Abstract

The ability to see behind flames is a key challenge for the industrial field and particularly for the safety field. Development of new technologies to detect live people through smoke and flames in fire scenes is an extremely desirable goal since it can save human lives. The latest technologies, including equipment adopted by fire departments, use infrared bolometers for infrared digital cameras that allow users to see through smoke. However, such detectors are blinded by flame-emitted radiation. Here we show a completely different approach that makes use of lensless digital holography technology in the infrared range for successful imaging through smoke and flames. Notably, we demonstrate that digital holography with a cw laser allows the recording of dynamic human-size targets. In this work, easy detection of live, moving people is achieved through both smoke and flames, thus demonstrating the capability of digital holography at 10.6 μm.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Optical reconstruction of digital holograms recorded at 10.6 μm: route for 3D imaging at long infrared wavelengths

Melania Paturzo, Anna Pelagotti, Andrea Finizio, Lisa Miccio, Massimiliano Locatelli, Andrea Gertrude, Pasquale Poggi, Riccardo Meucci, and Pietro Ferraro
Opt. Lett. 35(12) 2112-2114 (2010)

Comparison of passive ranging integral imaging and active imaging digital holography for three-dimensional object recognition

Yann Frauel, Enrique Tajahuerce, Osamu Matoba, Albertina Castro, and Bahram Javidi
Appl. Opt. 43(2) 452-462 (2004)

Mid-infrared digital holography and holographic interferometry with a tunable quantum cascade laser

M. Ravaro, M. Locatelli, E. Pugliese, I. Di Leo, M. Siciliani de Cumis, F. D’Amato, P. Poggi, L. Consolino, R. Meucci, P. Ferraro, and P. De Natale
Opt. Lett. 39(16) 4843-4846 (2014)

