Abstract

This work reports both experimental and theoretical studies on the InGaN/GaN light-emitting diodes (LEDs) with optical output power and external quantum efficiency (EQE) levels substantially enhanced by incorporating p-GaN/n-GaN/p-GaN/n-GaN/p-GaN (PNPNP-GaN) current spreading layers in p-GaN. Each thin n-GaN layer sandwiched in the PNPNP-GaN structure is completely depleted due to the built-in electric field in the PNPNP-GaN junctions, and the ionized donors in these n-GaN layers serve as the hole spreaders. As a result, the electrical performance of the proposed device is improved and the optical output power and EQE are enhanced.

© 2013 OSA

Full Article  |  PDF Article

Errata

Zi-Hui Zhang, Swee Tiam Tan, Wei Liu, Zhengang Ju, Ke Zheng, Zabu Kyaw, Yun Ji, Namig Hasanov, Xiao Wei Sun, and Hilmi Volkan Demir, "Improved InGaN/GaN light-emitting diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p-GaN current-spreading layer: errata," Opt. Express 21, 17670-17670 (2013)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-15-17670

References

  • View by:
  • |
  • |
  • |

  1. S. T. Tan, X. W. Sun, H. V. Demir, and S. P. DenBaars, “Advances in the LED materials and architectures for energy-saving solid-state lighting toward “lighting revolution”,” IEEE Photon. J.4(2), 613–619 (2012).
    [CrossRef]
  2. M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron.15(4), 1028–1040 (2009).
    [CrossRef]
  3. N. Tansu, H. Zhao, G. Liu, X. H. Li, J. Zhang, H. Tong, and Y. K. Ee, “III-nitride photonics,” IEEE Photon. J.2(2), 241–243 (2010).
    [CrossRef]
  4. R. M. Farrell, E. C. Young, F. Wu, S. P. Denbaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001–024014 (2012).
    [CrossRef]
  5. D. A. Browne, E. C. Young, J. R. Lang, C. A. Hurni, and J. S. Speck, “Indium and impurity incorporation in InGaN films on polar, nonpolar, and semipolar GaN orientations grown by ammonia molecular beam epitaxy,” J. Vac. Sci. Technol. A30(4), 041513–041520 (2012).
    [CrossRef]
  6. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011).
    [CrossRef] [PubMed]
  7. J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110(11), 113110 (2011).
    [CrossRef]
  8. H. P. Zhao, G. Y. Liu, X. H. Li, R. A. Arif, G. S. Huang, J. D. Poplawsky, S. Tafon Penn, V. Dierolf, and N. Tansu, “Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime,” IET Optoelectron.3(6), 283–295 (2009).
    [CrossRef]
  9. H. Zhao, G. Liu, and N. Tansu, “Analysis of InGaN-delta-InN quantum wells for light-emitting diodes,” Appl. Phys. Lett.97(13), 131114 (2010).
    [CrossRef]
  10. Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron.15(4), 1066–1072 (2009).
    [CrossRef]
  11. Y. K. Ee, X. H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire,” J. Cryst. Growth312(8), 1311–1315 (2010).
    [CrossRef]
  12. Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
    [CrossRef]
  13. H. Zhao, G. Liu, R. A. Arif, and N. Tansu, “Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes,” Solid-State Electron.54(10), 1119–1124 (2010).
    [CrossRef]
  14. J. Wang, L. Wang, Z. Hao, Y. Luo, A. Dempewolf, M. Müller, F. Bertram, and J. Christen, “An improved carrier rate model to evaluate internal quantum efficiency and analyze efficiency droop origin of InGaN based light-emitting diodes,” J. Appl. Phys.112(2), 023107 (2012).
    [CrossRef]
  15. H. J. Kim, S. Choi, S. S. Kim, J. H. Ryou, P. D. Yoder, R. D. Dupuis, A. M. Fischer, K. Sun, and F. A. Ponce, “Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAlN electron blocking layer in green light-emitting diodes,” Appl. Phys. Lett.96(10), 101102 (2010).
    [CrossRef]
  16. N. Tansu and L. J. Mawst, “Current injection efficiency of InGaAsN quantum-well lasers,” J. Appl. Phys.97(5), 054502 (2005).
    [CrossRef]
  17. H. Kim, S. J. Park, and H. Hwang, “Effects of current spreading on the performance of GaN-based light-emitting diodes,” IEEE Trans. Electron. Dev.48(6), 1065–1069 (2001).
    [CrossRef]
  18. R. M. Lin, Y. C. Lu, Y. L. Chou, G. H. Chen, Y. H. Lin, and M. C. Wu, “Enhanced characteristics of blue InGaN/GaN light-emitting diodes by using selective activation to modulate the lateral current spreading length,” Appl. Phys. Lett.92(26), 261105 (2008).
    [CrossRef]
  19. T. W. Kuo, S. X. Lin, P. K. Hung, K. K. Chong, C. I. Hung, and M. P. Houng, “Formation of selective high barrier region by inductively coupled plasma treatment on GaN-based light-emitting diodes,” Jpn. J. Appl. Phys.49(11), 116504 (2010).
    [CrossRef]
  20. H. Y. Ryu and J. I. Shim, “Effect of current spreading on the efficiency droop of InGaN light-emitting diodes,” Opt. Express19(4), 2886–2894 (2011).
    [CrossRef] [PubMed]
  21. D. Han, J. Shim, D. S. Shin, E. Nam, and H. Park, “Effect of temperature distribution and current crowding on the performance of lateral GaN-based light-emitting diodes,” Phys. Status Solidi C7(7-8), 2133–2135 (2010).
    [CrossRef]
  22. E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, 2006).
  23. C. F. Tsai, Y. K. Su, and C. L. Lin, “Improvement in the light output power of GaN-based light-emitting diodes by natural-cluster silicon dioxide nanoparticles as the current-blocking layer,” IEEE Photon. Technol. Lett.21(14), 996–998 (2009).
    [CrossRef]
  24. J. H. Son, B. J. Kim, C. J. Ryu, Y. H. Song, H. K. Lee, J. W. Choi, and J.-L. Lee, “Enhancement of wall-plug efficiency in vertical InGaN/GaN LEDs by improved current spreading,” Opt. Express20(S2Suppl 2), A287–A292 (2012).
    [CrossRef] [PubMed]
  25. H. H. Liu, P. R. Chen, G. Y. Lee, and J. I. Chyi, “Efficiency enhancement of InGaN LEDs with an n-type AlGaN/GaN/InGaN current spreading layer,” IEEE Electron Device Lett.32(10), 1409–1411 (2011).
    [CrossRef]
  26. S. R. Jeon, Y. H. Song, H. J. Jang, G. M. Yang, S. W. Hwang, and S. J. Son, “Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions,” Appl. Phys. Lett.78(21), 3265–3267 (2001).
    [CrossRef]
  27. A. H. Reading, J. J. Richardson, C. C. Pan, S. Nakamura, and S. P. DenBaars, “High efficiency white LEDs with single-crystal ZnO current spreading layers deposited by aqueous solution epitaxy,” Opt. Express20(1S1), A13–A19 (2012).
    [CrossRef] [PubMed]
  28. V. K. Malyutenko, S. S. Bolgov, and A. N. Tykhonov, “Research on electrical efficiency degradation influenced by current crowding in vertical blue InGaN-on-SiC light-emitting diodes,” IEEE Photon. Technol. Lett.24(13), 1124–1126 (2012).
    [CrossRef]
  29. C.-K. Li and Y.-R. Wu, “Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs,” IEEE Trans. Electron. Dev.59(2), 400–407 (2012).
    [CrossRef]
  30. Z. G. Ju, S. T. Tan, Z.-H. Zhang, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer,” Appl. Phys. Lett.100(12), 123503 (2012).
    [CrossRef]
  31. Z. -H. Zhang, S. T. Tan, Z. Ju, W. Liu, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun and H. V. Demir, “On the effect of step-doped quantum barriers in InGaN/GaN light emitting diodes,” IEEE/OSA J. Display Technol. PP(99), 1–8 (2012).
  32. M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, and B. Hahn, “A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes,” J. Appl. Phys.106(11), 114508 (2009).
    [CrossRef]
  33. J. Piprek, “Efficiency droop in nitride-based light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci.207(10), 2217–2225 (2010).
    [CrossRef]
  34. V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys. Lett.80(7), 1204–1206 (2002).
    [CrossRef]
  35. I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys.94(6), 3675–3696 (2003).
    [CrossRef]
  36. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (John Wiley & Sons, Inc., 1981).
  37. K. Kumakura, T. Makimoto, N. Kobayashi, T. Hashizume, T. Fukui, and H. Hasegawa, “Minority carrier diffusion length in GaN: dislocation density and doping concentration dependence,” Appl. Phys. Lett.86(5), 052105 (2005).
    [CrossRef]
  38. B. J. Baliga, Fundamentals of Power Semiconductor Devices (Springer Science + Business Media, LLC, 2008).
  39. M. K. Kwon, I. K. Park, J. Y. Kim, J. O. Kim, B. Kim, and S. J. Park, “Gradient doping of Mg in p-type GaN for high efficiency InGaN-GaN ultraviolet light-emitting diode,” IEEE Photon. Technol. Lett.19(23), 1880–1882 (2007).
    [CrossRef]
  40. D. K. Schroder, Semiconductor Material and Device Characterization, 2nd ed. (John Wiley & Sons, Inc., 1998).
  41. Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, J. K. Liou, and W. C. Liu, “Improved performance of an InGaN-based light-emitting diode with a p-GaN/n-GaN barrier junction,” IEEE J. Quantum Electron.47(6), 755–761 (2011).
    [CrossRef]
  42. V. K. Malyutenko, S. S. Bolgov, “Effect of current crowding on the ideality factor in MQW InGaN/GaN LEDs on sapphire substrates,” Proc. SPIE 7617, 76171K −76171K–9 (2010).
  43. Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys.107(1), 013103 (2010).
    [CrossRef]
  44. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett.91(14), 141101 (2007).
    [CrossRef]

