Abstract

We study the dynamics of energy deposition and subsequent material response associated with exit surface damage growth in fused silica using a time resolved microscope system. This system enables acquisition of two transient images per damage event with temporal resolution of 180 ps and spatial resolution on the order of 1 µm. The experimental results address important issues in laser damage growth that include: a) the specific structural features within a damage site where plasma formation initiates; b) the subsequent growth of the plasma regions; c) the formation and expansion of radial and circumferential cracks; d) the kinetics and duration of material ejection; e) the characteristics of the generated shockwave.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
    [CrossRef]
  2. M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in SiO2 under multiple wavelength irradiation,” Proc. SPIE5991, 599108, 599108-12 (2005).
    [CrossRef]
  3. G. Razè, J.-M. Morchain, M. Loiseau, L. Lamaignère, M. A. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE4932, 127–135 (2003).
    [CrossRef]
  4. M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE6720, 67200H, 67200H-10 (2007).
    [CrossRef]
  5. H. Bercegol, L. Lamaignere, B. Garrec, M. Loiseau, and P. Volto, “Self-focusing and rear surface damage in a fused silica window at 1064 nm and 355 nm,” Proc. SPIE4932, 276–285 (2003).
  6. W. Q. Huang, W. Han, F. Wang, Y. Xiang, F. Q. Li, B. Feng, F. Jing, X. F. Wei, W. G. Zheng, and X. M. Zhang, “Laser–induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett.26(1), 017901 (2009).
  7. R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express18(19), 19966–19976 (2010).
    [CrossRef] [PubMed]
  8. R. A. Negres, Z. M. Liao, G. M. Abdulla, D. A. Cross, M. A. Norton, and C. W. Carr, “Exploration of the multiparameter space of nanosecond-laser damage growth in fused silica optics,” Appl. Opt.50(22), D12–D20 (2011).
    [CrossRef] [PubMed]
  9. C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express19(S4Suppl 4), A859–A864 (2011).
    [CrossRef] [PubMed]
  10. Z. M. Liao, G. M. Abdulla, R. A. Negres, D. A. Cross, and C. W. Carr, “Predictive modeling techniques for nanosecond-laser damage growth in fused silica optics,” Opt. Express20(14), 15569–15579 (2012).
    [CrossRef] [PubMed]
  11. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
    [CrossRef]
  12. S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt.49(14), 2606–2616 (2010).
    [CrossRef]
  13. S. Xu, X. Zu, and X. Yuan, “Localized CO2 laser treatment and post-heating process to reduce the growth coefficient of fused silica surface damage,” Chin. Opt. Lett.9(6), 061405–061407 (2011).
  14. S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express10(25), 1444–1450 (2002).
    [CrossRef] [PubMed]
  15. S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett.82(19), 3230–3232 (2003).
    [CrossRef]
  16. J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids352(3), 255–272 (2006).
    [CrossRef]
  17. R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng.50(1), 013602 (2011).
  18. R. A. Negres, M. D. Feit, and S. G. Demos, “Dynamics of material modifications following laser-breakdown in bulk fused silica,” Opt. Express18(10), 10642–10649 (2010).
    [CrossRef] [PubMed]
  19. R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during laser-induced breakdown in fused silica,” Appl. Phys. Lett.98, 051901 (2011).
  20. S. G. Demos, M. Staggs, and M. R. Kozlowski, “Investigation of processes leading to damage growth in optical materials for large-aperture lasers,” Appl. Opt.41(18), 3628–3633 (2002).
    [CrossRef] [PubMed]
  21. G. Duchateau, M. D. Feit, and S. G. Demos, “Strong nonlinear growth of energy coupling during laser irradiation of transparent dielectrics and its significance for laser induced damage,” J. Appl. Phys.111(9), 093106 (2012).
    [CrossRef]
  22. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett.35(16), 2702–2704 (2010).
    [CrossRef] [PubMed]
  23. M. G. Cottam and D. R. Tilley, Introduction to Surface and Superlattice Excitations (Cambridge University, 1989)
  24. J. Neauport, P. Cormont, L. Lamaignere, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun.281(14), 3802–3805 (2008).
    [CrossRef]