References

  • View by:
  • |
  • |
  • |

  1. U.S. Fire Administration, http://www.usfa.fema.gov/statistics .
  2. G. Zizak, “Flame emission spectroscopy: fundamentals and applications. Lecture given at the ICS training course on laser diagnostics of combustion processes,” (NILES, University of Cairo, Egypt, 2000).
  3. A. Àgueda, E. Pastor, Y. Pérez, and E. Planas, “Experimental study of the emissivity of flames resulting from the combustion of forest fuels,” Int. J. Therm. Sci. 49(3), 543–554 (2010).
    [Crossref]
  4. G. Parent, Z. Acem, S. Lechêne, and P. Boulet, “Measurement of infrared radiation emitted by the flame of a vegetation fire,” Int. J. Therm. Sci. 49(3), 555–562 (2010).
    [Crossref]
  5. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH Verlag GmbH & Co. KGaA, 2005).
  6. M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, “Nanoscale holographic interferometry for strain measurements in electronic devices,” Nature 453(7198), 1086–1089 (2008).
    [Crossref] [PubMed]
  7. I. Yamaguchi, T. Ida, M. Yokota, and K. Yamashita, “Surface shape measurement by phase-shifting digital holography with a wavelength shift,” Appl. Opt. 45(29), 7610–7616 (2006).
    [Crossref] [PubMed]
  8. Y. Kikuchi, D. Barada, T. Kiire, and T. Yatagai, “Doppler phase-shifting digital holography and its application to surface shape measurement,” Opt. Lett. 35(10), 1548–1550 (2010).
    [Crossref] [PubMed]
  9. Y. Frauel, A. Castro, T. J. Naughton, and B. Javidi, “Resistance of the double random phase encryption against various attacks,” Opt. Express 15(16), 10253–10265 (2007).
    [Crossref] [PubMed]
  10. O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
    [Crossref] [PubMed]
  11. M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12(17), 3073–3076 (2012).
    [Crossref] [PubMed]
  12. V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37(20), 4212–4214 (2012).
    [Crossref] [PubMed]
  13. E. Shaffer, C. Moratal, P. Magistretti, P. Marquet, and C. Depeursinge, “Label-free second-harmonic phase imaging of biological specimen by digital holographic microscopy,” Opt. Lett. 35(24), 4102–4104 (2010).
    [Crossref] [PubMed]
  14. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
    [Crossref]
  15. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
    [Crossref] [PubMed]
  16. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16(16), 11776–11781 (2008).
    [Crossref] [PubMed]
  17. V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14(12), 5168–5177 (2006).
    [Crossref] [PubMed]
  18. M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express 18(9), 8806–8815 (2010).
    [Crossref] [PubMed]
  19. L. Onural, 3D Video Technologies: An Overview of Research Trends (SPIE, 2010).
  20. B. Katz, J. Rosen, R. Kelner, and G. Brooker, “Enhanced resolution and throughput of Fresnel incoherent correlation holography (FINCH) using dual diffractive lenses on a spatial light modulator (SLM),” Opt. Express 20(8), 9109–9121 (2012).
    [Crossref] [PubMed]
  21. M. S. Heimbeck, M. K. Kim, D. A. Gregory, and H. O. Everitt, “Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods,” Opt. Express 19(10), 9192–9200 (2011).
    [Crossref] [PubMed]
  22. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt. 45(5), 864–871 (2006).
    [Crossref] [PubMed]
  23. H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
    [Crossref] [PubMed]
  24. M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35(12), 2112–2114 (2010).
    [Crossref] [PubMed]
  25. E. Stoykova, F. Yaraş, H. Kang, L. Onural, A. Geltrude, M. Locatelli, M. Paturzo, A. Pelagotti, R. Meucci, and P. Ferraro, “Visible reconstruction by a circular holographic display from digital holograms recorded under infrared illumination,” Opt. Lett. 37(15), 3120–3122 (2012).
    [Crossref] [PubMed]
  26. A. Pelagotti, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, M. Paturzo, L. Miccio, and P. Ferraro, “Reliability of 3D imaging by digital holography at long IR wavelength,” J. Disp. Technol. 6(10), 465–471 (2010).
    [Crossref]
  27. E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215(4-6), 257–262 (2003).
    [Crossref]
  28. M. P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, P. Queeckers, F. Dubois, and D. Doyle, “Digital holographic interferometry with CO2 lasers and diffused illumination applied to large space reflector metrology [Invited],” Appl. Opt. 52(1), A102–A116 (2013).
    [Crossref] [PubMed]
  29. I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. P. Georges, “Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt. 52(1), A56–A67 (2013).
    [Crossref] [PubMed]
  30. P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
    [Crossref] [PubMed]
  31. M. Cho and B. Javidi, “Three-dimensional tracking of occluded objects using integral imaging,” Opt. Lett. 33(23), 2737–2739 (2008).
    [Crossref] [PubMed]
  32. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
    [Crossref] [PubMed]
  33. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
    [Crossref] [PubMed]
  34. M. P. Georges, J.-F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, and W. Osten, “Speckle interferometry at 10µm with CO2 lasers and microbolometers array,” Proc. SPIE 8412, 84121O (2012).
    [Crossref]
  35. X. Cai and H. Wang, “The influence of hologram aperture on speckle noise in the reconstructed image of digital holography and its reduction,” Opt. Commun. 281(2), 232–237 (2008).
    [Crossref]
  36. J. Maycock, B. M. Hennelly, J. B. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. J. Naughton, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. A 24(6), 1617–1622 (2007).
    [Crossref] [PubMed]
  37. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company Publishers, 2007), Chap. 5.

2013 (2)

2012 (6)

E. Stoykova, F. Yaraş, H. Kang, L. Onural, A. Geltrude, M. Locatelli, M. Paturzo, A. Pelagotti, R. Meucci, and P. Ferraro, “Visible reconstruction by a circular holographic display from digital holograms recorded under infrared illumination,” Opt. Lett. 37(15), 3120–3122 (2012).
[Crossref] [PubMed]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
[Crossref] [PubMed]

M. P. Georges, J.-F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, and W. Osten, “Speckle interferometry at 10µm with CO2 lasers and microbolometers array,” Proc. SPIE 8412, 84121O (2012).
[Crossref]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12(17), 3073–3076 (2012).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37(20), 4212–4214 (2012).
[Crossref] [PubMed]