2012

R. M. Farrell, E. C. Young, F. Wu, S. P. Denbaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001–024014 (2012).
[CrossRef]

D. A. Browne, E. C. Young, J. R. Lang, C. A. Hurni, and J. S. Speck, “Indium and impurity incorporation in InGaN films on polar, nonpolar, and semipolar GaN orientations grown by ammonia molecular beam epitaxy,” J. Vac. Sci. Technol. A30(4), 041513–041520 (2012).
[CrossRef]

S. T. Tan, X. W. Sun, H. V. Demir, and S. P. DenBaars, “Advances in the LED materials and architectures for energy-saving solid-state lighting toward “lighting revolution”,” IEEE Photon. J.4(2), 613–619 (2012).
[CrossRef]

J. Wang, L. Wang, Z. Hao, Y. Luo, A. Dempewolf, M. Müller, F. Bertram, and J. Christen, “An improved carrier rate model to evaluate internal quantum efficiency and analyze efficiency droop origin of InGaN based light-emitting diodes,” J. Appl. Phys.112(2), 023107 (2012).
[CrossRef]

A. H. Reading, J. J. Richardson, C. C. Pan, S. Nakamura, and S. P. DenBaars, “High efficiency white LEDs with single-crystal ZnO current spreading layers deposited by aqueous solution epitaxy,” Opt. Express20(1S1), A13–A19 (2012).
[CrossRef] [PubMed]

V. K. Malyutenko, S. S. Bolgov, and A. N. Tykhonov, “Research on electrical efficiency degradation influenced by current crowding in vertical blue InGaN-on-SiC light-emitting diodes,” IEEE Photon. Technol. Lett.24(13), 1124–1126 (2012).
[CrossRef]

C.-K. Li and Y.-R. Wu, “Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs,” IEEE Trans. Electron. Dev.59(2), 400–407 (2012).
[CrossRef]

Z. G. Ju, S. T. Tan, Z.-H. Zhang, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer,” Appl. Phys. Lett.100(12), 123503 (2012).
[CrossRef]

J. H. Son, B. J. Kim, C. J. Ryu, Y. H. Song, H. K. Lee, J. W. Choi, and J.-L. Lee, “Enhancement of wall-plug efficiency in vertical InGaN/GaN LEDs by improved current spreading,” Opt. Express20(S2Suppl 2), A287–A292 (2012).
[CrossRef] [PubMed]

2011

H. H. Liu, P. R. Chen, G. Y. Lee, and J. I. Chyi, “Efficiency enhancement of InGaN LEDs with an n-type AlGaN/GaN/InGaN current spreading layer,” IEEE Electron Device Lett.32(10), 1409–1411 (2011).
[CrossRef]

Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, J. K. Liou, and W. C. Liu, “Improved performance of an InGaN-based light-emitting diode with a p-GaN/n-GaN barrier junction,” IEEE J. Quantum Electron.47(6), 755–761 (2011).
[CrossRef]

H. Y. Ryu and J. I. Shim, “Effect of current spreading on the efficiency droop of InGaN light-emitting diodes,” Opt. Express19(4), 2886–2894 (2011).
[CrossRef] [PubMed]

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
[CrossRef]

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011).
[CrossRef] [PubMed]

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110(11), 113110 (2011).
[CrossRef]

2010

H. Zhao, G. Liu, and N. Tansu, “Analysis of InGaN-delta-InN quantum wells for light-emitting diodes,” Appl. Phys. Lett.97(13), 131114 (2010).
[CrossRef]

H. Zhao, G. Liu, R. A. Arif, and N. Tansu, “Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes,” Solid-State Electron.54(10), 1119–1124 (2010).
[CrossRef]

N. Tansu, H. Zhao, G. Liu, X. H. Li, J. Zhang, H. Tong, and Y. K. Ee, “III-nitride photonics,” IEEE Photon. J.2(2), 241–243 (2010).
[CrossRef]

Y. K. Ee, X. H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire,” J. Cryst. Growth312(8), 1311–1315 (2010).
[CrossRef]

H. J. Kim, S. Choi, S. S. Kim, J. H. Ryou, P. D. Yoder, R. D. Dupuis, A. M. Fischer, K. Sun, and F. A. Ponce, “Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAlN electron blocking layer in green light-emitting diodes,” Appl. Phys. Lett.96(10), 101102 (2010).
[CrossRef]

D. Han, J. Shim, D. S. Shin, E. Nam, and H. Park, “Effect of temperature distribution and current crowding on the performance of lateral GaN-based light-emitting diodes,” Phys. Status Solidi C7(7-8), 2133–2135 (2010).
[CrossRef]

T. W. Kuo, S. X. Lin, P. K. Hung, K. K. Chong, C. I. Hung, and M. P. Houng, “Formation of selective high barrier region by inductively coupled plasma treatment on GaN-based light-emitting diodes,” Jpn. J. Appl. Phys.49(11), 116504 (2010).
[CrossRef]

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys.107(1), 013103 (2010).
[CrossRef]

J. Piprek, “Efficiency droop in nitride-based light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci.207(10), 2217–2225 (2010).
[CrossRef]

2009

C. F. Tsai, Y. K. Su, and C. L. Lin, “Improvement in the light output power of GaN-based light-emitting diodes by natural-cluster silicon dioxide nanoparticles as the current-blocking layer,” IEEE Photon. Technol. Lett.21(14), 996–998 (2009).
[CrossRef]

M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, and B. Hahn, “A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes,” J. Appl. Phys.106(11), 114508 (2009).
[CrossRef]

Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron.15(4), 1066–1072 (2009).
[CrossRef]

M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron.15(4), 1028–1040 (2009).
[CrossRef]

H. P. Zhao, G. Y. Liu, X. H. Li, R. A. Arif, G. S. Huang, J. D. Poplawsky, S. Tafon Penn, V. Dierolf, and N. Tansu, “Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime,” IET Optoelectron.3(6), 283–295 (2009).
[CrossRef]

2008

R. M. Lin, Y. C. Lu, Y. L. Chou, G. H. Chen, Y. H. Lin, and M. C. Wu, “Enhanced characteristics of blue InGaN/GaN light-emitting diodes by using selective activation to modulate the lateral current spreading length,” Appl. Phys. Lett.92(26), 261105 (2008).
[CrossRef]

2007

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett.91(14), 141101 (2007).
[CrossRef]

M. K. Kwon, I. K. Park, J. Y. Kim, J. O. Kim, B. Kim, and S. J. Park, “Gradient doping of Mg in p-type GaN for high efficiency InGaN-GaN ultraviolet light-emitting diode,” IEEE Photon. Technol. Lett.19(23), 1880–1882 (2007).
[CrossRef]

2005

K. Kumakura, T. Makimoto, N. Kobayashi, T. Hashizume, T. Fukui, and H. Hasegawa, “Minority carrier diffusion length in GaN: dislocation density and doping concentration dependence,” Appl. Phys. Lett.86(5), 052105 (2005).
[CrossRef]

N. Tansu and L. J. Mawst, “Current injection efficiency of InGaAsN quantum-well lasers,” J. Appl. Phys.97(5), 054502 (2005).
[CrossRef]

2003

I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys.94(6), 3675–3696 (2003).
[CrossRef]

2002

V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys. Lett.80(7), 1204–1206 (2002).
[CrossRef]

2001

S. R. Jeon, Y. H. Song, H. J. Jang, G. M. Yang, S. W. Hwang, and S. J. Son, “Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions,” Appl. Phys. Lett.78(21), 3265–3267 (2001).
[CrossRef]

H. Kim, S. J. Park, and H. Hwang, “Effects of current spreading on the performance of GaN-based light-emitting diodes,” IEEE Trans. Electron. Dev.48(6), 1065–1069 (2001).
[CrossRef]

Ambacher, O.

