematic transition,” Appl. Phys. Lett.31(11), 719–720 (1977).
    [CrossRef]
  10. R. W. Filas and M. M. Labes, “Homogeneous-homeotropic fluorescent liquid crystal cells,” J. Appl. Phys.52(6), 3949–3953 (1981).
    [CrossRef]
  11. S. Sato and M. M. Labes, “Multicolor fluorescent display by scattering states in liquid crystals,” J. Appl. Phys.52(6), 3941–3948 (1981).
    [CrossRef]
  12. M. Grell and D. D. C. Bradley, “Polarized luminescence from oriented molecular materials,” Adv. Mater.11(11), 895–905 (1999).
    [CrossRef]
  13. S. Chen, D. Katsis, A. Schmid, J. Mastrangelo, T. Tsutsui, and T. Blanton, “Circularly polarized light generated by photoexcitation of luminophores in glassy liquid-crystal films,” Nature397(6719), 506–508 (1999).
    [CrossRef]
  14. K. L. Woon, M. O'Neill, G. J. Richards, M. P. Aldred, S. M. Kelly, and A. M. Fox, “Highly Circularly Polarized Photoluminescence over a Broad Spectral Range from a Calamitic, Hole‐Transporting, Chiral Nematic Glass and from an Indirectly Excited Dye,” Adv. Mater.15(18), 1555–1558 (2003).
    [CrossRef]
  15. Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable Lasing from a Cholesteric Liquid Crystal Film Embedded With a Liquid Crystal Nanopore Network,” Adv. Mater.23(46), 5498–5501 (2011).
    [CrossRef] [PubMed]
  16. R. Yamaguchi, H. Nagato, H. Hafiz, and S. Sato, “Sensitized Fluorescence of Dichroic Dye in Emissive Type Liquid Crystal Displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)410(1), 495–504 (2004).
    [CrossRef]
  17. N. Ohta and A. R. Robertson, Colorimetry, Fundamentals and Applications (John Wiley & Sons, Ltd, Chichester, England, 2005).
  18. J. K. Song, J. K. Vij, and B. K. Sadashiva, “Conoscopy of chiral smectic liquid crystal cells,” J. Opt. Soc. Am. A25(7), 1820–1827 (2008).
    [CrossRef] [PubMed]
  19. P. Yeh, “Electromagnetic propagation in birefringent layered media,” J. Opt. Soc. Am.69(5), 742–756 (1979).
    [CrossRef]

2011 (1)

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable Lasing from a Cholesteric Liquid Crystal Film Embedded With a Liquid Crystal Nanopore Network,” Adv. Mater.23(46), 5498–5501 (2011).
[CrossRef] [PubMed]

2008 (1)

2006 (1)

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater.5(5), 361–364 (2006).
[CrossRef] [PubMed]

2004 (1)

R. Yamaguchi, H. Nagato, H. Hafiz, and S. Sato, “Sensitized Fluorescence of Dichroic Dye in Emissive Type Liquid Crystal Displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)410(1), 495–504 (2004).
[CrossRef]

2003 (1)

K. L. Woon, M. O'Neill, G. J. Richards, M. P. Aldred, S. M. Kelly, and A. M. Fox, “Highly Circularly Polarized Photoluminescence over a Broad Spectral Range from a Calamitic, Hole‐Transporting, Chiral Nematic Glass and from an Indirectly Excited Dye,” Adv. Mater.15(18), 1555–1558 (2003).
[CrossRef]

2001 (1)

Y. C. Yang, M. H. Lee, J. E. Kim, H. Y. Park, and J. C. Lee, “Theoretical Study on the Homeotropic-Transient Planar Transition of Cholesteric Liquid Crystals,” Jpn. J. Appl. Phys.40(Part 1, No. 2A), 649–653 (2001).
[CrossRef]

1999 (3)

P. Watson, V. Sergan, J. E. Anderson, J. Ruth, and P. J. Bos, “Characteristic times in the homeotropic to planar transition in cholesteric liquid crystals,” Liq. Cryst.26(5), 731–736 (1999).
[CrossRef]