B. Katz, J. Rosen, R. Kelner, and G. Brooker, “Enhanced resolution and throughput of Fresnel incoherent correlation holography (FINCH) using dual diffractive lenses on a spatial light modulator (SLM),” Opt. Express 20(8), 9109–9121 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (9)

Y. Kikuchi, D. Barada, T. Kiire, and T. Yatagai, “Doppler phase-shifting digital holography and its application to surface shape measurement,” Opt. Lett. 35(10), 1548–1550 (2010).
[Crossref] [PubMed]

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express 18(9), 8806–8815 (2010).
[Crossref] [PubMed]

E. Shaffer, C. Moratal, P. Magistretti, P. Marquet, and C. Depeursinge, “Label-free second-harmonic phase imaging of biological specimen by digital holographic microscopy,” Opt. Lett. 35(24), 4102–4104 (2010).
[Crossref] [PubMed]

A. Àgueda, E. Pastor, Y. Pérez, and E. Planas, “Experimental study of the emissivity of flames resulting from the combustion of forest fuels,” Int. J. Therm. Sci. 49(3), 543–554 (2010).
[Crossref]

G. Parent, Z. Acem, S. Lechêne, and P. Boulet, “Measurement of infrared radiation emitted by the flame of a vegetation fire,” Int. J. Therm. Sci. 49(3), 555–562 (2010).
[Crossref]

A. Pelagotti, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, M. Paturzo, L. Miccio, and P. Ferraro, “Reliability of 3D imaging by digital holography at long IR wavelength,” J. Disp. Technol. 6(10), 465–471 (2010).
[Crossref]

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35(12), 2112–2114 (2010).
[Crossref] [PubMed]

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

2008 (7)

M. Cho and B. Javidi, “Three-dimensional tracking of occluded objects using integral imaging,” Opt. Lett. 33(23), 2737–2739 (2008).
[Crossref] [PubMed]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

X. Cai and H. Wang, “The influence of hologram aperture on speckle noise in the reconstructed image of digital holography and its reduction,” Opt. Commun. 281(2), 232–237 (2008).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, “Nanoscale holographic interferometry for strain measurements in electronic devices,” Nature 453(7198), 1086–1089 (2008).
[Crossref] [PubMed]

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[Crossref]

T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16(16), 11776–11781 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (3)

2003 (1)

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215(4-6), 257–262 (2003).
[Crossref]

Acem, Z.

G. Parent, Z. Acem, S. Lechêne, and P. Boulet, “Measurement of infrared radiation emitted by the flame of a vegetation fire,” Int. J. Therm. Sci. 49(3), 555–562 (2010).
[Crossref]

Àgueda, A.

A. Àgueda, E. Pastor, Y. Pérez, and E. Planas, “Experimental study of the emissivity of flames resulting from the combustion of forest fuels,” Int. J. Therm. Sci. 49(3), 543–554 (2010).
[Crossref]

Alexeenko, I.

I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. P. Georges, “Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt. 52(1), A56–A67 (2013).
[Crossref] [PubMed]

M. P. Georges, J.-F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, and W. Osten, “Speckle interferometry at 10µm with CO2 lasers and microbolometers array,” Proc. SPIE 8412, 84121O (2012).
[Crossref]

Allaria, E.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215(4-6), 257–262 (2003).
[Crossref]

Bablumian, A.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Balduzzi, D.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12(17), 3073–3076 (2012).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37(20), 4212–4214 (2012).
[Crossref] [PubMed]

Barada, D.

Bianco, V.

Bishara, W.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Blanche, P. A.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Boppart, S. A.

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

Boulet, P.

G. Parent, Z. Acem, S. Lechêne, and P. Boulet, “Measurement of infrared radiation emitted by the flame of a vegetation fire,” Int. J. Therm. Sci. 49(3), 555–562 (2010).
[Crossref]

Brooker, G.

Brugioni, S.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215(4-6), 257–262 (2003).
[Crossref]

Cai, X.

