Abstract

Local distribution of the optical magnetic field is a critical parameter in developing materials with artificially engineered optical properties. Optical magnetic field characterization in nano-scale remains a challenge, because of the weak matter-optical magnetic field interactions. Here, we demonstrate an experimental visualization of the optical magnetic field profiles by raster scanning circular apertures in metal film or in a conical probe. Optical magnetic fields of surface plasmon polaritons and radially polarized beam are visualized by measuring the transmission through metallic apertures, in excellent agreements with theoretical predictions. Our results show that Bethe-Bouwkamp aperture can be used in visualizing optical magnetic field profiles.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Jackson, Classical Electrodynamics, 3rd edition ed. (John Wiley & Sons, Inc, New York, 1999).
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  3. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
    [CrossRef] [PubMed]
  4. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007).
    [CrossRef] [PubMed]
  5. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, ““Magnetism from conductors and enhanced nonlinear phenomena,” IEEE,” T. Microw. Theory47(11), 2075–2084 (1999).
    [CrossRef]
  6. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7(1), 31–37 (2008).
    [CrossRef] [PubMed]
  7. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  8. S. Koo, M. S. Kumar, J. Shin, D. Kim, and N. Park, “Extraordinary magnetic field enhancement with metallic nanowire: role of surface impedance in Babinet’s principle for sub-skin-depth regime,” Phys. Rev. Lett.103(26), 263901 (2009).
    [CrossRef] [PubMed]
  9. S.-Y. Lee, I.-M. Lee, J. Park, S. Oh, W. Lee, K.-Y. Kim, and B. Lee, “Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons,” Phys. Rev. Lett.108(21), 213907 (2012).
    [CrossRef] [PubMed]
  10. K. Lee, M. Yi, S. E. Park, and J. Ahn, “Phase-shift anomaly caused by subwavelength-scale metal slit or aperture diffraction,” Opt. Lett.38(2), 166–168 (2013).
    [CrossRef]
  11. A. Asenjo-Garcia, A. Manjavacas, V. Myroshnychenko, and F. J. García de Abajo, “Magnetic polarization in the optical absorption of metallic nanoparticles,” Opt. Express20(27), 28142–28152 (2012).
    [CrossRef] [PubMed]
  12. J. H. Kang, D. S. Kim, and Q. H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett.102(9), 093906 (2009).
    [CrossRef] [PubMed]
  13. K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics1(1), 53–56 (2007).
    [CrossRef]
  14. D.-S. Kim, J. Heo, S.-H. Ahn, S. W. Han, W. S. Yun, and Z. H. Kim, “Real-space mapping of the strongly coupled plasmons of nanoparticle dimers,” Nano Lett.9(10), 3619–3625 (2009).
    [CrossRef] [PubMed]
  15. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
    [CrossRef] [PubMed]
  16. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science326(5952), 550–553 (2009).
    [CrossRef] [PubMed]
  17. N. Kumar, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, P. C. M. Planken, and A. J. L. Adam, “THz near-field Faraday imaging in hybrid metamaterials,” Opt. Express20(10), 11277–11287 (2012).
    [CrossRef] [PubMed]
  18. T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat Commun3, 979 (2012).
    [CrossRef] [PubMed]
  19. S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett.106(19), 193004 (2011).
    [CrossRef] [PubMed]
  20. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors,” Opt. Express15(19), 11781–11789 (2007).
    [CrossRef] [PubMed]
  21. A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, “Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial,” Opt. Express17(5), 3826–3834 (2009).
    [CrossRef] [PubMed]
  22. E. Devaux, A. Dereux, E. Bourillot, J.-C. Weeber, Y. Lacroute, J.-P. Goudonnet, and C. Girard, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B62(15), 10504–10514 (2000).
    [CrossRef]
  23. H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat Commun2, 451 (2011).
    [CrossRef] [PubMed]
  24. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.66(7-8), 163–182 (1944).
    [CrossRef]
  25. C. J. Bouwkamp, “Diffraction theory,” Rep. Prog. Phys.17(1), 35–100 (1954).
    [CrossRef]
  26. A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Surface electromagnetic field radiated by a subwavelength hole in a metal film,” Phys. Rev. Lett.105(7), 073902 (2010).
    [CrossRef] [PubMed]
  27. J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
    [CrossRef] [PubMed]
  28. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett.21(23), 1948–1950 (1996).
    [CrossRef] [PubMed]
  29. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University press, 2006).
  30. M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett.102(10), 107401 (2009).
    [CrossRef] [PubMed]
  31. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
    [CrossRef] [PubMed]
  32. D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q. H. Park, “Near-to-far-field spectral evolution in a plasmonic crystal: Experimental verification of the equipartition of diffraction orders,” Appl. Phys. Lett.93(7), 073109–073103 (2008).
    [CrossRef]
  33. D. J. Park, S. B. Choi, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. S. Jeong, and D. K. Ko, “Experimental verification of surface plasmon amplification on a metallic transmission grating,” Phys. Rev. B77(11), 115451 (2008).
    [CrossRef]
  34. D. C. Kohlgraf-Owens, S. Sukhov, and A. Dogariu, “Discrimination of field components in optical probe microscopy,” Opt. Lett.37(17), 3606–3608 (2012).
    [CrossRef] [PubMed]
  35. H. W. Kihm, K. G. Lee, D. S. Kim, and K. J. Ahn, “Dual mode near-field scanning optical microscopy for near-field imaging of surface plasmon polariton,” Opt. Commun.282(12), 2442–2445 (2009).
    [CrossRef]
  36. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag Berlin HeidelBerg, Berlin, 1988).