M. Grell and D. D. C. Bradley, “Polarized luminescence from oriented molecular materials,” Adv. Mater.11(11), 895–905 (1999).
[CrossRef]

S. Chen, D. Katsis, A. Schmid, J. Mastrangelo, T. Tsutsui, and T. Blanton, “Circularly polarized light generated by photoexcitation of luminophores in glassy liquid-crystal films,” Nature397(6719), 506–508 (1999).
[CrossRef]

1995 (2)

W. D. St. John, Z. J. Lu, and J. W. Doane, “Characterization of reflective cholesteric liquid-crystal displays,” J. Appl. Phys.78, 5253–5265 (1995).
[CrossRef]

W. D. S. John, W. J. Fritz, Z. J. Lu, and D. K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics51(2), 1191–1198 (1995).

1994 (2)

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: Drive scheme and contrast,” Appl. Phys. Lett.64(15), 1905–1907 (1994).
[CrossRef]

1981 (2)

R. W. Filas and M. M. Labes, “Homogeneous-homeotropic fluorescent liquid crystal cells,” J. Appl. Phys.52(6), 3949–3953 (1981).
[CrossRef]

S. Sato and M. M. Labes, “Multicolor fluorescent display by scattering states in liquid crystals,” J. Appl. Phys.52(6), 3941–3948 (1981).
[CrossRef]

1980 (1)

1979 (1)

1977 (1)

L. J. Yu and M. M. Labes, “Fluorescent liquid-crystal display utilizing an electric-field-induced cholesteric-nematic transition,” Appl. Phys. Lett.31(11), 719–720 (1977).
[CrossRef]

Aldred, M. P.

K. L. Woon, M. O'Neill, G. J. Richards, M. P. Aldred, S. M. Kelly, and A. M. Fox, “Highly Circularly Polarized Photoluminescence over a Broad Spectral Range from a Calamitic, Hole‐Transporting, Chiral Nematic Glass and from an Indirectly Excited Dye,” Adv. Mater.15(18), 1555–1558 (2003).
[CrossRef]

Anderson, J. E.

P. Watson, V. Sergan, J. E. Anderson, J. Ruth, and P. J. Bos, “Characteristic times in the homeotropic to planar transition in cholesteric liquid crystals,” Liq. Cryst.26(5), 731–736 (1999).
[CrossRef]

Blanton, T.

S. Chen, D. Katsis, A. Schmid, J. Mastrangelo, T. Tsutsui, and T. Blanton, “Circularly polarized light generated by photoexcitation of luminophores in glassy liquid-crystal films,” Nature397(6719), 506–508 (1999).
[CrossRef]

Bos, P. J.

P. Watson, V. Sergan, J. E. Anderson, J. Ruth, and P. J. Bos, “Characteristic times in the homeotropic to planar transition in cholesteric liquid crystals,” Liq. Cryst.26(5), 731–736 (1999).
[CrossRef]

Bradley, D. D. C.

M. Grell and D. D. C. Bradley, “Polarized luminescence from oriented molecular materials,” Adv. Mater.11(11), 895–905 (1999).
[CrossRef]

Chen, S.

S. Chen, D. Katsis, A. Schmid, J. Mastrangelo, T. Tsutsui, and T. Blanton, “Circularly polarized light generated by photoexcitation of luminophores in glassy liquid-crystal films,” Nature397(6719), 506–508 (1999).
[CrossRef]

Chien, L. C.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

Dessaud, N.

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater.5(5), 361–364 (2006).
[CrossRef] [PubMed]

Doane, J. W.

W. D. St. John, Z. J. Lu, and J. W. Doane, “Characterization of reflective cholesteric liquid-crystal displays,” J. Appl. Phys.78, 5253–5265 (1995).
[CrossRef]

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: Drive scheme and contrast,” Appl. Phys. Lett.64(15), 1905–1907 (1994).
[CrossRef]

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

Filas, R. W.

R. W. Filas and M. M. Labes, “Homogeneous-homeotropic fluorescent liquid crystal cells,” J. Appl. Phys.52(6), 3949–3953 (1981).
[CrossRef]

Fox, A. M.