V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys. Lett.80(7), 1204–1206 (2002).
[CrossRef]

Arif, R. A.

H. Zhao, G. Liu, R. A. Arif, and N. Tansu, “Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes,” Solid-State Electron.54(10), 1119–1124 (2010).
[CrossRef]

H. P. Zhao, G. Y. Liu, X. H. Li, R. A. Arif, G. S. Huang, J. D. Poplawsky, S. Tafon Penn, V. Dierolf, and N. Tansu, “Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime,” IET Optoelectron.3(6), 283–295 (2009).
[CrossRef]

Bernardini, F.

V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys. Lett.80(7), 1204–1206 (2002).
[CrossRef]

Bertram, F.

J. Wang, L. Wang, Z. Hao, Y. Luo, A. Dempewolf, M. Müller, F. Bertram, and J. Christen, “An improved carrier rate model to evaluate internal quantum efficiency and analyze efficiency droop origin of InGaN based light-emitting diodes,” J. Appl. Phys.112(2), 023107 (2012).
[CrossRef]

Biser, J.

Y. K. Ee, X. H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire,” J. Cryst. Growth312(8), 1311–1315 (2010).
[CrossRef]

Biser, J. M.

Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron.15(4), 1066–1072 (2009).
[CrossRef]

Bolgov, S. S.

V. K. Malyutenko, S. S. Bolgov, and A. N. Tykhonov, “Research on electrical efficiency degradation influenced by current crowding in vertical blue InGaN-on-SiC light-emitting diodes,” IEEE Photon. Technol. Lett.24(13), 1124–1126 (2012).
[CrossRef]

Browne, D. A.

D. A. Browne, E. C. Young, J. R. Lang, C. A. Hurni, and J. S. Speck, “Indium and impurity incorporation in InGaN films on polar, nonpolar, and semipolar GaN orientations grown by ammonia molecular beam epitaxy,” J. Vac. Sci. Technol. A30(4), 041513–041520 (2012).
[CrossRef]

Cao, W.

Y. K. Ee, X. H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire,” J. Cryst. Growth312(8), 1311–1315 (2010).
[CrossRef]

Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron.15(4), 1066–1072 (2009).
[CrossRef]

Chan, H. M.

Y. K. Ee, X. H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire,” J. Cryst. Growth312(8), 1311–1315 (2010).
[CrossRef]

Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron.15(4), 1066–1072 (2009).
[CrossRef]

Chen, G. H.

R. M. Lin, Y. C. Lu, Y. L. Chou, G. H. Chen, Y. H. Lin, and M. C. Wu, “Enhanced characteristics of blue InGaN/GaN light-emitting diodes by using selective activation to modulate the lateral current spreading length,” Appl. Phys. Lett.92(26), 261105 (2008).
[CrossRef]

Chen, P. R.

H. H. Liu, P. R. Chen, G. Y. Lee, and J. I. Chyi, “Efficiency enhancement of InGaN LEDs with an n-type AlGaN/GaN/InGaN current spreading layer,” IEEE Electron Device Lett.32(10), 1409–1411 (2011).
[CrossRef]

Chen, T. Y.

Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, J. K. Liou, and W. C. Liu, “Improved performance of an InGaN-based light-emitting diode with a p-GaN/n-GaN barrier junction,” IEEE J. Quantum Electron.47(6), 755–761 (2011).
[CrossRef]

Chen, Y.

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys.107(1), 013103 (2010).
[CrossRef]

Choi, J. W.

Choi, S.

H. J. Kim, S. Choi, S. S. Kim, J. H. Ryou, P. D. Yoder, R. D. Dupuis, A. M. Fischer, K. Sun, and F. A. Ponce, “Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAlN electron blocking layer in green light-emitting diodes,” Appl. Phys. Lett.96(10), 101102 (2010).
[CrossRef]

Chong, K. K.

T. W. Kuo, S. X. Lin, P. K. Hung, K. K. Chong, C. I. Hung, and M. P. Houng, “Formation of selective high barrier region by inductively coupled plasma treatment on GaN-based light-emitting diodes,” Jpn. J. Appl. Phys.49(11), 116504 (2010).
[CrossRef]

Chou, Y. L.

R. M. Lin, Y. C. Lu, Y. L. Chou, G. H. Chen, Y. H. Lin, and M. C. Wu, “Enhanced characteristics of blue InGaN/GaN light-emitting diodes by using selective activation to modulate the lateral current spreading length,” Appl. Phys. Lett.92(26), 261105 (2008).
[CrossRef]

Christen, J.

J. Wang, L. Wang, Z. Hao, Y. Luo, A. Dempewolf, M. Müller, F. Bertram, and J. Christen, “An improved carrier rate model to evaluate internal quantum efficiency and analyze efficiency droop origin of InGaN based light-emitting diodes,” J. Appl. Phys.112(2), 023107 (2012).
[CrossRef]

Chyi, J. I.

H. H. Liu, P. R. Chen, G. Y. Lee, and J. I. Chyi, “Efficiency enhancement of InGaN LEDs with an n-type AlGaN/GaN/InGaN current spreading layer,” IEEE Electron Device Lett.32(10), 1409–1411 (2011).
[CrossRef]

Crawford, M. H.

M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron.15(4), 1028–1040 (2009).
[CrossRef]

Dawson, M. D.

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys.107(1), 013103 (2010).
[CrossRef]

Demir, H. V.

Z. G. Ju, S. T. Tan, Z.-H. Zhang, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer,” Appl. Phys. Lett.100(12), 123503 (2012).
[CrossRef]

S. T. Tan, X. W. Sun, H. V. Demir, and S. P. DenBaars, “Advances in the LED materials and architectures for energy-saving solid-state lighting toward “lighting revolution”,” IEEE Photon. J.4(2), 613–619 (2012).
[CrossRef]

Dempewolf, A.

J. Wang, L. Wang, Z. Hao, Y. Luo, A. Dempewolf, M. Müller, F. Bertram, and J. Christen, “An improved carrier rate model to evaluate internal quantum efficiency and analyze efficiency droop origin of InGaN based light-emitting diodes,” J. Appl. Phys.112(2), 023107 (2012).
[CrossRef]

DenBaars, S. P.

A. H. Reading, J. J. Richardson, C. C. Pan, S. Nakamura, and S. P. DenBaars, “High efficiency white LEDs with single-crystal ZnO current spreading layers deposited by aqueous solution epitaxy,” Opt. Express20(1S1), A13–A19 (2012).
[CrossRef] [PubMed]

S. T. Tan, X. W. Sun, H. V. Demir, and S. P. DenBaars, “Advances in the LED materials and architectures for energy-saving solid-state lighting toward “lighting revolution”,” IEEE Photon. J.4(2), 613–619 (2012).
[CrossRef]

R. M. Farrell, E. C. Young, F. Wu, S. P. Denbaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001–024014 (2012).
[CrossRef]

Detchprohm, T.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
[CrossRef]

Dierolf, V.

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011).
[CrossRef] [PubMed]

H. P. Zhao, G. Y. Liu, X. H. Li, R. A. Arif, G. S. Huang, J. D. Poplawsky, S. Tafon Penn, V. Dierolf, and N. Tansu, “Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime,” IET Optoelectron.3(6), 283–295 (2009).
[CrossRef]

Dikme, Y.

Z. G. Ju, S. T. Tan, Z.-H. Zhang, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer,” Appl. Phys. Lett.100(12), 123503 (2012).
[CrossRef]

Dupuis, R. D.

H. J. Kim, S. Choi, S. S. Kim, J. H. Ryou, P. D. Yoder, R. D. Dupuis, A. M. Fischer, K. Sun, and F. A. Ponce, “Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAlN electron blocking layer in green light-emitting diodes,” Appl. Phys. Lett.96(10), 101102 (2010).
[CrossRef]

Ee, Y. K.

Y. K. Ee, X. H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire,” J. Cryst. Growth312(8), 1311–1315 (2010).
[CrossRef]

N. Tansu, H. Zhao, G. Liu, X. H. Li, J. Zhang, H. Tong, and Y. K. Ee, “III-nitride photonics,” IEEE Photon. J.2(2), 241–243 (2010).
[CrossRef]

Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron.15(4), 1066–1072 (2009).
[CrossRef]

Farrell, R. M.

R. M. Farrell, E. C. Young, F. Wu, S. P. Denbaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001–024014 (2012).
[CrossRef]

Fiorentini, V.

V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys. Lett.80(7), 1204–1206 (2002).
[CrossRef]

Fischer, A. M.