2013 (1)

2012 (6)

N. Kumar, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, P. C. M. Planken, and A. J. L. Adam, “THz near-field Faraday imaging in hybrid metamaterials,” Opt. Express20(10), 11277–11287 (2012).
[CrossRef] [PubMed]

D. C. Kohlgraf-Owens, S. Sukhov, and A. Dogariu, “Discrimination of field components in optical probe microscopy,” Opt. Lett.37(17), 3606–3608 (2012).
[CrossRef] [PubMed]

A. Asenjo-Garcia, A. Manjavacas, V. Myroshnychenko, and F. J. García de Abajo, “Magnetic polarization in the optical absorption of metallic nanoparticles,” Opt. Express20(27), 28142–28152 (2012).
[CrossRef] [PubMed]

J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
[CrossRef] [PubMed]

S.-Y. Lee, I.-M. Lee, J. Park, S. Oh, W. Lee, K.-Y. Kim, and B. Lee, “Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons,” Phys. Rev. Lett.108(21), 213907 (2012).
[CrossRef] [PubMed]

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat Commun3, 979 (2012).
[CrossRef] [PubMed]

2011 (2)

S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett.106(19), 193004 (2011).
[CrossRef] [PubMed]

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat Commun2, 451 (2011).
[CrossRef] [PubMed]

2010 (1)

A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Surface electromagnetic field radiated by a subwavelength hole in a metal film,” Phys. Rev. Lett.105(7), 073902 (2010).
[CrossRef] [PubMed]

2009 (7)

H. W. Kihm, K. G. Lee, D. S. Kim, and K. J. Ahn, “Dual mode near-field scanning optical microscopy for near-field imaging of surface plasmon polariton,” Opt. Commun.282(12), 2442–2445 (2009).
[CrossRef]

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett.102(10), 107401 (2009).
[CrossRef] [PubMed]

A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, “Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial,” Opt. Express17(5), 3826–3834 (2009).
[CrossRef] [PubMed]

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science326(5952), 550–553 (2009).
[CrossRef] [PubMed]

D.-S. Kim, J. Heo, S.-H. Ahn, S. W. Han, W. S. Yun, and Z. H. Kim, “Real-space mapping of the strongly coupled plasmons of nanoparticle dimers,” Nano Lett.9(10), 3619–3625 (2009).
[CrossRef] [PubMed]

J. H. Kang, D. S. Kim, and Q. H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett.102(9), 093906 (2009).
[CrossRef] [PubMed]

S. Koo, M. S. Kumar, J. Shin, D. Kim, and N. Park, “Extraordinary magnetic field enhancement with metallic nanowire: role of surface impedance in Babinet’s principle for sub-skin-depth regime,” Phys. Rev. Lett.103(26), 263901 (2009).
[CrossRef] [PubMed]

2008 (5)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7(1), 31–37 (2008).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q. H. Park, “Near-to-far-field spectral evolution in a plasmonic crystal: Experimental verification of the equipartition of diffraction orders,” Appl. Phys. Lett.93(7), 073109–073103 (2008).
[CrossRef]

D. J. Park, S. B. Choi, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. S. Jeong, and D. K. Ko, “Experimental verification of surface plasmon amplification on a metallic transmission grating,” Phys. Rev. B77(11), 115451 (2008).
[CrossRef]

2007 (3)

M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors,” Opt. Express15(19), 11781–11789 (2007).
[CrossRef] [PubMed]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007).
[CrossRef] [PubMed]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

2001 (2)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

2000 (2)

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weeber, Y. Lacroute, J.-P. Goudonnet, and C. Girard, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B62(15), 10504–10514 (2000).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, ““Magnetism from conductors and enhanced nonlinear phenomena,” IEEE,” T. Microw. Theory47(11), 2075–2084 (1999).
[CrossRef]

1996 (1)

1954 (1)

C. J. Bouwkamp, “Diffraction theory,” Rep. Prog. Phys.17(1), 35–100 (1954).
[CrossRef]

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.66(7-8), 163–182 (1944).
[CrossRef]

Adam, A. J. L.