X. Cai and H. Wang, “The influence of hologram aperture on speckle noise in the reconstructed image of digital holography and its reduction,” Opt. Commun. 281(2), 232–237 (2008).
[Crossref]

Callens, N.

Castro, A.

Cho, M.

Christenson, C.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

De Nicola, S.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215(4-6), 257–262 (2003).
[Crossref]

Depeursinge, C.

Ding, H.

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[Crossref] [PubMed]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

Doyle, D.

Dubois, F.

Everitt, H. O.

Farahi, S.

Feld, M. S.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Ferraro, P.

E. Stoykova, F. Yaraş, H. Kang, L. Onural, A. Geltrude, M. Locatelli, M. Paturzo, A. Pelagotti, R. Meucci, and P. Ferraro, “Visible reconstruction by a circular holographic display from digital holograms recorded under infrared illumination,” Opt. Lett. 37(15), 3120–3122 (2012).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37(20), 4212–4214 (2012).
[Crossref] [PubMed]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12(17), 3073–3076 (2012).
[Crossref] [PubMed]

A. Pelagotti, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, M. Paturzo, L. Miccio, and P. Ferraro, “Reliability of 3D imaging by digital holography at long IR wavelength,” J. Disp. Technol. 6(10), 465–471 (2010).
[Crossref]

M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express 18(9), 8806–8815 (2010).
[Crossref] [PubMed]

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35(12), 2112–2114 (2010).
[Crossref] [PubMed]

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215(4-6), 257–262 (2003).
[Crossref]

Finizio, A.

Flores, D.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Frauel, Y.

Galli, A.

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37(20), 4212–4214 (2012).
[Crossref] [PubMed]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12(17), 3073–3076 (2012).
[Crossref] [PubMed]

García, J.

Geltrude, A.

E. Stoykova, F. Yaraş, H. Kang, L. Onural, A. Geltrude, M. Locatelli, M. Paturzo, A. Pelagotti, R. Meucci, and P. Ferraro, “Visible reconstruction by a circular holographic display from digital holograms recorded under infrared illumination,” Opt. Lett. 37(15), 3120–3122 (2012).
[Crossref] [PubMed]

A. Pelagotti, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, M. Paturzo, L. Miccio, and P. Ferraro, “Reliability of 3D imaging by digital holography at long IR wavelength,” J. Disp. Technol. 6(10), 465–471 (2010).
[Crossref]

Georges, M. P.

Gertrude, A.

Gillette, M. U.

Gregory, D. A.

Grilli, S.

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215(4-6), 257–262 (2003).
[Crossref]

Gu, T.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Heimbeck, M. S.

Hennelly, B. M.

Houdellier, F.

M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, “Nanoscale holographic interferometry for strain measurements in electronic devices,” Nature 453(7198), 1086–1089 (2008).
[Crossref] [PubMed]

Hoyos, M.

Hsieh, W. Y.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Hüe, F.

M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, “Nanoscale holographic interferometry for strain measurements in electronic devices,” Nature 453(7198), 1086–1089 (2008).
[Crossref] [PubMed]

Hÿtch, M.

M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, “Nanoscale holographic interferometry for strain measurements in electronic devices,” Nature 453(7198), 1086–1089 (2008).
[Crossref] [PubMed]

Ida, T.

Isikman, S. O.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Ito, T.

Javidi, B.

Kang, H.

Kathaperumal, M.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Katz, B.

Kelner, R.

Khademhosseini, B.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Kiire, T.

Kikuchi, Y.

Kim, M. K.

Kurowski, P.

Lechêne, S.

G. Parent, Z. Acem, S. Lechêne, and P. Boulet, “Measurement of infrared radiation emitted by the flame of a vegetation fire,” Int. J. Therm. Sci. 49(3), 555–562 (2010).
[Crossref]

Lin, W.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Locatelli, M.

Magistretti, P.

Marquet, P.

Maycock, J.

McDonald, J. B.

Memmolo, P.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12(17), 3073–3076 (2012).
[Crossref] [PubMed]

M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express 18(9), 8806–8815 (2010).
[Crossref] [PubMed]

Meucci, R.

Miccio, L.