H. J. Kim, S. Choi, S. S. Kim, J. H. Ryou, P. D. Yoder, R. D. Dupuis, A. M. Fischer, K. Sun, and F. A. Ponce, “Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAlN electron blocking layer in green light-emitting diodes,” Appl. Phys. Lett.96(10), 101102 (2010).
[CrossRef]

Fukui, T.

K. Kumakura, T. Makimoto, N. Kobayashi, T. Hashizume, T. Fukui, and H. Hasegawa, “Minority carrier diffusion length in GaN: dislocation density and doping concentration dependence,” Appl. Phys. Lett.86(5), 052105 (2005).
[CrossRef]

Gardner, N. F.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett.91(14), 141101 (2007).
[CrossRef]

Gong, Z.

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys.107(1), 013103 (2010).
[CrossRef]

Gu, E.

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys.107(1), 013103 (2010).
[CrossRef]

Hahn, B.

M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, and B. Hahn, “A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes,” J. Appl. Phys.106(11), 114508 (2009).
[CrossRef]

Han, D.

D. Han, J. Shim, D. S. Shin, E. Nam, and H. Park, “Effect of temperature distribution and current crowding on the performance of lateral GaN-based light-emitting diodes,” Phys. Status Solidi C7(7-8), 2133–2135 (2010).
[CrossRef]

Hao, Z.

J. Wang, L. Wang, Z. Hao, Y. Luo, A. Dempewolf, M. Müller, F. Bertram, and J. Christen, “An improved carrier rate model to evaluate internal quantum efficiency and analyze efficiency droop origin of InGaN based light-emitting diodes,” J. Appl. Phys.112(2), 023107 (2012).
[CrossRef]

Hasegawa, H.

K. Kumakura, T. Makimoto, N. Kobayashi, T. Hashizume, T. Fukui, and H. Hasegawa, “Minority carrier diffusion length in GaN: dislocation density and doping concentration dependence,” Appl. Phys. Lett.86(5), 052105 (2005).
[CrossRef]

Hashizume, T.

K. Kumakura, T. Makimoto, N. Kobayashi, T. Hashizume, T. Fukui, and H. Hasegawa, “Minority carrier diffusion length in GaN: dislocation density and doping concentration dependence,” Appl. Phys. Lett.86(5), 052105 (2005).
[CrossRef]

Hou, W.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
[CrossRef]

Houng, M. P.

T. W. Kuo, S. X. Lin, P. K. Hung, K. K. Chong, C. I. Hung, and M. P. Houng, “Formation of selective high barrier region by inductively coupled plasma treatment on GaN-based light-emitting diodes,” Jpn. J. Appl. Phys.49(11), 116504 (2010).
[CrossRef]

Hsu, C. S.

Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, J. K. Liou, and W. C. Liu, “Improved performance of an InGaN-based light-emitting diode with a p-GaN/n-GaN barrier junction,” IEEE J. Quantum Electron.47(6), 755–761 (2011).
[CrossRef]

Huang, C. C.

Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, J. K. Liou, and W. C. Liu, “Improved performance of an InGaN-based light-emitting diode with a p-GaN/n-GaN barrier junction,” IEEE J. Quantum Electron.47(6), 755–761 (2011).
[CrossRef]

Huang, G. S.

H. P. Zhao, G. Y. Liu, X. H. Li, R. A. Arif, G. S. Huang, J. D. Poplawsky, S. Tafon Penn, V. Dierolf, and N. Tansu, “Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime,” IET Optoelectron.3(6), 283–295 (2009).
[CrossRef]

Hung, C. I.

T. W. Kuo, S. X. Lin, P. K. Hung, K. K. Chong, C. I. Hung, and M. P. Houng, “Formation of selective high barrier region by inductively coupled plasma treatment on GaN-based light-emitting diodes,” Jpn. J. Appl. Phys.49(11), 116504 (2010).
[CrossRef]

Hung, P. K.

T. W. Kuo, S. X. Lin, P. K. Hung, K. K. Chong, C. I. Hung, and M. P. Houng, “Formation of selective high barrier region by inductively coupled plasma treatment on GaN-based light-emitting diodes,” Jpn. J. Appl. Phys.49(11), 116504 (2010).
[CrossRef]

Hurni, C. A.

D. A. Browne, E. C. Young, J. R. Lang, C. A. Hurni, and J. S. Speck, “Indium and impurity incorporation in InGaN films on polar, nonpolar, and semipolar GaN orientations grown by ammonia molecular beam epitaxy,” J. Vac. Sci. Technol. A30(4), 041513–041520 (2012).
[CrossRef]

Hwang, H.

H. Kim, S. J. Park, and H. Hwang, “Effects of current spreading on the performance of GaN-based light-emitting diodes,” IEEE Trans. Electron. Dev.48(6), 1065–1069 (2001).
[CrossRef]

Hwang, S. W.

S. R. Jeon, Y. H. Song, H. J. Jang, G. M. Yang, S. W. Hwang, and S. J. Son, “Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions,” Appl. Phys. Lett.78(21), 3265–3267 (2001).
[CrossRef]

Jang, H. J.

S. R. Jeon, Y. H. Song, H. J. Jang, G. M. Yang, S. W. Hwang, and S. J. Son, “Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions,” Appl. Phys. Lett.78(21), 3265–3267 (2001).
[CrossRef]

Jeon, S. R.

S. R. Jeon, Y. H. Song, H. J. Jang, G. M. Yang, S. W. Hwang, and S. J. Son, “Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions,” Appl. Phys. Lett.78(21), 3265–3267 (2001).
[CrossRef]

Ji, Y.

Z. G. Ju, S. T. Tan, Z.-H. Zhang, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer,” Appl. Phys. Lett.100(12), 123503 (2012).
[CrossRef]

Jin, S.

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys.107(1), 013103 (2010).
[CrossRef]

Ju, Z. G.

Z. G. Ju, S. T. Tan, Z.-H. Zhang, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer,” Appl. Phys. Lett.100(12), 123503 (2012).
[CrossRef]

Kim, B.

M. K. Kwon, I. K. Park, J. Y. Kim, J. O. Kim, B. Kim, and S. J. Park, “Gradient doping of Mg in p-type GaN for high efficiency InGaN-GaN ultraviolet light-emitting diode,” IEEE Photon. Technol. Lett.19(23), 1880–1882 (2007).
[CrossRef]

Kim, B. J.

Kim, H.

H. Kim, S. J. Park, and H. Hwang, “Effects of current spreading on the performance of GaN-based light-emitting diodes,” IEEE Trans. Electron. Dev.48(6), 1065–1069 (2001).
[CrossRef]

Kim, H. J.

H. J. Kim, S. Choi, S. S. Kim, J. H. Ryou, P. D. Yoder, R. D. Dupuis, A. M. Fischer, K. Sun, and F. A. Ponce, “Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAlN electron blocking layer in green light-emitting diodes,” Appl. Phys. Lett.96(10), 101102 (2010).
[CrossRef]

Kim, J. O.

M. K. Kwon, I. K. Park, J. Y. Kim, J. O. Kim, B. Kim, and S. J. Park, “Gradient doping of Mg in p-type GaN for high efficiency InGaN-GaN ultraviolet light-emitting diode,” IEEE Photon. Technol. Lett.19(23), 1880–1882 (2007).
[CrossRef]

Kim, J. Y.

M. K. Kwon, I. K. Park, J. Y. Kim, J. O. Kim, B. Kim, and S. J. Park, “Gradient doping of Mg in p-type GaN for high efficiency InGaN-GaN ultraviolet light-emitting diode,” IEEE Photon. Technol. Lett.19(23), 1880–1882 (2007).
[CrossRef]

Kim, S. S.

H. J. Kim, S. Choi, S. S. Kim, J. H. Ryou, P. D. Yoder, R. D. Dupuis, A. M. Fischer, K. Sun, and F. A. Ponce, “Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAlN electron blocking layer in green light-emitting diodes,” Appl. Phys. Lett.96(10), 101102 (2010).
[CrossRef]

Kobayashi, N.

K. Kumakura, T. Makimoto, N. Kobayashi, T. Hashizume, T. Fukui, and H. Hasegawa, “Minority carrier diffusion length in GaN: dislocation density and doping concentration dependence,” Appl. Phys. Lett.86(5), 052105 (2005).
[CrossRef]

Krames, M. R.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett.91(14), 141101 (2007).
[CrossRef]

Kumakura, K.

K. Kumakura, T. Makimoto, N. Kobayashi, T. Hashizume, T. Fukui, and H. Hasegawa, “Minority carrier diffusion length in GaN: dislocation density and doping concentration dependence,” Appl. Phys. Lett.86(5), 052105 (2005).
[CrossRef]

Kuo, T. W.

T. W. Kuo, S. X. Lin, P. K. Hung, K. K. Chong, C. I. Hung, and M. P. Houng, “Formation of selective high barrier region by inductively coupled plasma treatment on GaN-based light-emitting diodes,” Jpn. J. Appl. Phys.49(11), 116504 (2010).
[CrossRef]

Kwon, M. K.