Ahn, J.

Ahn, K. J.

H. W. Kihm, K. G. Lee, D. S. Kim, and K. J. Ahn, “Dual mode near-field scanning optical microscopy for near-field imaging of surface plasmon polariton,” Opt. Commun.282(12), 2442–2445 (2009).
[CrossRef]

D. J. Park, S. B. Choi, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. S. Jeong, and D. K. Ko, “Experimental verification of surface plasmon amplification on a metallic transmission grating,” Phys. Rev. B77(11), 115451 (2008).
[CrossRef]

Ahn, S.-H.

D.-S. Kim, J. Heo, S.-H. Ahn, S. W. Han, W. S. Yun, and Z. H. Kim, “Real-space mapping of the strongly coupled plasmons of nanoparticle dimers,” Nano Lett.9(10), 3619–3625 (2009).
[CrossRef] [PubMed]

Alegret, J.

J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
[CrossRef] [PubMed]

Asenjo-Garcia, A.

Averitt, R. D.

Bak, W. S.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat Commun2, 451 (2011).
[CrossRef] [PubMed]

Bao, K.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat Commun2, 451 (2011).
[CrossRef] [PubMed]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.66(7-8), 163–182 (1944).
[CrossRef]

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Bitzer, A.

Bourillot, E.

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weeber, Y. Lacroute, J.-P. Goudonnet, and C. Girard, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B62(15), 10504–10514 (2000).
[CrossRef]

Bouwkamp, C. J.

C. J. Bouwkamp, “Diffraction theory,” Rep. Prog. Phys.17(1), 35–100 (1954).
[CrossRef]

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Burresi, M.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science326(5952), 550–553 (2009).
[CrossRef] [PubMed]

Byun, Y. M.

D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q. H. Park, “Near-to-far-field spectral evolution in a plasmonic crystal: Experimental verification of the equipartition of diffraction orders,” Appl. Phys. Lett.93(7), 073109–073103 (2008).
[CrossRef]

Choi, S. B.

D. J. Park, S. B. Choi, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. S. Jeong, and D. K. Ko, “Experimental verification of surface plasmon amplification on a metallic transmission grating,” Phys. Rev. B77(11), 115451 (2008).
[CrossRef]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Choi, W. J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Cuche, A.

J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
[CrossRef] [PubMed]

de León-Pérez, F.

J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
[CrossRef] [PubMed]

Degiron, A.

J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
[CrossRef] [PubMed]

Dereux, A.

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weeber, Y. Lacroute, J.-P. Goudonnet, and C. Girard, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B62(15), 10504–10514 (2000).
[CrossRef]

Devaux, E.

J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
[CrossRef] [PubMed]

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weeber, Y. Lacroute, J.-P. Goudonnet, and C. Girard, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B62(15), 10504–10514 (2000).
[CrossRef]

Dogariu, A.

Dorpe, P. V.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Eah, S. H.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat Commun2, 451 (2011).
[CrossRef] [PubMed]

Ebbesen, T. W.

J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
[CrossRef] [PubMed]

Engheta, N.

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007).
[CrossRef] [PubMed]

Fan, K.

Feurer, T.

Fu, L.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7(1), 31–37 (2008).
[CrossRef] [PubMed]

García de Abajo, F. J.

García-Vidal, F. J.

A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Surface electromagnetic field radiated by a subwavelength hole in a metal film,” Phys. Rev. Lett.105(7), 073902 (2010).
[CrossRef] [PubMed]

Genet, C.

J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
[CrossRef] [PubMed]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7(1), 31–37 (2008).
[CrossRef] [PubMed]

Girard, C.

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weeber, Y. Lacroute, J.-P. Goudonnet, and C. Girard, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B62(15), 10504–10514 (2000).
[CrossRef]

Goudonnet, J.-P.

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weeber, Y. Lacroute, J.-P. Goudonnet, and C. Girard, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B62(15), 10504–10514 (2000).
[CrossRef]

Gray, S. K.

