Abstract

Most image sensors are planar, opaque, and inflexible. We present a novel image sensor that is based on a luminescent concentrator (LC) film which absorbs light from a specific portion of the spectrum. The absorbed light is re-emitted at a lower frequency and transported to the edges of the LC by total internal reflection. The light transport is measured at the border of the film by line scan cameras. With these measurements, images that are focused onto the LC surface can be reconstructed. Thus, our image sensor is fully transparent, flexible, scalable and, due to its low cost, potentially disposable.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature454(7205), 748–753 (2008).
    [CrossRef] [PubMed]
  2. T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett.92(21), 213303 (2008).
    [CrossRef]
  3. G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater.10(17), 1431–1434 (1998).
    [CrossRef]
  4. T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE T. Electron Dev.52(11), 2502–2511 (2005).
    [CrossRef]
  5. A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nature Mat.5(7), 532–536 (2006).
    [CrossRef]
  6. R. Koeppe, A. Neulinger, P. Bartu, and S. Bauer, “Video-speed detection of the absolute position of a light point on a large-area photodetector based on luminescent waveguides,” Opt. Express18(3), 2209–2218 (2010).
    [CrossRef] [PubMed]
  7. S. A. Evenson and A. H. Rawicz, “Thin-film luminescent concentrators for integrated devices,” Appl. Optics34(31), 7231–7238 (1995).
    [CrossRef]
  8. P. J. Jungwirth, I. S. Melnik, and A. H. Rawicz, “Position-sensitive receptive fields based on photoluminescent concentrators,” P. Soc. Photo-Opt. Ins.3199, 239–247 (1998).
  9. I. S. Melnik and A. H. Rawicz, “Thin-film luminescent concentrators for position-sensitive devices,” Appl. Opt.36(34), 9025–9033 (1997).
    [CrossRef]
  10. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation,” Appl. Opt.18(18), 3090–3110 (1979).
    [CrossRef]
  11. M. Slaney and A. Kak, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).
  12. G. T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction from Projections, 2nd ed. (Springer Verlag, 2010).
  13. A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,” Ultrasonic Imaging6(1), 81–94 (1984).
    [CrossRef] [PubMed]
  14. Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process.13(4), 600–612 (2004).
    [CrossRef] [PubMed]
  15. H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM T. Graphic23(3), 760–768 (2004).
    [CrossRef]
  16. J. Y. Han, “Low-cost multi-touch sensing through frustrated total internal reflection,” in Proceedings of the 18th annual ACM symposium on User interface software and technology, (Association for Computing Machinery, New York, 2005), 115–118.
    [CrossRef]
  17. J. Moeller and A. Kerne, “Scanning FTIR: unobtrusive optoelectronic multi-touch sensing through waveguide transmissivity imaging,” in Proceedings of the fourth international conference on Tangible, embedded, and embodied interaction, (Association for Computing Machinery, New York, 2010), 73–76.
    [CrossRef]

2010

2008

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature454(7205), 748–753 (2008).
[CrossRef] [PubMed]

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett.92(21), 213303 (2008).
[CrossRef]

2006

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nature Mat.5(7), 532–536 (2006).
[CrossRef]

2005

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE T. Electron Dev.52(11), 2502–2511 (2005).
[CrossRef]

2004

Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process.13(4), 600–612 (2004).
[CrossRef] [PubMed]

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM T. Graphic23(3), 760–768 (2004).
[CrossRef]

1998

G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater.10(17), 1431–1434 (1998).
[CrossRef]

P. J. Jungwirth, I. S. Melnik, and A. H. Rawicz, “Position-sensitive receptive fields based on photoluminescent concentrators,” P. Soc. Photo-Opt. Ins.3199, 239–247 (1998).

1997

1995

S. A. Evenson and A. H. Rawicz, “Thin-film luminescent concentrators for integrated devices,” Appl. Optics34(31), 7231–7238 (1995).
[CrossRef]

1984

A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,” Ultrasonic Imaging6(1), 81–94 (1984).
[CrossRef] [PubMed]

1979

Abouraddy, A. F.