2012

Z. M. Liao, G. M. Abdulla, R. A. Negres, D. A. Cross, and C. W. Carr, “Predictive modeling techniques for nanosecond-laser damage growth in fused silica optics,” Opt. Express20(14), 15569–15579 (2012).
[CrossRef] [PubMed]

G. Duchateau, M. D. Feit, and S. G. Demos, “Strong nonlinear growth of energy coupling during laser irradiation of transparent dielectrics and its significance for laser induced damage,” J. Appl. Phys.111(9), 093106 (2012).
[CrossRef]

2011

R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during laser-induced breakdown in fused silica,” Appl. Phys. Lett.98, 051901 (2011).

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

S. Xu, X. Zu, and X. Yuan, “Localized CO2 laser treatment and post-heating process to reduce the growth coefficient of fused silica surface damage,” Chin. Opt. Lett.9(6), 061405–061407 (2011).

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng.50(1), 013602 (2011).

R. A. Negres, Z. M. Liao, G. M. Abdulla, D. A. Cross, M. A. Norton, and C. W. Carr, “Exploration of the multiparameter space of nanosecond-laser damage growth in fused silica optics,” Appl. Opt.50(22), D12–D20 (2011).
[CrossRef] [PubMed]

C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express19(S4Suppl 4), A859–A864 (2011).
[CrossRef] [PubMed]

2010

2009

W. Q. Huang, W. Han, F. Wang, Y. Xiang, F. Q. Li, B. Feng, F. Jing, X. F. Wei, W. G. Zheng, and X. M. Zhang, “Laser–induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett.26(1), 017901 (2009).

2008

J. Neauport, P. Cormont, L. Lamaignere, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun.281(14), 3802–3805 (2008).
[CrossRef]

2007

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE6720, 67200H, 67200H-10 (2007).
[CrossRef]

2006

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids352(3), 255–272 (2006).
[CrossRef]

2005

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in SiO2 under multiple wavelength irradiation,” Proc. SPIE5991, 599108, 599108-12 (2005).
[CrossRef]

2003

G. Razè, J.-M. Morchain, M. Loiseau, L. Lamaignère, M. A. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE4932, 127–135 (2003).
[CrossRef]

H. Bercegol, L. Lamaignere, B. Garrec, M. Loiseau, and P. Volto, “Self-focusing and rear surface damage in a fused silica window at 1064 nm and 355 nm,” Proc. SPIE4932, 276–285 (2003).

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett.82(19), 3230–3232 (2003).
[CrossRef]

2002

2001

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Abdulla, G. M.

Adams, J. J.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE6720, 67200H, 67200H-10 (2007).
[CrossRef]

Ambard, C.

J. Neauport, P. Cormont, L. Lamaignere, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun.281(14), 3802–3805 (2008).
[CrossRef]

Bercegol, H.

J. Neauport, P. Cormont, L. Lamaignere, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun.281(14), 3802–3805 (2008).
[CrossRef]

H. Bercegol, L. Lamaignere, B. Garrec, M. Loiseau, and P. Volto, “Self-focusing and rear surface damage in a fused silica window at 1064 nm and 355 nm,” Proc. SPIE4932, 276–285 (2003).

G. Razè, J.-M. Morchain, M. Loiseau, L. Lamaignère, M. A. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE4932, 127–135 (2003).
[CrossRef]

Bude, J. D.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett.35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

Carr, C. W.