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett.102(10), 107401 (2009).
[CrossRef] [PubMed]

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7(1), 31–37 (2008).
[CrossRef] [PubMed]

Guyot-Sionnest, P.

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett.102(10), 107401 (2009).
[CrossRef] [PubMed]

Halas, N. J.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat Commun2, 451 (2011).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Han, S. W.

D.-S. Kim, J. Heo, S.-H. Ahn, S. W. Han, W. S. Yun, and Z. H. Kim, “Real-space mapping of the strongly coupled plasmons of nanoparticle dimers,” Nano Lett.9(10), 3619–3625 (2009).
[CrossRef] [PubMed]

Hao, F.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Heideman, R.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science326(5952), 550–553 (2009).
[CrossRef] [PubMed]

Helm, H.

Heo, J.

D.-S. Kim, J. Heo, S.-H. Ahn, S. W. Han, W. S. Yun, and Z. H. Kim, “Real-space mapping of the strongly coupled plasmons of nanoparticle dimers,” Nano Lett.9(10), 3619–3625 (2009).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, ““Magnetism from conductors and enhanced nonlinear phenomena,” IEEE,” T. Microw. Theory47(11), 2075–2084 (1999).
[CrossRef]

Jeong, M. S.

D. J. Park, S. B. Choi, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. S. Jeong, and D. K. Ko, “Experimental verification of surface plasmon amplification on a metallic transmission grating,” Phys. Rev. B77(11), 115451 (2008).
[CrossRef]

Jeoung, S. C.

Kaiser, S.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7(1), 31–37 (2008).
[CrossRef] [PubMed]

Kampfrath, T.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science326(5952), 550–553 (2009).
[CrossRef] [PubMed]

Kang, J. H.

J. H. Kang, D. S. Kim, and Q. H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett.102(9), 093906 (2009).
[CrossRef] [PubMed]

D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q. H. Park, “Near-to-far-field spectral evolution in a plasmonic crystal: Experimental verification of the equipartition of diffraction orders,” Appl. Phys. Lett.93(7), 073109–073103 (2008).
[CrossRef]

D. J. Park, S. B. Choi, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. S. Jeong, and D. K. Ko, “Experimental verification of surface plasmon amplification on a metallic transmission grating,” Phys. Rev. B77(11), 115451 (2008).
[CrossRef]

M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors,” Opt. Express15(19), 11781–11789 (2007).
[CrossRef] [PubMed]

Karaveli, S.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat Commun3, 979 (2012).
[CrossRef] [PubMed]

S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett.106(19), 193004 (2011).
[CrossRef] [PubMed]

Kihm, H. W.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat Commun2, 451 (2011).
[CrossRef] [PubMed]

H. W. Kihm, K. G. Lee, D. S. Kim, and K. J. Ahn, “Dual mode near-field scanning optical microscopy for near-field imaging of surface plasmon polariton,” Opt. Commun.282(12), 2442–2445 (2009).
[CrossRef]

D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q. H. Park, “Near-to-far-field spectral evolution in a plasmonic crystal: Experimental verification of the equipartition of diffraction orders,” Appl. Phys. Lett.93(7), 073109–073103 (2008).
[CrossRef]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Kihm, J. E.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat Commun2, 451 (2011).
[CrossRef] [PubMed]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Kim, D.

S. Koo, M. S. Kumar, J. Shin, D. Kim, and N. Park, “Extraordinary magnetic field enhancement with metallic nanowire: role of surface impedance in Babinet’s principle for sub-skin-depth regime,” Phys. Rev. Lett.103(26), 263901 (2009).
[CrossRef] [PubMed]

Kim, D. S.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat Commun2, 451 (2011).
[CrossRef] [PubMed]

J. H. Kang, D. S. Kim, and Q. H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett.102(9), 093906 (2009).
[CrossRef] [PubMed]

H. W. Kihm, K. G. Lee, D. S. Kim, and K. J. Ahn, “Dual mode near-field scanning optical microscopy for near-field imaging of surface plasmon polariton,” Opt. Commun.282(12), 2442–2445 (2009).
[CrossRef]

D. J. Park, S. B. Choi, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. S. Jeong, and D. K. Ko, “Experimental verification of surface plasmon amplification on a metallic transmission grating,” Phys. Rev. B77(11), 115451 (2008).
[CrossRef]

D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q. H. Park, “Near-to-far-field spectral evolution in a plasmonic crystal: Experimental verification of the equipartition of diffraction orders,” Appl. Phys. Lett.93(7), 073109–073103 (2008).
[CrossRef]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors,” Opt. Express15(19), 11781–11789 (2007).
[CrossRef] [PubMed]

Kim, D.-S.