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nature Mat.5(7), 532–536 (2006).
[CrossRef]

Andersen, A. H.

A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,” Ultrasonic Imaging6(1), 81–94 (1984).
[CrossRef] [PubMed]

Arnold, J.

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nature Mat.5(7), 532–536 (2006).
[CrossRef]

Bartu, P.

Batchelder, J. S.

Bauer, S.

Bayindir, M.

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nature Mat.5(7), 532–536 (2006).
[CrossRef]

Bovik, A.C.

Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process.13(4), 600–612 (2004).
[CrossRef] [PubMed]

Chabinyc, M. L.

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett.92(21), 213303 (2008).
[CrossRef]

Choi, W. M.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature454(7205), 748–753 (2008).
[CrossRef] [PubMed]

Cole, T.

Evenson, S. A.

S. A. Evenson and A. H. Rawicz, “Thin-film luminescent concentrators for integrated devices,” Appl. Optics34(31), 7231–7238 (1995).
[CrossRef]

Fink, Y.

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nature Mat.5(7), 532–536 (2006).
[CrossRef]

Geddes, J. B.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature454(7205), 748–753 (2008).
[CrossRef] [PubMed]

Ghosh, A.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM T. Graphic23(3), 760–768 (2004).
[CrossRef]

Han, J. Y.

J. Y. Han, “Low-cost multi-touch sensing through frustrated total internal reflection,” in Proceedings of the 18th annual ACM symposium on User interface software and technology, (Association for Computing Machinery, New York, 2005), 115–118.
[CrossRef]

Heeger, A. J.

G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater.10(17), 1431–1434 (1998).
[CrossRef]

Heidrich, W.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM T. Graphic23(3), 760–768 (2004).
[CrossRef]

Herman, G. T.

G. T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction from Projections, 2nd ed. (Springer Verlag, 2010).

Hinczewski, D. S.

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nature Mat.5(7), 532–536 (2006).
[CrossRef]

Huang, Y.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature454(7205), 748–753 (2008).
[CrossRef] [PubMed]

Iba, S.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE T. Electron Dev.52(11), 2502–2511 (2005).
[CrossRef]

Joannopoulos, J. D.

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nature Mat.5(7), 532–536 (2006).
[CrossRef]

Jungwirth, P. J.

P. J. Jungwirth, I. S. Melnik, and A. H. Rawicz, “Position-sensitive receptive fields based on photoluminescent concentrators,” P. Soc. Photo-Opt. Ins.3199, 239–247 (1998).

Kak, A.

M. Slaney and A. Kak, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

Kak, A. C.

A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,” Ultrasonic Imaging6(1), 81–94 (1984).
[CrossRef] [PubMed]

Kato, Y.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE T. Electron Dev.52(11), 2502–2511 (2005).
[CrossRef]

Kawaguchi, H.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE T. Electron Dev.52(11), 2502–2511 (2005).
[CrossRef]

Kerne, A.

J. Moeller and A. Kerne, “Scanning FTIR: unobtrusive optoelectronic multi-touch sensing through waveguide transmissivity imaging,” in Proceedings of the fourth international conference on Tangible, embedded, and embodied interaction, (Association for Computing Machinery, New York, 2010), 73–76.
[CrossRef]

Ko, H. C.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature454(7205), 748–753 (2008).
[CrossRef] [PubMed]

Koeppe, R.

Malyarchuk, V.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature454(7205), 748–753 (2008).
[CrossRef] [PubMed]

McElvain, J.

G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater.10(17), 1431–1434 (1998).
[CrossRef]

Melnik, I. S.

P. J. Jungwirth, I. S. Melnik, and A. H. Rawicz, “Position-sensitive receptive fields based on photoluminescent concentrators,” P. Soc. Photo-Opt. Ins.3199, 239–247 (1998).