Z. M. Liao, G. M. Abdulla, R. A. Negres, D. A. Cross, and C. W. Carr, “Predictive modeling techniques for nanosecond-laser damage growth in fused silica optics,” Opt. Express20(14), 15569–15579 (2012).
[CrossRef] [PubMed]

R. A. Negres, Z. M. Liao, G. M. Abdulla, D. A. Cross, M. A. Norton, and C. W. Carr, “Exploration of the multiparameter space of nanosecond-laser damage growth in fused silica optics,” Appl. Opt.50(22), D12–D20 (2011).
[CrossRef] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express19(S4Suppl 4), A859–A864 (2011).
[CrossRef] [PubMed]

R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express18(19), 19966–19976 (2010).
[CrossRef] [PubMed]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE6720, 67200H, 67200H-10 (2007).
[CrossRef]

Cooke, D.

Cormont, P.

J. Neauport, P. Cormont, L. Lamaignere, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun.281(14), 3802–3805 (2008).
[CrossRef]

Cross, D. A.

Demos, S. G.

G. Duchateau, M. D. Feit, and S. G. Demos, “Strong nonlinear growth of energy coupling during laser irradiation of transparent dielectrics and its significance for laser induced damage,” J. Appl. Phys.111(9), 093106 (2012).
[CrossRef]

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng.50(1), 013602 (2011).

R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during laser-induced breakdown in fused silica,” Appl. Phys. Lett.98, 051901 (2011).

R. A. Negres, M. D. Feit, and S. G. Demos, “Dynamics of material modifications following laser-breakdown in bulk fused silica,” Opt. Express18(10), 10642–10649 (2010).
[CrossRef] [PubMed]

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett.82(19), 3230–3232 (2003).
[CrossRef]

S. G. Demos, M. Staggs, and M. R. Kozlowski, “Investigation of processes leading to damage growth in optical materials for large-aperture lasers,” Appl. Opt.41(18), 3628–3633 (2002).
[CrossRef] [PubMed]

S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express10(25), 1444–1450 (2002).
[CrossRef] [PubMed]

Donohue, E. E.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE6720, 67200H, 67200H-10 (2007).
[CrossRef]

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in SiO2 under multiple wavelength irradiation,” Proc. SPIE5991, 599108, 599108-12 (2005).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Draggoo, V. G.

Duchateau, G.

G. Duchateau, M. D. Feit, and S. G. Demos, “Strong nonlinear growth of energy coupling during laser irradiation of transparent dielectrics and its significance for laser induced damage,” J. Appl. Phys.111(9), 093106 (2012).
[CrossRef]

Elhadj, S.

Feit, M. D.

G. Duchateau, M. D. Feit, and S. G. Demos, “Strong nonlinear growth of energy coupling during laser irradiation of transparent dielectrics and its significance for laser induced damage,” J. Appl. Phys.111(9), 093106 (2012).
[CrossRef]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

R. A. Negres, M. D. Feit, and S. G. Demos, “Dynamics of material modifications following laser-breakdown in bulk fused silica,” Opt. Express18(10), 10642–10649 (2010).
[CrossRef] [PubMed]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett.35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE6720, 67200H, 67200H-10 (2007).
[CrossRef]

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in SiO2 under multiple wavelength irradiation,” Proc. SPIE5991, 599108, 599108-12 (2005).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Feng, B.

W. Q. Huang, W. Han, F. Wang, Y. Xiang, F. Q. Li, B. Feng, F. Jing, X. F. Wei, W. G. Zheng, and X. M. Zhang, “Laser–induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett.26(1), 017901 (2009).

Ferriera, J. L.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids352(3), 255–272 (2006).
[CrossRef]

Fujimoto, J.

Garrec, B.

H. Bercegol, L. Lamaignere, B. Garrec, M. Loiseau, and P. Volto, “Self-focusing and rear surface damage in a fused silica window at 1064 nm and 355 nm,” Proc. SPIE4932, 276–285 (2003).

Guss, G. M.

Hackel, R. P.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE6720, 67200H, 67200H-10 (2007).
[CrossRef]

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in SiO2 under multiple wavelength irradiation,” Proc. SPIE5991, 599108, 599108-12 (2005).
[CrossRef]

Han, W.