D.-S. Kim, J. Heo, S.-H. Ahn, S. W. Han, W. S. Yun, and Z. H. Kim, “Real-space mapping of the strongly coupled plasmons of nanoparticle dimers,” Nano Lett.9(10), 3619–3625 (2009).
[CrossRef] [PubMed]

Kim, H.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat Commun2, 451 (2011).
[CrossRef] [PubMed]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Kim, J.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Kim, K.-Y.

S.-Y. Lee, I.-M. Lee, J. Park, S. Oh, W. Lee, K.-Y. Kim, and B. Lee, “Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons,” Phys. Rev. Lett.108(21), 213907 (2012).
[CrossRef] [PubMed]

Kim, Q. H.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat Commun2, 451 (2011).
[CrossRef] [PubMed]

Kim, Z. H.

D.-S. Kim, J. Heo, S.-H. Ahn, S. W. Han, W. S. Yun, and Z. H. Kim, “Real-space mapping of the strongly coupled plasmons of nanoparticle dimers,” Nano Lett.9(10), 3619–3625 (2009).
[CrossRef] [PubMed]

Ko, D. K.

D. J. Park, S. B. Choi, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. S. Jeong, and D. K. Ko, “Experimental verification of surface plasmon amplification on a metallic transmission grating,” Phys. Rev. B77(11), 115451 (2008).
[CrossRef]

Kohlgraf-Owens, D. C.

Koo, S.

S. Koo, M. S. Kumar, J. Shin, D. Kim, and N. Park, “Extraordinary magnetic field enhancement with metallic nanowire: role of surface impedance in Babinet’s principle for sub-skin-depth regime,” Phys. Rev. Lett.103(26), 263901 (2009).
[CrossRef] [PubMed]

Koo, S. M.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat Commun2, 451 (2011).
[CrossRef] [PubMed]

Kuipers, L.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science326(5952), 550–553 (2009).
[CrossRef] [PubMed]

Kumar, M. S.

S. Koo, M. S. Kumar, J. Shin, D. Kim, and N. Park, “Extraordinary magnetic field enhancement with metallic nanowire: role of surface impedance in Babinet’s principle for sub-skin-depth regime,” Phys. Rev. Lett.103(26), 263901 (2009).
[CrossRef] [PubMed]

Kumar, N.

Lacroute, Y.

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weeber, Y. Lacroute, J.-P. Goudonnet, and C. Girard, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B62(15), 10504–10514 (2000).
[CrossRef]

Laux, E.

J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
[CrossRef] [PubMed]

Lee, B.

S.-Y. Lee, I.-M. Lee, J. Park, S. Oh, W. Lee, K.-Y. Kim, and B. Lee, “Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons,” Phys. Rev. Lett.108(21), 213907 (2012).
[CrossRef] [PubMed]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Lee, I.-M.

S.-Y. Lee, I.-M. Lee, J. Park, S. Oh, W. Lee, K.-Y. Kim, and B. Lee, “Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons,” Phys. Rev. Lett.108(21), 213907 (2012).
[CrossRef] [PubMed]

Lee, J. W.

Lee, K.

Lee, K. G.

H. W. Kihm, K. G. Lee, D. S. Kim, and K. J. Ahn, “Dual mode near-field scanning optical microscopy for near-field imaging of surface plasmon polariton,” Opt. Commun.282(12), 2442–2445 (2009).
[CrossRef]

D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q. H. Park, “Near-to-far-field spectral evolution in a plasmonic crystal: Experimental verification of the equipartition of diffraction orders,” Appl. Phys. Lett.93(7), 073109–073103 (2008).
[CrossRef]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Lee, S.-Y.

S.-Y. Lee, I.-M. Lee, J. Park, S. Oh, W. Lee, K.-Y. Kim, and B. Lee, “Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons,” Phys. Rev. Lett.108(21), 213907 (2012).
[CrossRef] [PubMed]

Lee, T.-W.

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett.102(10), 107401 (2009).
[CrossRef] [PubMed]

Lee, W.

S.-Y. Lee, I.-M. Lee, J. Park, S. Oh, W. Lee, K.-Y. Kim, and B. Lee, “Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons,” Phys. Rev. Lett.108(21), 213907 (2012).
[CrossRef] [PubMed]

Leinse, A.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science326(5952), 550–553 (2009).
[CrossRef] [PubMed]

Lienau, C.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat Commun2, 451 (2011).
[CrossRef] [PubMed]

D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q. H. Park, “Near-to-far-field spectral evolution in a plasmonic crystal: Experimental verification of the equipartition of diffraction orders,” Appl. Phys. Lett.93(7), 073109–073103 (2008).
[CrossRef]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Liu, M.