M. K. Kwon, I. K. Park, J. Y. Kim, J. O. Kim, B. Kim, and S. J. Park, “Gradient doping of Mg in p-type GaN for high efficiency InGaN-GaN ultraviolet light-emitting diode,” IEEE Photon. Technol. Lett.19(23), 1880–1882 (2007).
[CrossRef]

Kyaw, Z.

Z. G. Ju, S. T. Tan, Z.-H. Zhang, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer,” Appl. Phys. Lett.100(12), 123503 (2012).
[CrossRef]

Lang, J. R.

D. A. Browne, E. C. Young, J. R. Lang, C. A. Hurni, and J. S. Speck, “Indium and impurity incorporation in InGaN films on polar, nonpolar, and semipolar GaN orientations grown by ammonia molecular beam epitaxy,” J. Vac. Sci. Technol. A30(4), 041513–041520 (2012).
[CrossRef]

Lee, G. Y.

H. H. Liu, P. R. Chen, G. Y. Lee, and J. I. Chyi, “Efficiency enhancement of InGaN LEDs with an n-type AlGaN/GaN/InGaN current spreading layer,” IEEE Electron Device Lett.32(10), 1409–1411 (2011).
[CrossRef]

Lee, H. K.

Lee, J.-L.

Li, C.-K.

C.-K. Li and Y.-R. Wu, “Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs,” IEEE Trans. Electron. Dev.59(2), 400–407 (2012).
[CrossRef]

Li, X. H.

N. Tansu, H. Zhao, G. Liu, X. H. Li, J. Zhang, H. Tong, and Y. K. Ee, “III-nitride photonics,” IEEE Photon. J.2(2), 241–243 (2010).
[CrossRef]

Y. K. Ee, X. H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire,” J. Cryst. Growth312(8), 1311–1315 (2010).
[CrossRef]

H. P. Zhao, G. Y. Liu, X. H. Li, R. A. Arif, G. S. Huang, J. D. Poplawsky, S. Tafon Penn, V. Dierolf, and N. Tansu, “Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime,” IET Optoelectron.3(6), 283–295 (2009).
[CrossRef]

Li, Y.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
[CrossRef]

Lin, C. L.

C. F. Tsai, Y. K. Su, and C. L. Lin, “Improvement in the light output power of GaN-based light-emitting diodes by natural-cluster silicon dioxide nanoparticles as the current-blocking layer,” IEEE Photon. Technol. Lett.21(14), 996–998 (2009).
[CrossRef]

Lin, R. M.

R. M. Lin, Y. C. Lu, Y. L. Chou, G. H. Chen, Y. H. Lin, and M. C. Wu, “Enhanced characteristics of blue InGaN/GaN light-emitting diodes by using selective activation to modulate the lateral current spreading length,” Appl. Phys. Lett.92(26), 261105 (2008).
[CrossRef]

Lin, S. X.

T. W. Kuo, S. X. Lin, P. K. Hung, K. K. Chong, C. I. Hung, and M. P. Houng, “Formation of selective high barrier region by inductively coupled plasma treatment on GaN-based light-emitting diodes,” Jpn. J. Appl. Phys.49(11), 116504 (2010).
[CrossRef]

Lin, Y. H.

R. M. Lin, Y. C. Lu, Y. L. Chou, G. H. Chen, Y. H. Lin, and M. C. Wu, “Enhanced characteristics of blue InGaN/GaN light-emitting diodes by using selective activation to modulate the lateral current spreading length,” Appl. Phys. Lett.92(26), 261105 (2008).
[CrossRef]

Liou, J. K.

Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, J. K. Liou, and W. C. Liu, “Improved performance of an InGaN-based light-emitting diode with a p-GaN/n-GaN barrier junction,” IEEE J. Quantum Electron.47(6), 755–761 (2011).
[CrossRef]

Liu, G.

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011).
[CrossRef] [PubMed]

N. Tansu, H. Zhao, G. Liu, X. H. Li, J. Zhang, H. Tong, and Y. K. Ee, “III-nitride photonics,” IEEE Photon. J.2(2), 241–243 (2010).
[CrossRef]

H. Zhao, G. Liu, and N. Tansu, “Analysis of InGaN-delta-InN quantum wells for light-emitting diodes,” Appl. Phys. Lett.97(13), 131114 (2010).
[CrossRef]

H. Zhao, G. Liu, R. A. Arif, and N. Tansu, “Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes,” Solid-State Electron.54(10), 1119–1124 (2010).
[CrossRef]

Liu, G. Y.

H. P. Zhao, G. Y. Liu, X. H. Li, R. A. Arif, G. S. Huang, J. D. Poplawsky, S. Tafon Penn, V. Dierolf, and N. Tansu, “Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime,” IET Optoelectron.3(6), 283–295 (2009).
[CrossRef]

Liu, H. H.

H. H. Liu, P. R. Chen, G. Y. Lee, and J. I. Chyi, “Efficiency enhancement of InGaN LEDs with an n-type AlGaN/GaN/InGaN current spreading layer,” IEEE Electron Device Lett.32(10), 1409–1411 (2011).
[CrossRef]

Liu, W. C.

Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, J. K. Liou, and W. C. Liu, “Improved performance of an InGaN-based light-emitting diode with a p-GaN/n-GaN barrier junction,” IEEE J. Quantum Electron.47(6), 755–761 (2011).
[CrossRef]

Liu, Y. J.

Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, J. K. Liou, and W. C. Liu, “Improved performance of an InGaN-based light-emitting diode with a p-GaN/n-GaN barrier junction,” IEEE J. Quantum Electron.47(6), 755–761 (2011).
[CrossRef]

Lu, Y. C.

R. M. Lin, Y. C. Lu, Y. L. Chou, G. H. Chen, Y. H. Lin, and M. C. Wu, “Enhanced characteristics of blue InGaN/GaN light-emitting diodes by using selective activation to modulate the lateral current spreading length,” Appl. Phys. Lett.92(26), 261105 (2008).
[CrossRef]

Luo, Y.

J. Wang, L. Wang, Z. Hao, Y. Luo, A. Dempewolf, M. Müller, F. Bertram, and J. Christen, “An improved carrier rate model to evaluate internal quantum efficiency and analyze efficiency droop origin of InGaN based light-emitting diodes,” J. Appl. Phys.112(2), 023107 (2012).
[CrossRef]

Makimoto, T.

K. Kumakura, T. Makimoto, N. Kobayashi, T. Hashizume, T. Fukui, and H. Hasegawa, “Minority carrier diffusion length in GaN: dislocation density and doping concentration dependence,” Appl. Phys. Lett.86(5), 052105 (2005).
[CrossRef]

Malyutenko, V. K.

V. K. Malyutenko, S. S. Bolgov, and A. N. Tykhonov, “Research on electrical efficiency degradation influenced by current crowding in vertical blue InGaN-on-SiC light-emitting diodes,” IEEE Photon. Technol. Lett.24(13), 1124–1126 (2012).
[CrossRef]

Massoubre, D.

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys.107(1), 013103 (2010).
[CrossRef]

Mawst, L. J.

N. Tansu and L. J. Mawst, “Current injection efficiency of InGaAsN quantum-well lasers,” J. Appl. Phys.97(5), 054502 (2005).
[CrossRef]

McKendry, J.

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys.107(1), 013103 (2010).
[CrossRef]

Meneghesso, G.

M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, and B. Hahn, “A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes,” J. Appl. Phys.106(11), 114508 (2009).
[CrossRef]

Meneghini, M.

M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, and B. Hahn, “A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes,” J. Appl. Phys.106(11), 114508 (2009).
[CrossRef]

Meyer, J. R.

I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys.94(6), 3675–3696 (2003).
[CrossRef]

Mueller, G. O.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett.91(14), 141101 (2007).
[CrossRef]

Müller, M.

J. Wang, L. Wang, Z. Hao, Y. Luo, A. Dempewolf, M. Müller, F. Bertram, and J. Christen, “An improved carrier rate model to evaluate internal quantum efficiency and analyze efficiency droop origin of InGaN based light-emitting diodes,” J. Appl. Phys.112(2), 023107 (2012).
[CrossRef]

Munkholm, A.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett.91(14), 141101 (2007).
[CrossRef]

Nakamura, S.

Nam, E.

D. Han, J. Shim, D. S. Shin, E. Nam, and H. Park, “Effect of temperature distribution and current crowding on the performance of lateral GaN-based light-emitting diodes,” Phys. Status Solidi C7(7-8), 2133–2135 (2010).
[CrossRef]

Pan, C. C.

Park, H.

D. Han, J. Shim, D. S. Shin, E. Nam, and H. Park, “Effect of temperature distribution and current crowding on the performance of lateral GaN-based light-emitting diodes,” Phys. Status Solidi C7(7-8), 2133–2135 (2010).
[CrossRef]

Park, I. K.