W. Q. Huang, W. Han, F. Wang, Y. Xiang, F. Q. Li, B. Feng, F. Jing, X. F. Wei, W. G. Zheng, and X. M. Zhang, “Laser–induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett.26(1), 017901 (2009).

Haupt, D. L.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids352(3), 255–272 (2006).
[CrossRef]

Hollingsworth, W. G.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE6720, 67200H, 67200H-10 (2007).
[CrossRef]

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in SiO2 under multiple wavelength irradiation,” Proc. SPIE5991, 599108, 599108-12 (2005).
[CrossRef]

Hrubesh, L. W.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Huang, W. Q.

W. Q. Huang, W. Han, F. Wang, Y. Xiang, F. Q. Li, B. Feng, F. Jing, X. F. Wei, W. G. Zheng, and X. M. Zhang, “Laser–induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett.26(1), 017901 (2009).

Hutcheon, I. D.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids352(3), 255–272 (2006).
[CrossRef]

Jarboe, J. A.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE6720, 67200H, 67200H-10 (2007).
[CrossRef]

Jing, F.

W. Q. Huang, W. Han, F. Wang, Y. Xiang, F. Q. Li, B. Feng, F. Jing, X. F. Wei, W. G. Zheng, and X. M. Zhang, “Laser–induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett.26(1), 017901 (2009).

Josse, M. A.

G. Razè, J.-M. Morchain, M. Loiseau, L. Lamaignère, M. A. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE4932, 127–135 (2003).
[CrossRef]

Kinney, J. H.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids352(3), 255–272 (2006).
[CrossRef]

Kozlowski, M. R.

S. G. Demos, M. Staggs, and M. R. Kozlowski, “Investigation of processes leading to damage growth in optical materials for large-aperture lasers,” Appl. Opt.41(18), 3628–3633 (2002).
[CrossRef] [PubMed]

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Kucheyev, S. O.

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett.82(19), 3230–3232 (2003).
[CrossRef]

Lamaignere, L.

J. Neauport, P. Cormont, L. Lamaignere, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun.281(14), 3802–3805 (2008).
[CrossRef]

H. Bercegol, L. Lamaignere, B. Garrec, M. Loiseau, and P. Volto, “Self-focusing and rear surface damage in a fused silica window at 1064 nm and 355 nm,” Proc. SPIE4932, 276–285 (2003).

Lamaignère, L.

G. Razè, J.-M. Morchain, M. Loiseau, L. Lamaignère, M. A. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE4932, 127–135 (2003).
[CrossRef]

Laurence, T. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett.35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

Li, F. Q.

W. Q. Huang, W. Han, F. Wang, Y. Xiang, F. Q. Li, B. Feng, F. Jing, X. F. Wei, W. G. Zheng, and X. M. Zhang, “Laser–induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett.26(1), 017901 (2009).

Liao, Z. M.

Lindsey, E. F.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids352(3), 255–272 (2006).
[CrossRef]

Loiseau, M.

H. Bercegol, L. Lamaignere, B. Garrec, M. Loiseau, and P. Volto, “Self-focusing and rear surface damage in a fused silica window at 1064 nm and 355 nm,” Proc. SPIE4932, 276–285 (2003).

G. Razè, J.-M. Morchain, M. Loiseau, L. Lamaignère, M. A. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE4932, 127–135 (2003).
[CrossRef]

Matthews, M. J.

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt.49(14), 2606–2616 (2010).
[CrossRef]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE6720, 67200H, 67200H-10 (2007).
[CrossRef]

Menapace, J.

Milam, D.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Miller, P. E.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett.35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

Minoshima, K.

Molander, W. A.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Monticelli, M. V.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

Morchain, J.-M.