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett.102(10), 107401 (2009).
[CrossRef] [PubMed]

Liu, N.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7(1), 31–37 (2008).
[CrossRef] [PubMed]

Maier, S. A.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Manjavacas, A.

Martín-Moreno, L.

J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
[CrossRef] [PubMed]

A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Surface electromagnetic field radiated by a subwavelength hole in a metal film,” Phys. Rev. Lett.105(7), 073902 (2010).
[CrossRef] [PubMed]

Merbold, H.

Myroshnychenko, V.

Nikitin, A. Y.

A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Surface electromagnetic field radiated by a subwavelength hole in a metal film,” Phys. Rev. Lett.105(7), 073902 (2010).
[CrossRef] [PubMed]

Nordlander, P.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat Commun2, 451 (2011).
[CrossRef] [PubMed]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Oh, S.

S.-Y. Lee, I.-M. Lee, J. Park, S. Oh, W. Lee, K.-Y. Kim, and B. Lee, “Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons,” Phys. Rev. Lett.108(21), 213907 (2012).
[CrossRef] [PubMed]

Park, D. J.

D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q. H. Park, “Near-to-far-field spectral evolution in a plasmonic crystal: Experimental verification of the equipartition of diffraction orders,” Appl. Phys. Lett.93(7), 073109–073103 (2008).
[CrossRef]

D. J. Park, S. B. Choi, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. S. Jeong, and D. K. Ko, “Experimental verification of surface plasmon amplification on a metallic transmission grating,” Phys. Rev. B77(11), 115451 (2008).
[CrossRef]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Park, J.

S.-Y. Lee, I.-M. Lee, J. Park, S. Oh, W. Lee, K.-Y. Kim, and B. Lee, “Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons,” Phys. Rev. Lett.108(21), 213907 (2012).
[CrossRef] [PubMed]

Park, N.

S. Koo, M. S. Kumar, J. Shin, D. Kim, and N. Park, “Extraordinary magnetic field enhancement with metallic nanowire: role of surface impedance in Babinet’s principle for sub-skin-depth regime,” Phys. Rev. Lett.103(26), 263901 (2009).
[CrossRef] [PubMed]

Park, N. K.

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat Commun2, 451 (2011).
[CrossRef] [PubMed]

Park, Q. H.

J. H. Kang, D. S. Kim, and Q. H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett.102(9), 093906 (2009).
[CrossRef] [PubMed]

D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q. H. Park, “Near-to-far-field spectral evolution in a plasmonic crystal: Experimental verification of the equipartition of diffraction orders,” Appl. Phys. Lett.93(7), 073109–073103 (2008).
[CrossRef]

D. J. Park, S. B. Choi, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. S. Jeong, and D. K. Ko, “Experimental verification of surface plasmon amplification on a metallic transmission grating,” Phys. Rev. B77(11), 115451 (2008).
[CrossRef]

M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors,” Opt. Express15(19), 11781–11789 (2007).
[CrossRef] [PubMed]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Park, S. E.

Pelton, M.

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett.102(10), 107401 (2009).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, ““Magnetism from conductors and enhanced nonlinear phenomena,” IEEE,” T. Microw. Theory47(11), 2075–2084 (1999).
[CrossRef]

Planken, P. C. M.

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, ““Magnetism from conductors and enhanced nonlinear phenomena,” IEEE,” T. Microw. Theory47(11), 2075–2084 (1999).
[CrossRef]

Ropers, C.

D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q. H. Park, “Near-to-far-field spectral evolution in a plasmonic crystal: Experimental verification of the equipartition of diffraction orders,” Appl. Phys. Lett.93(7), 073109–073103 (2008).
[CrossRef]

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Schadt, M.

Schoenmaker, H.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science326(5952), 550–553 (2009).
[CrossRef] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Schweizer, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7(1), 31–37 (2008).
[CrossRef] [PubMed]

Seo, M. A.

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Shin, J.

S. Koo, M. S. Kumar, J. Shin, D. Kim, and N. Park, “Extraordinary magnetic field enhancement with metallic nanowire: role of surface impedance in Babinet’s principle for sub-skin-depth regime,” Phys. Rev. Lett.103(26), 263901 (2009).
[CrossRef] [PubMed]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Sonnefraud, Y.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

Stalder, M.

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, ““Magnetism from conductors and enhanced nonlinear phenomena,” IEEE,” T. Microw. Theory47(11), 2075–2084 (1999).
[CrossRef]

Strikwerda, A. C.