A. Pelagotti, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, M. Paturzo, L. Miccio, and P. Ferraro, “Reliability of 3D imaging by digital holography at long IR wavelength,” J. Disp. Technol. 6(10), 465–471 (2010).
[Crossref]

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35(12), 2112–2114 (2010).
[Crossref] [PubMed]

Mico, V.

Millet, L.

Mir, M.

Miura, J.

Monnom, O.

Moratal, C.

Moser, C.

Mudanyali, O.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Näsänen, R.

Naughton, T. J.

Nguyen, F.

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

Norwood, R. A.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Oh, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Onural, L.

Osten, W.

I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. P. Georges, “Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt. 52(1), A56–A67 (2013).
[Crossref] [PubMed]

M. P. Georges, J.-F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, and W. Osten, “Speckle interferometry at 10µm with CO2 lasers and microbolometers array,” Proc. SPIE 8412, 84121O (2012).
[Crossref]

Ozcan, A.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Oztoprak, C.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Papadopoulos, I. N.

Parent, G.

G. Parent, Z. Acem, S. Lechêne, and P. Boulet, “Measurement of infrared radiation emitted by the flame of a vegetation fire,” Int. J. Therm. Sci. 49(3), 555–562 (2010).
[Crossref]

Pastor, E.

A. Àgueda, E. Pastor, Y. Pérez, and E. Planas, “Experimental study of the emissivity of flames resulting from the combustion of forest fuels,” Int. J. Therm. Sci. 49(3), 543–554 (2010).
[Crossref]

Paturzo, M.

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12(17), 3073–3076 (2012).
[Crossref] [PubMed]

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37(20), 4212–4214 (2012).
[Crossref] [PubMed]

E. Stoykova, F. Yaraş, H. Kang, L. Onural, A. Geltrude, M. Locatelli, M. Paturzo, A. Pelagotti, R. Meucci, and P. Ferraro, “Visible reconstruction by a circular holographic display from digital holograms recorded under infrared illumination,” Opt. Lett. 37(15), 3120–3122 (2012).
[Crossref] [PubMed]

A. Pelagotti, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, M. Paturzo, L. Miccio, and P. Ferraro, “Reliability of 3D imaging by digital holography at long IR wavelength,” J. Disp. Technol. 6(10), 465–471 (2010).
[Crossref]

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35(12), 2112–2114 (2010).
[Crossref] [PubMed]

M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express 18(9), 8806–8815 (2010).
[Crossref] [PubMed]

Pedrini, G.

I. Alexeenko, J.-F. Vandenrijt, G. Pedrini, C. Thizy, B. Vollheim, W. Osten, and M. P. Georges, “Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays,” Appl. Opt. 52(1), A56–A67 (2013).
[Crossref] [PubMed]

M. P. Georges, J.-F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, and W. Osten, “Speckle interferometry at 10µm with CO2 lasers and microbolometers array,” Proc. SPIE 8412, 84121O (2012).
[Crossref]

Pelagotti, A.

Pérez, Y.

A. Àgueda, E. Pastor, Y. Pérez, and E. Planas, “Experimental study of the emissivity of flames resulting from the combustion of forest fuels,” Int. J. Therm. Sci. 49(3), 543–554 (2010).
[Crossref]

Peyghambarian, N.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Planas, E.

A. Àgueda, E. Pastor, Y. Pérez, and E. Planas, “Experimental study of the emissivity of flames resulting from the combustion of forest fuels,” Int. J. Therm. Sci. 49(3), 543–554 (2010).
[Crossref]

Poggi, P.

M. Paturzo, A. Pelagotti, A. Finizio, L. Miccio, M. Locatelli, A. Gertrude, P. Poggi, R. Meucci, and P. Ferraro, “Optical reconstruction of digital holograms recorded at 10.6 microm: route for 3D imaging at long infrared wavelengths,” Opt. Lett. 35(12), 2112–2114 (2010).
[Crossref] [PubMed]

A. Pelagotti, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, M. Paturzo, L. Miccio, and P. Ferraro, “Reliability of 3D imaging by digital holography at long IR wavelength,” J. Disp. Technol. 6(10), 465–471 (2010).
[Crossref]

Popescu, G.