I. S. Melnik and A. H. Rawicz, “Thin-film luminescent concentrators for position-sensitive devices,” Appl. Opt.36(34), 9025–9033 (1997).
[CrossRef]

Moeller, J.

J. Moeller and A. Kerne, “Scanning FTIR: unobtrusive optoelectronic multi-touch sensing through waveguide transmissivity imaging,” in Proceedings of the fourth international conference on Tangible, embedded, and embodied interaction, (Association for Computing Machinery, New York, 2010), 73–76.
[CrossRef]

Neulinger, A.

Ng, T. N.

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett.92(21), 213303 (2008).
[CrossRef]

Noguchi, Y.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE T. Electron Dev.52(11), 2502–2511 (2005).
[CrossRef]

Rawicz, A. H.

P. J. Jungwirth, I. S. Melnik, and A. H. Rawicz, “Position-sensitive receptive fields based on photoluminescent concentrators,” P. Soc. Photo-Opt. Ins.3199, 239–247 (1998).

I. S. Melnik and A. H. Rawicz, “Thin-film luminescent concentrators for position-sensitive devices,” Appl. Opt.36(34), 9025–9033 (1997).
[CrossRef]

S. A. Evenson and A. H. Rawicz, “Thin-film luminescent concentrators for integrated devices,” Appl. Optics34(31), 7231–7238 (1995).
[CrossRef]

Rogers, J. A.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature454(7205), 748–753 (2008).
[CrossRef] [PubMed]

Sakurai, T.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE T. Electron Dev.52(11), 2502–2511 (2005).
[CrossRef]

Sambandan, S.

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett.92(21), 213303 (2008).
[CrossRef]

Seetzen, H.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM T. Graphic23(3), 760–768 (2004).
[CrossRef]

Sekitani, T.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE T. Electron Dev.52(11), 2502–2511 (2005).
[CrossRef]

Shapira, O.

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nature Mat.5(7), 532–536 (2006).
[CrossRef]

Sheikh, H.R.

Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process.13(4), 600–612 (2004).
[CrossRef] [PubMed]

Simoncelli, E.P.

Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process.13(4), 600–612 (2004).
[CrossRef] [PubMed]

Slaney, M.

M. Slaney and A. Kak, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

Someya, T.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE T. Electron Dev.52(11), 2502–2511 (2005).
[CrossRef]

Song, J.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature454(7205), 748–753 (2008).
[CrossRef] [PubMed]

Sorin, F.

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nature Mat.5(7), 532–536 (2006).
[CrossRef]

Stoykovich, M. P.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature454(7205), 748–753 (2008).
[CrossRef] [PubMed]

Street, R. A.

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett.92(21), 213303 (2008).
[CrossRef]

Stuerzlinger, W.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM T. Graphic23(3), 760–768 (2004).
[CrossRef]

Trentacoste, M.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM T. Graphic23(3), 760–768 (2004).
[CrossRef]

Vorozcovs, A.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM T. Graphic23(3), 760–768 (2004).
[CrossRef]

Wang, J.

G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater.10(17), 1431–1434 (1998).
[CrossRef]

Wang, S.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature454(7205), 748–753 (2008).
[CrossRef] [PubMed]

Wang, Z.

Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process.13(4), 600–612 (2004).
[CrossRef] [PubMed]

Ward, G.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM T. Graphic23(3), 760–768 (2004).
[CrossRef]

Whitehead, L.

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM T. Graphic23(3), 760–768 (2004).
[CrossRef]

Wong, W. S.

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett.92(21), 213303 (2008).
[CrossRef]

Xiao, J.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature454(7205), 748–753 (2008).
[CrossRef] [PubMed]

Yu, C. J.

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature454(7205), 748–753 (2008).
[CrossRef] [PubMed]

Yu, G.

G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater.10(17), 1431–1434 (1998).
[CrossRef]

Zewail, A. H.

ACM T. Graphic

H. Seetzen, W. Heidrich, W. Stuerzlinger, G. Ward, L. Whitehead, M. Trentacoste, A. Ghosh, and A. Vorozcovs, “High dynamic range display systems,” ACM T. Graphic23(3), 760–768 (2004).
[CrossRef]

Adv. Mater.