K. L. Woon, M. O'Neill, G. J. Richards, M. P. Aldred, S. M. Kelly, and A. M. Fox, “Highly Circularly Polarized Photoluminescence over a Broad Spectral Range from a Calamitic, Hole‐Transporting, Chiral Nematic Glass and from an Indirectly Excited Dye,” Adv. Mater.15(18), 1555–1558 (2003).
[CrossRef]

Fritz, W. J.

W. D. S. John, W. J. Fritz, Z. J. Lu, and D. K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics51(2), 1191–1198 (1995).

Fujii, A.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable Lasing from a Cholesteric Liquid Crystal Film Embedded With a Liquid Crystal Nanopore Network,” Adv. Mater.23(46), 5498–5501 (2011).
[CrossRef] [PubMed]

Glasser, J.

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: Drive scheme and contrast,” Appl. Phys. Lett.64(15), 1905–1907 (1994).
[CrossRef]

Grell, M.

M. Grell and D. D. C. Bradley, “Polarized luminescence from oriented molecular materials,” Adv. Mater.11(11), 895–905 (1999).
[CrossRef]

Hafiz, H.

R. Yamaguchi, H. Nagato, H. Hafiz, and S. Sato, “Sensitized Fluorescence of Dichroic Dye in Emissive Type Liquid Crystal Displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)410(1), 495–504 (2004).
[CrossRef]

Inoue, K.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable Lasing from a Cholesteric Liquid Crystal Film Embedded With a Liquid Crystal Nanopore Network,” Adv. Mater.23(46), 5498–5501 (2011).
[CrossRef] [PubMed]

Inoue, Y.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable Lasing from a Cholesteric Liquid Crystal Film Embedded With a Liquid Crystal Nanopore Network,” Adv. Mater.23(46), 5498–5501 (2011).
[CrossRef] [PubMed]

John, W. D. S.

W. D. S. John, W. J. Fritz, Z. J. Lu, and D. K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics51(2), 1191–1198 (1995).

Katsis, D.

S. Chen, D. Katsis, A. Schmid, J. Mastrangelo, T. Tsutsui, and T. Blanton, “Circularly polarized light generated by photoexcitation of luminophores in glassy liquid-crystal films,” Nature397(6719), 506–508 (1999).
[CrossRef]

Kelly, S. M.

K. L. Woon, M. O'Neill, G. J. Richards, M. P. Aldred, S. M. Kelly, and A. M. Fox, “Highly Circularly Polarized Photoluminescence over a Broad Spectral Range from a Calamitic, Hole‐Transporting, Chiral Nematic Glass and from an Indirectly Excited Dye,” Adv. Mater.15(18), 1555–1558 (2003).
[CrossRef]

Kim, J. E.

Y. C. Yang, M. H. Lee, J. E. Kim, H. Y. Park, and J. C. Lee, “Theoretical Study on the Homeotropic-Transient Planar Transition of Cholesteric Liquid Crystals,” Jpn. J. Appl. Phys.40(Part 1, No. 2A), 649–653 (2001).
[CrossRef]

Kubo, H.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable Lasing from a Cholesteric Liquid Crystal Film Embedded With a Liquid Crystal Nanopore Network,” Adv. Mater.23(46), 5498–5501 (2011).
[CrossRef] [PubMed]

Labes, M. M.

S. Sato and M. M. Labes, “Multicolor fluorescent display by scattering states in liquid crystals,” J. Appl. Phys.52(6), 3941–3948 (1981).
[CrossRef]

R. W. Filas and M. M. Labes, “Homogeneous-homeotropic fluorescent liquid crystal cells,” J. Appl. Phys.52(6), 3949–3953 (1981).
[CrossRef]

L. J. Yu and M. M. Labes, “Fluorescent liquid-crystal display utilizing an electric-field-induced cholesteric-nematic transition,” Appl. Phys. Lett.31(11), 719–720 (1977).
[CrossRef]

Lee, J. C.

Y. C. Yang, M. H. Lee, J. E. Kim, H. Y. Park, and J. C. Lee, “Theoretical Study on the Homeotropic-Transient Planar Transition of Cholesteric Liquid Crystals,” Jpn. J. Appl. Phys.40(Part 1, No. 2A), 649–653 (2001).
[CrossRef]

Lee, M. H.