G. Razè, J.-M. Morchain, M. Loiseau, L. Lamaignère, M. A. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE4932, 127–135 (2003).
[CrossRef]

Neauport, J.

J. Neauport, P. Cormont, L. Lamaignere, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun.281(14), 3802–3805 (2008).
[CrossRef]

Neeb, K. P.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Negres, R. A.

Z. M. Liao, G. M. Abdulla, R. A. Negres, D. A. Cross, and C. W. Carr, “Predictive modeling techniques for nanosecond-laser damage growth in fused silica optics,” Opt. Express20(14), 15569–15579 (2012).
[CrossRef] [PubMed]

R. A. Negres, Z. M. Liao, G. M. Abdulla, D. A. Cross, M. A. Norton, and C. W. Carr, “Exploration of the multiparameter space of nanosecond-laser damage growth in fused silica optics,” Appl. Opt.50(22), D12–D20 (2011).
[CrossRef] [PubMed]

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng.50(1), 013602 (2011).

R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during laser-induced breakdown in fused silica,” Appl. Phys. Lett.98, 051901 (2011).

C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express19(S4Suppl 4), A859–A864 (2011).
[CrossRef] [PubMed]

R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express18(19), 19966–19976 (2010).
[CrossRef] [PubMed]

R. A. Negres, M. D. Feit, and S. G. Demos, “Dynamics of material modifications following laser-breakdown in bulk fused silica,” Opt. Express18(10), 10642–10649 (2010).
[CrossRef] [PubMed]

Norton, M. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

R. A. Negres, Z. M. Liao, G. M. Abdulla, D. A. Cross, M. A. Norton, and C. W. Carr, “Exploration of the multiparameter space of nanosecond-laser damage growth in fused silica optics,” Appl. Opt.50(22), D12–D20 (2011).
[CrossRef] [PubMed]

C. W. Carr, D. A. Cross, M. A. Norton, and R. A. Negres, “The effect of laser pulse shape and duration on the size at which damage sites initiate and the implications to subsequent repair,” Opt. Express19(S4Suppl 4), A859–A864 (2011).
[CrossRef] [PubMed]

R. A. Negres, M. A. Norton, D. A. Cross, and C. W. Carr, “Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation,” Opt. Express18(19), 19966–19976 (2010).
[CrossRef] [PubMed]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE6720, 67200H, 67200H-10 (2007).
[CrossRef]

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in SiO2 under multiple wavelength irradiation,” Proc. SPIE5991, 599108, 599108-12 (2005).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Pilon, F.

J. Neauport, P. Cormont, L. Lamaignere, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun.281(14), 3802–3805 (2008).
[CrossRef]

Raman, R. N.

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng.50(1), 013602 (2011).

R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during laser-induced breakdown in fused silica,” Appl. Phys. Lett.98, 051901 (2011).

Razè, G.

G. Razè, J.-M. Morchain, M. Loiseau, L. Lamaignère, M. A. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE4932, 127–135 (2003).
[CrossRef]

Rubenchik, A. M.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE6720, 67200H, 67200H-10 (2007).
[CrossRef]

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in SiO2 under multiple wavelength irradiation,” Proc. SPIE5991, 599108, 599108-12 (2005).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Sell, W. D.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Shen, N.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett.35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

Spaeth, M. L.

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE6720, 67200H, 67200H-10 (2007).
[CrossRef]

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in SiO2 under multiple wavelength irradiation,” Proc. SPIE5991, 599108, 599108-12 (2005).
[CrossRef]

Staggs, M.

Steele, W. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett.35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

Suratwala, T. I.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett.35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

Volto, P.

H. Bercegol, L. Lamaignere, B. Garrec, M. Loiseau, and P. Volto, “Self-focusing and rear surface damage in a fused silica window at 1064 nm and 355 nm,” Proc. SPIE4932, 276–285 (2003).

Wang, F.