G. Yu, J. Wang, J. McElvain, and A. J. Heeger, “Large-area, full-color image sensors made with semiconducting polymers,” Adv. Mater.10(17), 1431–1434 (1998).
[CrossRef]

Appl. Opt.

Appl. Optics

S. A. Evenson and A. H. Rawicz, “Thin-film luminescent concentrators for integrated devices,” Appl. Optics34(31), 7231–7238 (1995).
[CrossRef]

Appl. Phys. Lett.

T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, “Flexible image sensor array with bulk heterojunction organic photodiode,” Appl. Phys. Lett.92(21), 213303 (2008).
[CrossRef]

IEEE T. Electron Dev.

T. Someya, Y. Kato, S. Iba, Y. Noguchi, T. Sekitani, H. Kawaguchi, and T. Sakurai, “Integration of organic fets with organic photodiodes for a large area, flexible, and lightweight sheet image scanners,” IEEE T. Electron Dev.52(11), 2502–2511 (2005).
[CrossRef]

IEEE Trans. Image Process.

Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, “Image quality assessment: From error visibility to structural similarity,” IEEE Trans. Image Process.13(4), 600–612 (2004).
[CrossRef] [PubMed]

Nature

H. C. Ko, M. P. Stoykovich, J. Song, V. Malyarchuk, W. M. Choi, C. J. Yu, J. B. Geddes, J. Xiao, S. Wang, Y. Huang, and J. A. Rogers, “A hemispherical electronic eye camera based on compressible silicon optoelectronics,” Nature454(7205), 748–753 (2008).
[CrossRef] [PubMed]

Nature Mat.

A. F. Abouraddy, O. Shapira, M. Bayindir, J. Arnold, F. Sorin, D. S. Hinczewski, J. D. Joannopoulos, and Y. Fink, “Large-scale optical-field measurements with geometric fibre constructs,” Nature Mat.5(7), 532–536 (2006).
[CrossRef]

Opt. Express

P. Soc. Photo-Opt. Ins.

P. J. Jungwirth, I. S. Melnik, and A. H. Rawicz, “Position-sensitive receptive fields based on photoluminescent concentrators,” P. Soc. Photo-Opt. Ins.3199, 239–247 (1998).

Ultrasonic Imaging

A. H. Andersen and A. C. Kak, “Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,” Ultrasonic Imaging6(1), 81–94 (1984).
[CrossRef] [PubMed]

Other

M. Slaney and A. Kak, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

G. T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction from Projections, 2nd ed. (Springer Verlag, 2010).

J. Y. Han, “Low-cost multi-touch sensing through frustrated total internal reflection,” in Proceedings of the 18th annual ACM symposium on User interface software and technology, (Association for Computing Machinery, New York, 2005), 115–118.
[CrossRef]

J. Moeller and A. Kerne, “Scanning FTIR: unobtrusive optoelectronic multi-touch sensing through waveguide transmissivity imaging,” in Proceedings of the fourth international conference on Tangible, embedded, and embodied interaction, (Association for Computing Machinery, New York, 2010), 73–76.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

A thin-film luminescent concentrator (LC) is a flexible, fully transparent, scalable, and low-cost polymer film. Our approach reconstructs grayscale images focused onto the LC surface. The image shows Bayer Makrofol® LISA Green LC film that absorbs blue and re-emits green light.

Fig. 2
Fig. 2

Light transport within luminescent concentrator: 1) Incident light is transmitted and not absorbed by a fluorescent molecule. 2) Emitted light is lost at the critical escape cones. 3) Light that is not reflected on the surface is absorbed, re-emitted, and transported to the edge either directly or by total internal reflection. 4) Emitted light is self-absorbed by another dye molecule.