Y. C. Yang, M. H. Lee, J. E. Kim, H. Y. Park, and J. C. Lee, “Theoretical Study on the Homeotropic-Transient Planar Transition of Cholesteric Liquid Crystals,” Jpn. J. Appl. Phys.40(Part 1, No. 2A), 649–653 (2001).
[CrossRef]

Lu, Z. J.

W. D. S. John, W. J. Fritz, Z. J. Lu, and D. K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics51(2), 1191–1198 (1995).

W. D. St. John, Z. J. Lu, and J. W. Doane, “Characterization of reflective cholesteric liquid-crystal displays,” J. Appl. Phys.78, 5253–5265 (1995).
[CrossRef]

Makow, D. M.

Mastrangelo, J.

S. Chen, D. Katsis, A. Schmid, J. Mastrangelo, T. Tsutsui, and T. Blanton, “Circularly polarized light generated by photoexcitation of luminophores in glassy liquid-crystal films,” Nature397(6719), 506–508 (1999).
[CrossRef]

Mitov, M.

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater.5(5), 361–364 (2006).
[CrossRef] [PubMed]

Nagato, H.

R. Yamaguchi, H. Nagato, H. Hafiz, and S. Sato, “Sensitized Fluorescence of Dichroic Dye in Emissive Type Liquid Crystal Displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)410(1), 495–504 (2004).
[CrossRef]

O'Neill, M.

K. L. Woon, M. O'Neill, G. J. Richards, M. P. Aldred, S. M. Kelly, and A. M. Fox, “Highly Circularly Polarized Photoluminescence over a Broad Spectral Range from a Calamitic, Hole‐Transporting, Chiral Nematic Glass and from an Indirectly Excited Dye,” Adv. Mater.15(18), 1555–1558 (2003).
[CrossRef]

Ozaki, M.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable Lasing from a Cholesteric Liquid Crystal Film Embedded With a Liquid Crystal Nanopore Network,” Adv. Mater.23(46), 5498–5501 (2011).
[CrossRef] [PubMed]

Park, H. Y.

Y. C. Yang, M. H. Lee, J. E. Kim, H. Y. Park, and J. C. Lee, “Theoretical Study on the Homeotropic-Transient Planar Transition of Cholesteric Liquid Crystals,” Jpn. J. Appl. Phys.40(Part 1, No. 2A), 649–653 (2001).
[CrossRef]

Richards, G. J.

K. L. Woon, M. O'Neill, G. J. Richards, M. P. Aldred, S. M. Kelly, and A. M. Fox, “Highly Circularly Polarized Photoluminescence over a Broad Spectral Range from a Calamitic, Hole‐Transporting, Chiral Nematic Glass and from an Indirectly Excited Dye,” Adv. Mater.15(18), 1555–1558 (2003).
[CrossRef]

Ruth, J.

P. Watson, V. Sergan, J. E. Anderson, J. Ruth, and P. J. Bos, “Characteristic times in the homeotropic to planar transition in cholesteric liquid crystals,” Liq. Cryst.26(5), 731–736 (1999).
[CrossRef]

Sadashiva, B. K.

Sato, S.

R. Yamaguchi, H. Nagato, H. Hafiz, and S. Sato, “Sensitized Fluorescence of Dichroic Dye in Emissive Type Liquid Crystal Displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)410(1), 495–504 (2004).
[CrossRef]

S. Sato and M. M. Labes, “Multicolor fluorescent display by scattering states in liquid crystals,” J. Appl. Phys.52(6), 3941–3948 (1981).
[CrossRef]

Schmid, A.

S. Chen, D. Katsis, A. Schmid, J. Mastrangelo, T. Tsutsui, and T. Blanton, “Circularly polarized light generated by photoexcitation of luminophores in glassy liquid-crystal films,” Nature397(6719), 506–508 (1999).
[CrossRef]

Sergan, V.