Sukhov, S.

Taminiau, T. H.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat Commun3, 979 (2012).
[CrossRef] [PubMed]

Thoman, A.

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

van Hulst, N. F.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat Commun3, 979 (2012).
[CrossRef] [PubMed]

van Oosten, D.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science326(5952), 550–553 (2009).
[CrossRef] [PubMed]

Walther, M.

Weeber, J.-C.

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weeber, Y. Lacroute, J.-P. Goudonnet, and C. Girard, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B62(15), 10504–10514 (2000).
[CrossRef]

Woo, D. H.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Yi, J. M.

J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
[CrossRef] [PubMed]

Yi, M.

Yoon, Y. C.

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Yun, W. S.

D.-S. Kim, J. Heo, S.-H. Ahn, S. W. Han, W. S. Yun, and Z. H. Kim, “Real-space mapping of the strongly coupled plasmons of nanoparticle dimers,” Nano Lett.9(10), 3619–3625 (2009).
[CrossRef] [PubMed]

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Zhang, X.

N. Kumar, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, P. C. M. Planken, and A. J. L. Adam, “THz near-field Faraday imaging in hybrid metamaterials,” Opt. Express20(10), 11277–11287 (2012).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Zia, R.

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat Commun3, 979 (2012).
[CrossRef] [PubMed]

S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett.106(19), 193004 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q. H. Park, “Near-to-far-field spectral evolution in a plasmonic crystal: Experimental verification of the equipartition of diffraction orders,” Appl. Phys. Lett.93(7), 073109–073103 (2008).
[CrossRef]

Nano Lett. (2)

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett.8(11), 3983–3988 (2008).
[CrossRef] [PubMed]

D.-S. Kim, J. Heo, S.-H. Ahn, S. W. Han, W. S. Yun, and Z. H. Kim, “Real-space mapping of the strongly coupled plasmons of nanoparticle dimers,” Nano Lett.9(10), 3619–3625 (2009).
[CrossRef] [PubMed]

Nat Commun (2)

T. H. Taminiau, S. Karaveli, N. F. van Hulst, and R. Zia, “Quantifying the magnetic nature of light emission,” Nat Commun3, 979 (2012).
[CrossRef] [PubMed]

H. W. Kihm, S. M. Koo, Q. H. Kim, K. Bao, J. E. Kihm, W. S. Bak, S. H. Eah, C. Lienau, H. Kim, P. Nordlander, N. J. Halas, N. K. Park, and D. S. Kim, “Bethe-hole polarization analyser for the magnetic vector of light,” Nat Commun2, 451 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater.7(1), 31–37 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

K. G. Lee, H. W. Kihm, J. E. Kihm, W. J. Choi, H. Kim, C. Ropers, D. J. Park, Y. C. Yoon, S. B. Choi, D. H. Woo, J. Kim, B. Lee, Q. H. Park, C. Lienau, and D. S. Kim, “Vector field microscopic imaging of light,” Nat. Photonics1(1), 53–56 (2007).
[CrossRef]

Nature (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Opt. Commun. (1)

H. W. Kihm, K. G. Lee, D. S. Kim, and K. J. Ahn, “Dual mode near-field scanning optical microscopy for near-field imaging of surface plasmon polariton,” Opt. Commun.282(12), 2442–2445 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.66(7-8), 163–182 (1944).
[CrossRef]

Phys. Rev. B (2)

E. Devaux, A. Dereux, E. Bourillot, J.-C. Weeber, Y. Lacroute, J.-P. Goudonnet, and C. Girard, “Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. B62(15), 10504–10514 (2000).
[CrossRef]

D. J. Park, S. B. Choi, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. S. Jeong, and D. K. Ko, “Experimental verification of surface plasmon amplification on a metallic transmission grating,” Phys. Rev. B77(11), 115451 (2008).
[CrossRef]

Phys. Rev. Lett. (9)

M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanoparticles by a localized emitter,” Phys. Rev. Lett.102(10), 107401 (2009).
[CrossRef] [PubMed]

A. Y. Nikitin, F. J. García-Vidal, and L. Martín-Moreno, “Surface electromagnetic field radiated by a subwavelength hole in a metal film,” Phys. Rev. Lett.105(7), 073902 (2010).
[CrossRef] [PubMed]

J. M. Yi, A. Cuche, F. de León-Pérez, A. Degiron, E. Laux, E. Devaux, C. Genet, J. Alegret, L. Martín-Moreno, and T. W. Ebbesen, “Diffraction regimes of single holes,” Phys. Rev. Lett.109(2), 023901 (2012).
[CrossRef] [PubMed]