W. Q. Huang, W. Han, F. Wang, Y. Xiang, F. Q. Li, B. Feng, F. Jing, X. F. Wei, W. G. Zheng, and X. M. Zhang, “Laser–induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett.26(1), 017901 (2009).

Wegner, P. J.

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt.49(14), 2606–2616 (2010).
[CrossRef]

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Wei, X. F.

W. Q. Huang, W. Han, F. Wang, Y. Xiang, F. Q. Li, B. Feng, F. Jing, X. F. Wei, W. G. Zheng, and X. M. Zhang, “Laser–induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett.26(1), 017901 (2009).

Wong, J.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids352(3), 255–272 (2006).
[CrossRef]

Wong, L. L.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett.35(16), 2702–2704 (2010).
[CrossRef] [PubMed]

Wu, Z.

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

Xiang, Y.

W. Q. Huang, W. Han, F. Wang, Y. Xiang, F. Q. Li, B. Feng, F. Jing, X. F. Wei, W. G. Zheng, and X. M. Zhang, “Laser–induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett.26(1), 017901 (2009).

Xu, S.

Yang, S. T.

Yuan, X.

Zhang, X. M.

W. Q. Huang, W. Han, F. Wang, Y. Xiang, F. Q. Li, B. Feng, F. Jing, X. F. Wei, W. G. Zheng, and X. M. Zhang, “Laser–induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett.26(1), 017901 (2009).

Zheng, W. G.

W. Q. Huang, W. Han, F. Wang, Y. Xiang, F. Q. Li, B. Feng, F. Jing, X. F. Wei, W. G. Zheng, and X. M. Zhang, “Laser–induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett.26(1), 017901 (2009).

Zu, X.

Appl. Opt.

Appl. Phys. Lett.

R. N. Raman, R. A. Negres, and S. G. Demos, “Kinetics of ejected particles during laser-induced breakdown in fused silica,” Appl. Phys. Lett.98, 051901 (2011).

S. O. Kucheyev and S. G. Demos, “Optical defects produced in fused silica during laser-induced breakdown,” Appl. Phys. Lett.82(19), 3230–3232 (2003).
[CrossRef]

Chin. Opt. Lett.

Chin. Phys. Lett.

W. Q. Huang, W. Han, F. Wang, Y. Xiang, F. Q. Li, B. Feng, F. Jing, X. F. Wei, W. G. Zheng, and X. M. Zhang, “Laser–induced damage growth on large aperture fused silica optical components at 351 nm,” Chin. Phys. Lett.26(1), 017901 (2009).

J. Am. Ceram. Soc.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc.94(2), 416–428 (2011).
[CrossRef]

J. Appl. Phys.

G. Duchateau, M. D. Feit, and S. G. Demos, “Strong nonlinear growth of energy coupling during laser irradiation of transparent dielectrics and its significance for laser induced damage,” J. Appl. Phys.111(9), 093106 (2012).
[CrossRef]

J. Non-Cryst. Solids

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3ω (355 nm) laser pulses,” J. Non-Cryst. Solids352(3), 255–272 (2006).
[CrossRef]

Opt. Commun.

J. Neauport, P. Cormont, L. Lamaignere, C. Ambard, F. Pilon, and H. Bercegol, “Concerning the impact of polishing induced contamination of fused silica optics on the laser-induced damage density at 351 nm,” Opt. Commun.281(14), 3802–3805 (2008).
[CrossRef]

Opt. Eng.

R. N. Raman, R. A. Negres, and S. G. Demos, “Time-resolved microscope system to image material response following localized laser energy deposition: exit surface damage in fused silica as a case example,” Opt. Eng.50(1), 013602 (2011).

Opt. Express

Opt. Lett.