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[Crossref] [PubMed]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

Psaltis, D.

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
[Crossref] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Puglisi, R.

V. Bianco, M. Paturzo, A. Finizio, D. Balduzzi, R. Puglisi, A. Galli, and P. Ferraro, “Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions,” Opt. Lett. 37(20), 4212–4214 (2012).
[Crossref] [PubMed]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12(17), 3073–3076 (2012).
[Crossref] [PubMed]

Queeckers, P.

Rachwal, B.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Rogers, J.

Rosen, J.

Sato, Y.

Sencan, I.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Seo, S.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Shaffer, E.

Shimobaba, T.

Siddiqui, O.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Snoeck, E.

M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, “Nanoscale holographic interferometry for strain measurements in electronic devices,” Nature 453(7198), 1086–1089 (2008).
[Crossref] [PubMed]

Stockman, Y.

Stoykova, E.

Takenouchi, M.

Thizy, C.

Thomas, J.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Tseng, D.

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

Unarunotai, S.

Vandenrijt, J.-F.

Vollheim, B.

Voorakaranam, R.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Wang, H.

X. Cai and H. Wang, “The influence of hologram aperture on speckle noise in the reconstructed image of digital holography and its reduction,” Opt. Commun. 281(2), 232–237 (2008).
[Crossref]

Wang, P.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[Crossref] [PubMed]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

Yamaguchi, I.

Yamamoto, M.

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Yamashita, K.

Yang, C.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Yaqoob, Z.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Yaras, F.

Yatagai, T.

Yokota, M.

Yourassowsky, C.

Zalevsky, Z.

Appl. Opt. (4)

Int. J. Therm. Sci. (2)

A. Àgueda, E. Pastor, Y. Pérez, and E. Planas, “Experimental study of the emissivity of flames resulting from the combustion of forest fuels,” Int. J. Therm. Sci. 49(3), 543–554 (2010).
[Crossref]

G. Parent, Z. Acem, S. Lechêne, and P. Boulet, “Measurement of infrared radiation emitted by the flame of a vegetation fire,” Int. J. Therm. Sci. 49(3), 555–562 (2010).
[Crossref]

J. Disp. Technol. (1)

A. Pelagotti, M. Locatelli, A. Geltrude, P. Poggi, R. Meucci, M. Paturzo, L. Miccio, and P. Ferraro, “Reliability of 3D imaging by digital holography at long IR wavelength,” J. Disp. Technol. 6(10), 465–471 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

Lab Chip (2)

O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, and A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010).
[Crossref] [PubMed]

M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12(17), 3073–3076 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2(2), 110–115 (2008).
[Crossref] [PubMed]

Nature (2)

P. A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

M. Hÿtch, F. Houdellier, F. Hüe, and E. Snoeck, “Nanoscale holographic interferometry for strain measurements in electronic devices,” Nature 453(7198), 1086–1089 (2008).
[Crossref] [PubMed]

Opt. Commun. (2)

X. Cai and H. Wang, “The influence of hologram aperture on speckle noise in the reconstructed image of digital holography and its reduction,” Opt. Commun. 281(2), 232–237 (2008).
[Crossref]

E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 μm,” Opt. Commun. 215(4-6), 257–262 (2003).
[Crossref]

Opt. Express (8)

B. Katz, J. Rosen, R. Kelner, and G. Brooker, “Enhanced resolution and throughput of Fresnel incoherent correlation holography (FINCH) using dual diffractive lenses on a spatial light modulator (SLM),” Opt. Express 20(8), 9109–9121 (2012).
[Crossref] [PubMed]

M. S. Heimbeck, M. K. Kim, D. A. Gregory, and H. O. Everitt, “Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods,” Opt. Express 19(10), 9192–9200 (2011).
[Crossref] [PubMed]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
[Crossref] [PubMed]

Y. Frauel, A. Castro, T. J. Naughton, and B. Javidi, “Resistance of the double random phase encryption against various attacks,” Opt. Express 15(16), 10253–10265 (2007).
[Crossref] [PubMed]

Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, “Spatial light interference microscopy (SLIM),” Opt. Express 19(2), 1016–1026 (2011).
[Crossref] [PubMed]

T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16(16), 11776–11781 (2008).
[Crossref] [PubMed]

V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14(12), 5168–5177 (2006).
[Crossref] [PubMed]

M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express 18(9), 8806–8815 (2010).
[Crossref] [PubMed]

Opt. Lett. (6)

Phys. Rev. Lett. (1)

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref] [PubMed]

Proc. SPIE (1)

M. P. Georges, J.-F. Vandenrijt, C. Thizy, I. Alexeenko, G. Pedrini, and W. Osten, “Speckle interferometry at 10µm with CO2 lasers and microbolometers array,” Proc. SPIE 8412, 84121O (2012).
[Crossref]

Other (5)

T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH Verlag GmbH & Co. KGaA, 2005).

U.S. Fire Administration, http://www.usfa.fema.gov/statistics .

G. Zizak, “Flame emission spectroscopy: fundamentals and applications. Lecture given at the ICS training course on laser diagnostics of combustion processes,” (NILES, University of Cairo, Egypt, 2000).

L. Onural, 3D Video Technologies: An Overview of Research Trends (SPIE, 2010).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company Publishers, 2007), Chap. 5.

Supplementary Material (1)

» Media 1: MOV (4785 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Sketch of a typical fire scenario where the line of sight is impaired by smoke and flames. Both the naked-eye vision and the thermographic view are blinded by flame emission. Holography at IR can allow clear vision.

Fig. 2
Fig. 2

Experimental set-up: interferometric set-up in lensless off-axis configuration. (BS): beam splitter. (L1, L2): lenses. (VA): variable attenuator. (M1, M2): mirrors.

Fig. 3
Fig. 3

Target imaging through smoke. (a) Metal object in Plexiglas™ box. Images recorded by a standard white-light photo camera before and after letting smoke into the box. (b) Thermographic imaging of the metal object through smoke. (c) Holographic amplitude reconstruction. This confirms that holography has the same capability of IR imaging to see through smoke.

Fig. 4
Fig. 4

Target imaging through smoke. (a) Holographic amplitude reconstruction before numerical processing and relative deviation corresponding to a homogeneous cut of the image (red box in figure). (b) Speckle reduction by processing a time sequence of holograms: multi-look reconstruction and relative deviation improvement. (c) Amplitude histograms: comparison between the single look and the multi-look image.

Fig. 5
Fig. 5

Imaging of a metal object seen through flames of candles. (a) Thermographic acquisition and corresponding image. (b) Holographic acquisition and amplitude reconstruction. Since no lens is needed, the IR energy is distributed over the whole array of camera pixels, avoiding their saturation.

Fig. 6
Fig. 6

Holographic capability of imaging human-size objects. (a) White light image of a plastic mannequin 190 cm tall used as a test target. (b-f) Holographic reconstruction of the plastic human-size mannequin. Holograms acquired using the cylindrical lens setup (b), the scanning set-up (c,d,e) and their superposition (f). Digital holography is suited for both small and big human-size targets, like adults in a room.

Fig. 7
Fig. 7

Imaging of a live human seen through flames. (a) Thermographic image. (Media 1). (b-c) White-light images of a live hand and the man with his arms in a different position. (d) Holographic imaging (Media 1). The flames in this case cover the entire field of view of the recording bolometer.

Fig. 8
Fig. 8

Imaging of a human target behind a flame. Left: SL holographic reconstruction. Right: ML amplitude image.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

C= σ μ ,
R Dev ( x,y )= I( x,y ) I ¯ I ¯ ,
Y=a X 1 +b X 2
σ Y 2 = a 2 σ X 1 2 + b 2 σ X 2 2 .
X ˜ = 1 N i=1 N X i
σ X ˜ 2 = 1 N 2 i=1 N σ X i 2 = σ X 2 N .
μ X ˜ = μ X ,
C X ˜ = 1 N σ X i μ X i = 1 N C X i ,

Metrics