Fig. 3
Fig. 3

Schema for sampling light transport as a 2D light field: (a) Photosensors (s1, s2,...,sj) located at the edges of the LC sheet that is divided into (p1, p2,..., pi) virtual pixels (from top left to bottom right). The photosensors are positioned at the bottom of the triangular aperture slits that are located along the LC edges. (b) Close-up of a triangular slit. Each photosensor measures the transported light integral at a particular angle. (c) The measurements of the photosensors at the same local position within each triangle at the same edge can be considered as the projection of light to the edge at a specific angle.

Fig. 4
Fig. 4

Microscopic views of triangular slit structure: (a) Darkfield image of single triangular slit sampling multiple directions ϕ⃗ at one slit position x⃗i. (b) Brightfield image of multiple triangular slits sampling the 2D light field L(x, ϕ).

Fig. 5
Fig. 5

Super-resolution reconstruction with shifted light-transport matrices (principle): reconstructing 2 × 2 low-resolution pixels (blue) at 3 × 3 sub-pixel-shifted positions results in an image with a resolution of 6 × 6 pixels (yellow).

Fig. 6
Fig. 6

Super-resolution reconstruction steps (9 × 9 to 27 × 27 example): The upper row shows the nine low-resolution reconstructions created with the 3 × 3 shifted light-transport matrices. The center row shows the same images with the reconstructed pixels placed at the correct positions within the high-resolution image. The bottom row presents the accumulation of the center-row images from left to right. (a) The final 27 × 27 super-resolution reconstruction. (b) Best possible result: original image (d) convolved with a 3 × 3 average kernel. (c) Direct reconstruction with a single high-resolution transport matrix.

Fig. 7
Fig. 7

Optimizing LC sensor parameters: An aperture of width a and a distance d to the photosensors lead to the field of view α of one triangular slit. It defines the distance w that is required by the photosensors at the edge of the LC. The integration area for a single photosensor is highlighted in orange.

Fig. 8
Fig. 8

Experimental setup: LC sensor surrounded by four line scan cameras. An LCD projector provides focused light impulses and sample images for automized calibration and experimentation.

Fig. 9
Fig. 9

Comparison of different image reconstruction techniques for a sample image with a resolution of 16 × 16 pixels: non-negative least squares (NNLS), simultaneous algebraic reconstruction technique (SART), biconjugate gradients stabilized (BiCGStab), QR decomposition (QRD), singular value decomposition (SVD), pseudo-inverse (PINV), filtered backprojection (FBP).

Fig. 10
Fig. 10

Direct reconstruction results for target resolutions of 9 × 9, 16 × 16, and 32 × 32; and super-resolution reconstructions results for resolutions of 16 × 16 to 32 × 32 and 32 × 32 to 64 × 64. The structural similarity index (SSIM) [14] is provided in blue. A SSIM of 1.0 indicates a perfect match with the ground-truth / best possible image at the corresponding resolution. Lower SSIM values indicate larger differences.

Fig. 11
Fig. 11

Color sensor: Stack of multiple LC layers (a) with small overlaps of absorption and emission spectra (c).

Fig. 12
Fig. 12

High-dynamic-range sensor: Simultaneous measurements of multiple exposures with (a) stacked LC layers, (b) directional multiplexing, (c) positional multiplexing, or a combination thereof.

Tables (1)

Tables Icon

Table 1 Computation times of NNLS multicore-CPU code (on Intel i7 QuadCode, 2.67 GHz) and BiCGStab/BiSART GPU implementations (on NVIDIA GTX 580, 772 Mhz) for direct reconstructions and super-resolution reconstructions. For higher resolutions (128 × 128 and above, in our experiments), super-resolution reconstruction outperforms direct reconstruction. The sizes of the light-transport matrices range from 280-thousand (9 × 9) to 57-million (128 × 128) entries.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

θ c = arcsin 1 n ,
P = 1 1 1 n 2 .
I = I 0 e μ d
s = T p + e ,
p = T 1 ( s e )
p = T T ( s e ) ,
a = 2 d tan ( α / 2 ) w tan ( α / 2 ) cot ( α / 2 ) .

Metrics