P. Watson, V. Sergan, J. E. Anderson, J. Ruth, and P. J. Bos, “Characteristic times in the homeotropic to planar transition in cholesteric liquid crystals,” Liq. Cryst.26(5), 731–736 (1999).
[CrossRef]

Shiozaki, Y.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable Lasing from a Cholesteric Liquid Crystal Film Embedded With a Liquid Crystal Nanopore Network,” Adv. Mater.23(46), 5498–5501 (2011).
[CrossRef] [PubMed]

Song, J. K.

St. John, W. D.

W. D. St. John, Z. J. Lu, and J. W. Doane, “Characterization of reflective cholesteric liquid-crystal displays,” J. Appl. Phys.78, 5253–5265 (1995).
[CrossRef]

Tsutsui, T.

S. Chen, D. Katsis, A. Schmid, J. Mastrangelo, T. Tsutsui, and T. Blanton, “Circularly polarized light generated by photoexcitation of luminophores in glassy liquid-crystal films,” Nature397(6719), 506–508 (1999).
[CrossRef]

Vij, J. K.

Watson, P.

P. Watson, V. Sergan, J. E. Anderson, J. Ruth, and P. J. Bos, “Characteristic times in the homeotropic to planar transition in cholesteric liquid crystals,” Liq. Cryst.26(5), 731–736 (1999).
[CrossRef]

West, J. L.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

Woon, K. L.

K. L. Woon, M. O'Neill, G. J. Richards, M. P. Aldred, S. M. Kelly, and A. M. Fox, “Highly Circularly Polarized Photoluminescence over a Broad Spectral Range from a Calamitic, Hole‐Transporting, Chiral Nematic Glass and from an Indirectly Excited Dye,” Adv. Mater.15(18), 1555–1558 (2003).
[CrossRef]

Yamaguchi, R.

R. Yamaguchi, H. Nagato, H. Hafiz, and S. Sato, “Sensitized Fluorescence of Dichroic Dye in Emissive Type Liquid Crystal Displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)410(1), 495–504 (2004).
[CrossRef]

Yang, D. K.

W. D. S. John, W. J. Fritz, Z. J. Lu, and D. K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics51(2), 1191–1198 (1995).

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: Drive scheme and contrast,” Appl. Phys. Lett.64(15), 1905–1907 (1994).
[CrossRef]

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

Yang, Y. C.

Y. C. Yang, M. H. Lee, J. E. Kim, H. Y. Park, and J. C. Lee, “Theoretical Study on the Homeotropic-Transient Planar Transition of Cholesteric Liquid Crystals,” Jpn. J. Appl. Phys.40(Part 1, No. 2A), 649–653 (2001).
[CrossRef]

Yaniv, Z.

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: Drive scheme and contrast,” Appl. Phys. Lett.64(15), 1905–1907 (1994).
[CrossRef]

Yeh, P.

Yoshida, H.

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable Lasing from a Cholesteric Liquid Crystal Film Embedded With a Liquid Crystal Nanopore Network,” Adv. Mater.23(46), 5498–5501 (2011).
[CrossRef] [PubMed]

Yu, L. J.

L. J. Yu and M. M. Labes, “Fluorescent liquid-crystal display utilizing an electric-field-induced cholesteric-nematic transition,” Appl. Phys. Lett.31(11), 719–720 (1977).
[CrossRef]

Adv. Mater. (3)

M. Grell and D. D. C. Bradley, “Polarized luminescence from oriented molecular materials,” Adv. Mater.11(11), 895–905 (1999).
[CrossRef]

K. L. Woon, M. O'Neill, G. J. Richards, M. P. Aldred, S. M. Kelly, and A. M. Fox, “Highly Circularly Polarized Photoluminescence over a Broad Spectral Range from a Calamitic, Hole‐Transporting, Chiral Nematic Glass and from an Indirectly Excited Dye,” Adv. Mater.15(18), 1555–1558 (2003).
[CrossRef]

Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, “Tunable Lasing from a Cholesteric Liquid Crystal Film Embedded With a Liquid Crystal Nanopore Network,” Adv. Mater.23(46), 5498–5501 (2011).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: Drive scheme and contrast,” Appl. Phys. Lett.64(15), 1905–1907 (1994).
[CrossRef]