M. K. Kwon, I. K. Park, J. Y. Kim, J. O. Kim, B. Kim, and S. J. Park, “Gradient doping of Mg in p-type GaN for high efficiency InGaN-GaN ultraviolet light-emitting diode,” IEEE Photon. Technol. Lett.19(23), 1880–1882 (2007).
[CrossRef]

Park, S. J.

M. K. Kwon, I. K. Park, J. Y. Kim, J. O. Kim, B. Kim, and S. J. Park, “Gradient doping of Mg in p-type GaN for high efficiency InGaN-GaN ultraviolet light-emitting diode,” IEEE Photon. Technol. Lett.19(23), 1880–1882 (2007).
[CrossRef]

H. Kim, S. J. Park, and H. Hwang, “Effects of current spreading on the performance of GaN-based light-emitting diodes,” IEEE Trans. Electron. Dev.48(6), 1065–1069 (2001).
[CrossRef]

Piprek, J.

J. Piprek, “Efficiency droop in nitride-based light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci.207(10), 2217–2225 (2010).
[CrossRef]

Ponce, F. A.

H. J. Kim, S. Choi, S. S. Kim, J. H. Ryou, P. D. Yoder, R. D. Dupuis, A. M. Fischer, K. Sun, and F. A. Ponce, “Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAlN electron blocking layer in green light-emitting diodes,” Appl. Phys. Lett.96(10), 101102 (2010).
[CrossRef]

Poplawsky, J. D.

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011).
[CrossRef] [PubMed]

H. P. Zhao, G. Y. Liu, X. H. Li, R. A. Arif, G. S. Huang, J. D. Poplawsky, S. Tafon Penn, V. Dierolf, and N. Tansu, “Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime,” IET Optoelectron.3(6), 283–295 (2009).
[CrossRef]

Reading, A. H.

Richardson, J. J.

Ryou, J. H.

H. J. Kim, S. Choi, S. S. Kim, J. H. Ryou, P. D. Yoder, R. D. Dupuis, A. M. Fischer, K. Sun, and F. A. Ponce, “Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAlN electron blocking layer in green light-emitting diodes,” Appl. Phys. Lett.96(10), 101102 (2010).
[CrossRef]

Ryu, C. J.

Ryu, H. Y.

Shen, Y. C.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett.91(14), 141101 (2007).
[CrossRef]

Shim, J.

D. Han, J. Shim, D. S. Shin, E. Nam, and H. Park, “Effect of temperature distribution and current crowding on the performance of lateral GaN-based light-emitting diodes,” Phys. Status Solidi C7(7-8), 2133–2135 (2010).
[CrossRef]

Shim, J. I.

Shin, D. S.

D. Han, J. Shim, D. S. Shin, E. Nam, and H. Park, “Effect of temperature distribution and current crowding on the performance of lateral GaN-based light-emitting diodes,” Phys. Status Solidi C7(7-8), 2133–2135 (2010).
[CrossRef]

Son, J. H.

Son, S. J.

S. R. Jeon, Y. H. Song, H. J. Jang, G. M. Yang, S. W. Hwang, and S. J. Son, “Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions,” Appl. Phys. Lett.78(21), 3265–3267 (2001).
[CrossRef]

Song, Y. H.

J. H. Son, B. J. Kim, C. J. Ryu, Y. H. Song, H. K. Lee, J. W. Choi, and J.-L. Lee, “Enhancement of wall-plug efficiency in vertical InGaN/GaN LEDs by improved current spreading,” Opt. Express20(S2Suppl 2), A287–A292 (2012).
[CrossRef] [PubMed]

S. R. Jeon, Y. H. Song, H. J. Jang, G. M. Yang, S. W. Hwang, and S. J. Son, “Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions,” Appl. Phys. Lett.78(21), 3265–3267 (2001).
[CrossRef]

Speck, J. S.

D. A. Browne, E. C. Young, J. R. Lang, C. A. Hurni, and J. S. Speck, “Indium and impurity incorporation in InGaN films on polar, nonpolar, and semipolar GaN orientations grown by ammonia molecular beam epitaxy,” J. Vac. Sci. Technol. A30(4), 041513–041520 (2012).
[CrossRef]

R. M. Farrell, E. C. Young, F. Wu, S. P. Denbaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001–024014 (2012).
[CrossRef]

Su, Y. K.

C. F. Tsai, Y. K. Su, and C. L. Lin, “Improvement in the light output power of GaN-based light-emitting diodes by natural-cluster silicon dioxide nanoparticles as the current-blocking layer,” IEEE Photon. Technol. Lett.21(14), 996–998 (2009).
[CrossRef]

Sun, K.

H. J. Kim, S. Choi, S. S. Kim, J. H. Ryou, P. D. Yoder, R. D. Dupuis, A. M. Fischer, K. Sun, and F. A. Ponce, “Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAlN electron blocking layer in green light-emitting diodes,” Appl. Phys. Lett.96(10), 101102 (2010).
[CrossRef]

Sun, X. W.

S. T. Tan, X. W. Sun, H. V. Demir, and S. P. DenBaars, “Advances in the LED materials and architectures for energy-saving solid-state lighting toward “lighting revolution”,” IEEE Photon. J.4(2), 613–619 (2012).
[CrossRef]

Z. G. Ju, S. T. Tan, Z.-H. Zhang, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer,” Appl. Phys. Lett.100(12), 123503 (2012).
[CrossRef]

Tafon Penn, S.

H. P. Zhao, G. Y. Liu, X. H. Li, R. A. Arif, G. S. Huang, J. D. Poplawsky, S. Tafon Penn, V. Dierolf, and N. Tansu, “Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime,” IET Optoelectron.3(6), 283–295 (2009).
[CrossRef]

Tamura, N.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
[CrossRef]

Tan, S. T.

S. T. Tan, X. W. Sun, H. V. Demir, and S. P. DenBaars, “Advances in the LED materials and architectures for energy-saving solid-state lighting toward “lighting revolution”,” IEEE Photon. J.4(2), 613–619 (2012).
[CrossRef]

Z. G. Ju, S. T. Tan, Z.-H. Zhang, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer,” Appl. Phys. Lett.100(12), 123503 (2012).
[CrossRef]

Tanaka, S.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
[CrossRef]

Taniguchi, Y.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
[CrossRef]

Tansu, N.

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110(11), 113110 (2011).
[CrossRef]

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011).
[CrossRef] [PubMed]

N. Tansu, H. Zhao, G. Liu, X. H. Li, J. Zhang, H. Tong, and Y. K. Ee, “III-nitride photonics,” IEEE Photon. J.2(2), 241–243 (2010).
[CrossRef]

Y. K. Ee, X. H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire,” J. Cryst. Growth312(8), 1311–1315 (2010).
[CrossRef]

H. Zhao, G. Liu, R. A. Arif, and N. Tansu, “Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes,” Solid-State Electron.54(10), 1119–1124 (2010).
[CrossRef]

H. Zhao, G. Liu, and N. Tansu, “Analysis of InGaN-delta-InN quantum wells for light-emitting diodes,” Appl. Phys. Lett.97(13), 131114 (2010).
[CrossRef]

H. P. Zhao, G. Y. Liu, X. H. Li, R. A. Arif, G. S. Huang, J. D. Poplawsky, S. Tafon Penn, V. Dierolf, and N. Tansu, “Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime,” IET Optoelectron.3(6), 283–295 (2009).
[CrossRef]

Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron.15(4), 1066–1072 (2009).
[CrossRef]

N. Tansu and L. J. Mawst, “Current injection efficiency of InGaAsN quantum-well lasers,” J. Appl. Phys.97(5), 054502 (2005).
[CrossRef]

Tong, H.

N. Tansu, H. Zhao, G. Liu, X. H. Li, J. Zhang, H. Tong, and Y. K. Ee, “III-nitride photonics,” IEEE Photon. J.2(2), 241–243 (2010).
[CrossRef]

Trivellin, N.

M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, and B. Hahn, “A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes,” J. Appl. Phys.106(11), 114508 (2009).
[CrossRef]

Tsai, C. F.

C. F. Tsai, Y. K. Su, and C. L. Lin, “Improvement in the light output power of GaN-based light-emitting diodes by natural-cluster silicon dioxide nanoparticles as the current-blocking layer,” IEEE Photon. Technol. Lett.21(14), 996–998 (2009).
[CrossRef]

Tykhonov, A. N.

V. K. Malyutenko, S. S. Bolgov, and A. N. Tykhonov, “Research on electrical efficiency degradation influenced by current crowding in vertical blue InGaN-on-SiC light-emitting diodes,” IEEE Photon. Technol. Lett.24(13), 1124–1126 (2012).
[CrossRef]

Vinci, R. P.