S. Karaveli and R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett.106(19), 193004 (2011).
[CrossRef] [PubMed]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett.86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

S. Koo, M. S. Kumar, J. Shin, D. Kim, and N. Park, “Extraordinary magnetic field enhancement with metallic nanowire: role of surface impedance in Babinet’s principle for sub-skin-depth regime,” Phys. Rev. Lett.103(26), 263901 (2009).
[CrossRef] [PubMed]

S.-Y. Lee, I.-M. Lee, J. Park, S. Oh, W. Lee, K.-Y. Kim, and B. Lee, “Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons,” Phys. Rev. Lett.108(21), 213907 (2012).
[CrossRef] [PubMed]

J. H. Kang, D. S. Kim, and Q. H. Park, “Local capacitor model for plasmonic electric field enhancement,” Phys. Rev. Lett.102(9), 093906 (2009).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

C. J. Bouwkamp, “Diffraction theory,” Rep. Prog. Phys.17(1), 35–100 (1954).
[CrossRef]

Science (3)

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science326(5952), 550–553 (2009).
[CrossRef] [PubMed]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

T. Microw. Theory (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, ““Magnetism from conductors and enhanced nonlinear phenomena,” IEEE,” T. Microw. Theory47(11), 2075–2084 (1999).
[CrossRef]

Other (3)

J. D. Jackson, Classical Electrodynamics, 3rd edition ed. (John Wiley & Sons, Inc, New York, 1999).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University press, 2006).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag Berlin HeidelBerg, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Bethe's subwavelength aperture on metal surface, creating (a) eddy-current induced effective magnetic dipole (meff) fields (blue lines) or (b) charge-driven electric dipole (peff) fields (red lines). Black lines in (a) indicate eddy current distribution. Two dimensional radiation patterns of (c) the effective tangential magnetic dipole and (d) the effective normal electric dipole.

Fig. 2
Fig. 2

(a) Transmitted field intensity through the aperture is measured in far-field region while raster scanning the aperture over the beam cross section in y-z plane. (inset) The local distribution of electric and magnetic field for radially/azimuthally polarized beam are depicted in the beam profile cross section. (b, e) Horizontal magnetic field intensity of the radially/azimuthally polarized beams. (c, f) Horizontal magnetic field intensity profile calculated from FDTD simulation of transmission through the aperture which is raster scanning the beam cross section, and (d, g) its experimentally measurement.

Fig. 3
Fig. 3

Characterization of metal coated aperture probe at 780 nm of wavelength. (a) Incident angle θinc = 84 degrees, and the incident polarization (2θ) is controlled by rotating a λ/2 plate (θ). The transmitted light through the aperture is analyzed by rotating a linear polarizer at the end of probe fiber. (b) Incident polarization dependent transmission polarization. Projected incident electric (black line) and magnetic (red line) field polarizations on the flat-bottom plane of the probe are plotted together with the measured transmission polarization (circle). SEM image of the probe with flat-bottom apex (inset).

Fig. 4
Fig. 4

(a) Experimental setup for characterization of a metal coated probe aperture. Radially polarized light with wavelength of 780 nm is focused using an x60 objective lens with the incident beam waist of 1.2 mm. The electric field (red arrows) and the magnetic field (blue arrows) distributions of the radially polarized light at the focal spot are also shown (section A-A'). Images of the radially polarized light scanned in a 5 μm x 5 μm area around focus region (b) in the front collection, (c) in the scattering and (d) in the side collection mode. The calculated field intensity distributions of (e) the tangential magnetic field and (f) the normal electric field, both for the front collection geometry, and (g) the tangential magnetic field for the side collection geometry.

Fig. 5
Fig. 5

(a) Schematic for SPP standing wave mapping on a gold film using a metal coated probe with a subwavelength aperture. 770 nm wavelength laser is illuminated from the back side of the sample with polarization orthogonal to the slit axis. Optical field intensity profile with periodicity of 381 nm measured by (b) collection mode, (c) scattering mode with the analyzing linear polarizer set along x-axis, and (d) z-axis. Cross section of intensity profile measured by (e) collection mode, (f) scattering mode with the analyzing linear polarizer set along z-axis (dashed) and x-axis (solid). (g) Electric and magnetic field intensity profiles derived from analytic solution of SPP standing wave.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

H y = H 0 exp(i k spp xκz)+ H 0 exp(i k spp xκz)=2 H 0 cos( k spp x) e κz
E z =(2i k spp H 0 /ω ε 0 )sin( k spp x) e κz

Metrics