L. J. Yu and M. M. Labes, “Fluorescent liquid-crystal display utilizing an electric-field-induced cholesteric-nematic transition,” Appl. Phys. Lett.31(11), 719–720 (1977).
[CrossRef]

J. Appl. Phys. (4)

R. W. Filas and M. M. Labes, “Homogeneous-homeotropic fluorescent liquid crystal cells,” J. Appl. Phys.52(6), 3949–3953 (1981).
[CrossRef]

S. Sato and M. M. Labes, “Multicolor fluorescent display by scattering states in liquid crystals,” J. Appl. Phys.52(6), 3941–3948 (1981).
[CrossRef]

W. D. St. John, Z. J. Lu, and J. W. Doane, “Characterization of reflective cholesteric liquid-crystal displays,” J. Appl. Phys.78, 5253–5265 (1995).
[CrossRef]

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

Y. C. Yang, M. H. Lee, J. E. Kim, H. Y. Park, and J. C. Lee, “Theoretical Study on the Homeotropic-Transient Planar Transition of Cholesteric Liquid Crystals,” Jpn. J. Appl. Phys.40(Part 1, No. 2A), 649–653 (2001).
[CrossRef]

Liq. Cryst. (1)

P. Watson, V. Sergan, J. E. Anderson, J. Ruth, and P. J. Bos, “Characteristic times in the homeotropic to planar transition in cholesteric liquid crystals,” Liq. Cryst.26(5), 731–736 (1999).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

R. Yamaguchi, H. Nagato, H. Hafiz, and S. Sato, “Sensitized Fluorescence of Dichroic Dye in Emissive Type Liquid Crystal Displays,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)410(1), 495–504 (2004).
[CrossRef]

Nat. Mater. (1)

M. Mitov and N. Dessaud, “Going beyond the reflectance limit of cholesteric liquid crystals,” Nat. Mater.5(5), 361–364 (2006).
[CrossRef] [PubMed]

Nature (1)

S. Chen, D. Katsis, A. Schmid, J. Mastrangelo, T. Tsutsui, and T. Blanton, “Circularly polarized light generated by photoexcitation of luminophores in glassy liquid-crystal films,” Nature397(6719), 506–508 (1999).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

W. D. S. John, W. J. Fritz, Z. J. Lu, and D. K. Yang, “Bragg reflection from cholesteric liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics51(2), 1191–1198 (1995).

Other (1)

N. Ohta and A. R. Robertson, Colorimetry, Fundamentals and Applications (John Wiley & Sons, Ltd, Chichester, England, 2005).

Supplementary Material (1)

» Media 1: MOV (2744 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(A) Chemical structures and spectral absorption and luminescence of C6 and BBOT. (B) Cell structure: thickness of the cell is approximately 3.8 μm.

Fig. 2
Fig. 2

(A) Reflection luminance of CLC and PL-CLC cells with increasing applied voltage. (B) Fluorescence of a PL-CLC cell on a UV backlight with the applied voltages. (C-D) Spectral reflectance of CLC and PL-CLC cells with increasing applied voltage. (E) Fluorescence of a PL-CLC cell on a UV backlight with the applied voltages. Inset images are microscopic images under crossed polarizers at different applied voltages.

Fig. 3
Fig. 3

Complementary coupling between fluorescence and band-gap during dark to bright switching: (A) Photo images captured from the supporting video clip during the switching (Media 1). (B) CLC reflectance increases slowly due to the helical reorientation during homeotropic to planar transition, but the fluorescence exhibits the opposite trend. As a result, the PL-CLC reflectance exhibits rather stable luminance, though further optimization may be required. (C) Color trajectories during the transition in u'v' color space.

Fig. 4
Fig. 4

Color shift with viewing direction in the CLC and PL-CLC cells: (A) Photos taken at different viewing angles of CLC and PL-CLC cells. (B) Optical simulation for selective reflection with incident angle. (C) Changing color values with viewing angle in u'v' color space. (D) Fluorescence of a PL-CLC cell with UV backlight as a function of viewing angle.

Metrics