Y. K. Ee, X. H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire,” J. Cryst. Growth312(8), 1311–1315 (2010).
[CrossRef]

Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron.15(4), 1066–1072 (2009).
[CrossRef]

Vurgaftman, I.

I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys.94(6), 3675–3696 (2003).
[CrossRef]

Wang, J.

J. Wang, L. Wang, Z. Hao, Y. Luo, A. Dempewolf, M. Müller, F. Bertram, and J. Christen, “An improved carrier rate model to evaluate internal quantum efficiency and analyze efficiency droop origin of InGaN based light-emitting diodes,” J. Appl. Phys.112(2), 023107 (2012).
[CrossRef]

Wang, L.

J. Wang, L. Wang, Z. Hao, Y. Luo, A. Dempewolf, M. Müller, F. Bertram, and J. Christen, “An improved carrier rate model to evaluate internal quantum efficiency and analyze efficiency droop origin of InGaN based light-emitting diodes,” J. Appl. Phys.112(2), 023107 (2012).
[CrossRef]

Watanabe, S.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett.91(14), 141101 (2007).
[CrossRef]

Watson, I. M.

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys.107(1), 013103 (2010).
[CrossRef]

Wetzel, C.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
[CrossRef]

Wu, F.

R. M. Farrell, E. C. Young, F. Wu, S. P. Denbaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001–024014 (2012).
[CrossRef]

Wu, M. C.

R. M. Lin, Y. C. Lu, Y. L. Chou, G. H. Chen, Y. H. Lin, and M. C. Wu, “Enhanced characteristics of blue InGaN/GaN light-emitting diodes by using selective activation to modulate the lateral current spreading length,” Appl. Phys. Lett.92(26), 261105 (2008).
[CrossRef]

Wu, Y.-R.

C.-K. Li and Y.-R. Wu, “Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs,” IEEE Trans. Electron. Dev.59(2), 400–407 (2012).
[CrossRef]

Yang, G. M.

S. R. Jeon, Y. H. Song, H. J. Jang, G. M. Yang, S. W. Hwang, and S. J. Son, “Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions,” Appl. Phys. Lett.78(21), 3265–3267 (2001).
[CrossRef]

Yoder, P. D.

H. J. Kim, S. Choi, S. S. Kim, J. H. Ryou, P. D. Yoder, R. D. Dupuis, A. M. Fischer, K. Sun, and F. A. Ponce, “Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAlN electron blocking layer in green light-emitting diodes,” Appl. Phys. Lett.96(10), 101102 (2010).
[CrossRef]

You, S.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
[CrossRef]

Young, E. C.

R. M. Farrell, E. C. Young, F. Wu, S. P. Denbaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001–024014 (2012).
[CrossRef]

D. A. Browne, E. C. Young, J. R. Lang, C. A. Hurni, and J. S. Speck, “Indium and impurity incorporation in InGaN films on polar, nonpolar, and semipolar GaN orientations grown by ammonia molecular beam epitaxy,” J. Vac. Sci. Technol. A30(4), 041513–041520 (2012).
[CrossRef]

Zanoni, E.

M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, and B. Hahn, “A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes,” J. Appl. Phys.106(11), 114508 (2009).
[CrossRef]

Zehnder, U.

M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, and B. Hahn, “A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes,” J. Appl. Phys.106(11), 114508 (2009).
[CrossRef]

Zhang, J.

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110(11), 113110 (2011).
[CrossRef]

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011).
[CrossRef] [PubMed]

N. Tansu, H. Zhao, G. Liu, X. H. Li, J. Zhang, H. Tong, and Y. K. Ee, “III-nitride photonics,” IEEE Photon. J.2(2), 241–243 (2010).
[CrossRef]

Zhang, Z.-H.

Z. G. Ju, S. T. Tan, Z.-H. Zhang, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer,” Appl. Phys. Lett.100(12), 123503 (2012).
[CrossRef]

Zhao, H.

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express19(S4Suppl 4), A991–A1007 (2011).
[CrossRef] [PubMed]

N. Tansu, H. Zhao, G. Liu, X. H. Li, J. Zhang, H. Tong, and Y. K. Ee, “III-nitride photonics,” IEEE Photon. J.2(2), 241–243 (2010).
[CrossRef]

H. Zhao, G. Liu, R. A. Arif, and N. Tansu, “Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes,” Solid-State Electron.54(10), 1119–1124 (2010).
[CrossRef]

H. Zhao, G. Liu, and N. Tansu, “Analysis of InGaN-delta-InN quantum wells for light-emitting diodes,” Appl. Phys. Lett.97(13), 131114 (2010).
[CrossRef]

Zhao, H. P.

H. P. Zhao, G. Y. Liu, X. H. Li, R. A. Arif, G. S. Huang, J. D. Poplawsky, S. Tafon Penn, V. Dierolf, and N. Tansu, “Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime,” IET Optoelectron.3(6), 283–295 (2009).
[CrossRef]

Zhao, L.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
[CrossRef]

Zhu, M.

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
[CrossRef]

Appl. Phys. Lett.

H. Zhao, G. Liu, and N. Tansu, “Analysis of InGaN-delta-InN quantum wells for light-emitting diodes,” Appl. Phys. Lett.97(13), 131114 (2010).
[CrossRef]

Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, Y. Taniguchi, N. Tamura, S. Tanaka, and C. Wetzel, “Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire,” Appl. Phys. Lett.98(15), 151102 (2011).
[CrossRef]

R. M. Lin, Y. C. Lu, Y. L. Chou, G. H. Chen, Y. H. Lin, and M. C. Wu, “Enhanced characteristics of blue InGaN/GaN light-emitting diodes by using selective activation to modulate the lateral current spreading length,” Appl. Phys. Lett.92(26), 261105 (2008).
[CrossRef]

H. J. Kim, S. Choi, S. S. Kim, J. H. Ryou, P. D. Yoder, R. D. Dupuis, A. M. Fischer, K. Sun, and F. A. Ponce, “Improvement of quantum efficiency by employing active-layer-friendly lattice-matched InAlN electron blocking layer in green light-emitting diodes,” Appl. Phys. Lett.96(10), 101102 (2010).
[CrossRef]

S. R. Jeon, Y. H. Song, H. J. Jang, G. M. Yang, S. W. Hwang, and S. J. Son, “Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions,” Appl. Phys. Lett.78(21), 3265–3267 (2001).
[CrossRef]

Z. G. Ju, S. T. Tan, Z.-H. Zhang, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun, and H. V. Demir, “On the origin of the redshift in the emission wavelength of InGaN/GaN blue light emitting diodes grown with a higher temperature interlayer,” Appl. Phys. Lett.100(12), 123503 (2012).
[CrossRef]

V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys. Lett.80(7), 1204–1206 (2002).
[CrossRef]

K. Kumakura, T. Makimoto, N. Kobayashi, T. Hashizume, T. Fukui, and H. Hasegawa, “Minority carrier diffusion length in GaN: dislocation density and doping concentration dependence,” Appl. Phys. Lett.86(5), 052105 (2005).
[CrossRef]

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett.91(14), 141101 (2007).
[CrossRef]

IEEE Electron Device Lett.

H. H. Liu, P. R. Chen, G. Y. Lee, and J. I. Chyi, “Efficiency enhancement of InGaN LEDs with an n-type AlGaN/GaN/InGaN current spreading layer,” IEEE Electron Device Lett.32(10), 1409–1411 (2011).
[CrossRef]

IEEE J. Quantum Electron.

Y. J. Liu, C. C. Huang, T. Y. Chen, C. S. Hsu, J. K. Liou, and W. C. Liu, “Improved performance of an InGaN-based light-emitting diode with a p-GaN/n-GaN barrier junction,” IEEE J. Quantum Electron.47(6), 755–761 (2011).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Y. K. Ee, J. M. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Metalorganic vapor phase epitaxy of III-nitride light-emitting diodes on nanopatterned AGOG sapphire substrate by abbreviated growth mode,” IEEE J. Sel. Top. Quantum Electron.15(4), 1066–1072 (2009).
[CrossRef]

M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances,” IEEE J. Sel. Top. Quantum Electron.15(4), 1028–1040 (2009).
[CrossRef]

IEEE Photon. J.