Proc. SPIE

M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M. R. Kozlowski, D. Milam, K. P. Neeb, W. A. Molander, A. M. Rubenchik, W. D. Sell, and P. J. Wegner, “Growth of laser initiated damage in fused silica at 351 nm,” Proc. SPIE4347, 468–473 (2001).
[CrossRef]

M. A. Norton, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in SiO2 under multiple wavelength irradiation,” Proc. SPIE5991, 599108, 599108-12 (2005).
[CrossRef]

G. Razè, J.-M. Morchain, M. Loiseau, L. Lamaignère, M. A. Josse, and H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE4932, 127–135 (2003).
[CrossRef]

M. A. Norton, J. J. Adams, C. W. Carr, E. E. Donohue, M. D. Feit, R. P. Hackel, W. G. Hollingsworth, J. A. Jarboe, M. J. Matthews, A. M. Rubenchik, and M. L. Spaeth, “Growth of laser damage in fused silica: diameter to depth ratio,” Proc. SPIE6720, 67200H, 67200H-10 (2007).
[CrossRef]

H. Bercegol, L. Lamaignere, B. Garrec, M. Loiseau, and P. Volto, “Self-focusing and rear surface damage in a fused silica window at 1064 nm and 355 nm,” Proc. SPIE4932, 276–285 (2003).

Other

M. G. Cottam and D. R. Tilley, Introduction to Surface and Superlattice Excitations (Cambridge University, 1989)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the time-resolved microscopy system in transmission and side-view illumination geometries with temporal resolution of 180 ps and 4.5 ns, respectively.

Fig. 2
Fig. 2

Images of a typical damage growth event in the transmission geometry capturing (a) the initial, the transient at (b) −3.81 ns and (c) −1.16 ns delays, and (d) the final damage site morphologies. The corresponding normalized images are shown in (a1), (b1), (c1) and (d1), respectively. Several plasma initiation sites in the transient images are indicated by arrows. The green outline in (b1) separates the inner “core” region from the outer region containing mostly cleaved and/or cracked surfaces. The spatial scale applies to all images.

Fig. 3
Fig. 3

Images of a typical damage growth event in the transmission geometry capturing (a) the initial, the transient (normalized) at (b) −0.44 ns and (c) + 2.21 ns delays, and (d) the final (d1: normalized) damage site morphologies. The green outline in (a) outlines the inner “core” region from the outer cleaved and/or cracked surfaces. The spatial scale applies to all images.

Fig. 4
Fig. 4

Images of a typical damage growth event in the transmission geometry capturing (a) the initial, the transient (normalized) at (b) + 21.09 ns and (c) + 23.74 ns delays, and (d) the final damage site morphologies. Arrows 1 and 2 indicate interesting transient features: radial cracks formed after laser energy deposition and the air shockwave, respectively. The spatial scale applies to all images.

Fig. 5
Fig. 5

The radial speed of expansion of plasma sites formed at the DSP interface as a function of (a) the delay of the probe-1 (solid black circles) and (b) the plasma radius as captured by the probe-1 transient image (solid green circles). Trends in the data are shown by the red solid line in (a) and black solid squares in (b)–average values upon data binning.

Fig. 6
Fig. 6

Images capturing the material ejection at (a) 500 ns, (b) 2 µs, (c) 5 µs, and (d) 25 µs delay times. The arrow in (a) indicates the location of the air shockwave.

Fig. 7
Fig. 7

(a) Estimates of particle speeds and sizes at various delay times and (b) plot of the ratio of average speed Vave to estimated speed Vest vs. delay time for exit surface damage growth in fused silica under excitation with 355 nm, 8 ns laser pulses with average fluence of ~18 J/cm2.

Fig. 8
Fig. 8

Estimated speed of the ejected material clusters as a function of (a) image acquisition time and (b) estimated ejection time.

Fig. 9
Fig. 9

The distance of the air shockwave (solid circles) from the surface as a function of the delay time for damage initiation and subsequent damage growth. The blue line profiles represent qualitative fits to the upper (solid line) and lower (dashed lines) boundaries of the experimental data and yield the upper and lower bounds on the speed of the shockwave (solid and dashed red lines, respectively).

Metrics