N. Tansu, H. Zhao, G. Liu, X. H. Li, J. Zhang, H. Tong, and Y. K. Ee, “III-nitride photonics,” IEEE Photon. J.2(2), 241–243 (2010).
[CrossRef]

S. T. Tan, X. W. Sun, H. V. Demir, and S. P. DenBaars, “Advances in the LED materials and architectures for energy-saving solid-state lighting toward “lighting revolution”,” IEEE Photon. J.4(2), 613–619 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

C. F. Tsai, Y. K. Su, and C. L. Lin, “Improvement in the light output power of GaN-based light-emitting diodes by natural-cluster silicon dioxide nanoparticles as the current-blocking layer,” IEEE Photon. Technol. Lett.21(14), 996–998 (2009).
[CrossRef]

V. K. Malyutenko, S. S. Bolgov, and A. N. Tykhonov, “Research on electrical efficiency degradation influenced by current crowding in vertical blue InGaN-on-SiC light-emitting diodes,” IEEE Photon. Technol. Lett.24(13), 1124–1126 (2012).
[CrossRef]

M. K. Kwon, I. K. Park, J. Y. Kim, J. O. Kim, B. Kim, and S. J. Park, “Gradient doping of Mg in p-type GaN for high efficiency InGaN-GaN ultraviolet light-emitting diode,” IEEE Photon. Technol. Lett.19(23), 1880–1882 (2007).
[CrossRef]

IEEE Trans. Electron. Dev.

C.-K. Li and Y.-R. Wu, “Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs,” IEEE Trans. Electron. Dev.59(2), 400–407 (2012).
[CrossRef]

H. Kim, S. J. Park, and H. Hwang, “Effects of current spreading on the performance of GaN-based light-emitting diodes,” IEEE Trans. Electron. Dev.48(6), 1065–1069 (2001).
[CrossRef]

IET Optoelectron.

H. P. Zhao, G. Y. Liu, X. H. Li, R. A. Arif, G. S. Huang, J. D. Poplawsky, S. Tafon Penn, V. Dierolf, and N. Tansu, “Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime,” IET Optoelectron.3(6), 283–295 (2009).
[CrossRef]

J. Appl. Phys.

J. Wang, L. Wang, Z. Hao, Y. Luo, A. Dempewolf, M. Müller, F. Bertram, and J. Christen, “An improved carrier rate model to evaluate internal quantum efficiency and analyze efficiency droop origin of InGaN based light-emitting diodes,” J. Appl. Phys.112(2), 023107 (2012).
[CrossRef]

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110(11), 113110 (2011).
[CrossRef]

N. Tansu and L. J. Mawst, “Current injection efficiency of InGaAsN quantum-well lasers,” J. Appl. Phys.97(5), 054502 (2005).
[CrossRef]

I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys.94(6), 3675–3696 (2003).
[CrossRef]

M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, and B. Hahn, “A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes,” J. Appl. Phys.106(11), 114508 (2009).
[CrossRef]

Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, “Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes,” J. Appl. Phys.107(1), 013103 (2010).
[CrossRef]

J. Cryst. Growth

Y. K. Ee, X. H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, and N. Tansu, “Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire,” J. Cryst. Growth312(8), 1311–1315 (2010).
[CrossRef]

J. Vac. Sci. Technol. A

D. A. Browne, E. C. Young, J. R. Lang, C. A. Hurni, and J. S. Speck, “Indium and impurity incorporation in InGaN films on polar, nonpolar, and semipolar GaN orientations grown by ammonia molecular beam epitaxy,” J. Vac. Sci. Technol. A30(4), 041513–041520 (2012).
[CrossRef]

Jpn. J. Appl. Phys.

T. W. Kuo, S. X. Lin, P. K. Hung, K. K. Chong, C. I. Hung, and M. P. Houng, “Formation of selective high barrier region by inductively coupled plasma treatment on GaN-based light-emitting diodes,” Jpn. J. Appl. Phys.49(11), 116504 (2010).
[CrossRef]

Opt. Express

Phys. Status Solidi C

D. Han, J. Shim, D. S. Shin, E. Nam, and H. Park, “Effect of temperature distribution and current crowding on the performance of lateral GaN-based light-emitting diodes,” Phys. Status Solidi C7(7-8), 2133–2135 (2010).
[CrossRef]

Phys. Status Solidi., A Appl. Mater. Sci.

J. Piprek, “Efficiency droop in nitride-based light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci.207(10), 2217–2225 (2010).
[CrossRef]

Semicond. Sci. Technol.

R. M. Farrell, E. C. Young, F. Wu, S. P. Denbaars, and J. S. Speck, “Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices,” Semicond. Sci. Technol.27(2), 024001–024014 (2012).
[CrossRef]

Solid-State Electron.

H. Zhao, G. Liu, R. A. Arif, and N. Tansu, “Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes,” Solid-State Electron.54(10), 1119–1124 (2010).
[CrossRef]

Other

E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, 2006).

S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (John Wiley & Sons, Inc., 1981).

Z. -H. Zhang, S. T. Tan, Z. Ju, W. Liu, Y. Ji, Z. Kyaw, Y. Dikme, X. W. Sun and H. V. Demir, “On the effect of step-doped quantum barriers in InGaN/GaN light emitting diodes,” IEEE/OSA J. Display Technol. PP(99), 1–8 (2012).

V. K. Malyutenko, S. S. Bolgov, “Effect of current crowding on the ideality factor in MQW InGaN/GaN LEDs on sapphire substrates,” Proc. SPIE 7617, 76171K −76171K–9 (2010).

D. K. Schroder, Semiconductor Material and Device Characterization, 2nd ed. (John Wiley & Sons, Inc., 1998).

B. J. Baliga, Fundamentals of Power Semiconductor Devices (Springer Science + Business Media, LLC, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagrams of the studied devices (Reference LED without ITO coating and PNPNP-GaN LED without ITO coating), shown along with the band diagram of one PNP-GaN junction in the PNPNP-GaN LED.

Fig. 2
Fig. 2

(a) Equivalent circuit of an InGaN/GaN LED grown on an insulating substrate (e.g., sapphire) with lateral current-injection scheme (I1 > I2 > I3 > I4 > ..... > In), and (b) a simplified equivalent circuit of this InGaN/GaN LED with possible current paths (J1 and J2) when a PNPNP-GaN current spreading layer is embedded. ITO is not used in these two devices.

Fig. 3
Fig. 3

Liner-plot of experimentally measured current as a function of the applied voltage for (a) Reference LED without ITO coating and PNPNP-GaN LED without ITO coating (along with a semi-log plot inserted in the inset) and (b) Reference LED with ITO coating and PNPNP-GaN LED with ITO coating (again with a semi-log plot given in the inset).

Fig. 4
Fig. 4

Experimental EL intensity for (a) Reference LED without ITO coating, (b) PNPNP-GaN LED without ITO coating, (c) Reference LED with ITO coating, and (d) PNPNP-GaN LED with ITO coating.

Fig. 5
Fig. 5

(a) Experimentally measured optical output power and EQE as a function of the current injection, and (b) numerically simulated optical output power and EQE as a function of the current for Reference LEDs without and with ITO coatings and PNPNP-GaN LEDs without and with ITO coatings.

Fig. 6
Fig. 6

(a) Energy band diagram for Reference LEDs and (b) energy band diagram for PNPNP-GaN LEDs. Ec, Ev, Efe and Efh denote the conduction band, valance band, and quasi-Fermi level for electrons and holes, respectively.

Fig. 7
Fig. 7

(a) Equivalent circuit of an InGaN/GaN LED grown on an insulating substrate (e.g., sapphire) using ITO top coating with lateral current-injection scheme (I1 > I2 > I3 > I4 > ..... > In), and (b) a simplified equivalent circuit of this InGaN/GaN LED with possible current paths (J1 and J2) when a PNPNP-GaN current spreading layer is embedded, along with additional ITO film used as the transparent current spreading layer on the top.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

J 1 lw ρ pGaN t p lw + J 1 lw N ρ PNP lw + V pn + V pcontact + V ncontact + J 1 lw ρ nGaN l w t n + ( J 1 lw+ J 2 w t p ) ρ nGaN l 0 w t n =U
J 2 w t p ρ pGaN l t p w + J 2 w t p ρ pGaN t p lw + J 2 w t p N ρ PNP lw + V pn + V pcontact + V ncontact + ( J 1 lw+ J 2 w t p ) ρ nGaN l 0 w t n =U
J 1 J 2 = l t p + N ρ PNP ρ pGaN + t p l
J 1 J 2 l t p + N ρ PNP ρ pGaN
ϕ B = kT e ln( A· T 2 I s ), with I= I s · e eV nkT
J 1 lw ρ pGaN t p lw + J 1 lw N ρ PNP lw + V pn + V pcontact + V ncontact + J 1 lw ρ nGaN l w t n + ( J 1 lw+ J 2 w ITO t ITO ) ρ nGaN l 0 w t n =U
J 2 w ITO t ITO ρ ITO l t ITO w ITO + J 2 w ITO t ITO ρ pGaN t p lw + J 2 w ITO t ITO N ρ PNP lw + V pn + V pcontact + V ncontact + ( J 1 lw+ J 2 w ITO t ITO ) ρ nGaN l 0 w t n =U
J 1 J 2 = w ITO t ITO lw + l ρ PGaN ρ TCL t p + N ρ PNP ρ TCL
J 1 J 2 l ρ PGaN ρ TCL t p + N ρ PNP ρ TCL

Metrics