Abstract

The fluorescence enhancement in broadband Cr-doped fibers (CDFs) fabricated by a drawing tower with a redrawn powder-in-tube preform is proposed and demonstrated. The CDFs after heat treatment exhibited Cr4+ emission enhancement with spectral density of 200 pW/nm, verified by the formation of α-Mg2SiO4 nanocrystalline structures in the core of CDFs. The high fluorescence achievement in the CDFs is essential to develop a broadband CDF amplifier for next-generation optical communication systems.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. C. Huang, Y. K. Lu, J. C. Chen, Y. C. Hsu, Y. M. Huang, S. L. Huang, and W. H. Cheng, “Broadband emission from Cr-doped fibers fabricated by drawing tower,” Opt. Express14(19), 8492–8497 (2006).
    [CrossRef] [PubMed]
  2. Y. C. Huang, J. S. Wang, Y. K. Lu, W. K. Liu, K. Y. Huang, S. L. Huang, and W. H. Cheng, “Preform fabrication and fiber drawing of 300 nm broadband Cr-doped fibers,” Opt. Express15(22), 14382–14388 (2007).
    [CrossRef] [PubMed]
  3. Y. C. Huang, J. S. Wang, Y. S. Lin, T. C. Lin, W. L. Wang, Y. K. Lu, S. M. Yeh, H. H. Kuo, S. L. Huang, and W. H. Cheng, “Development of broadband single-mode Cr-doped silica fibers,” IEEE Photon. Technol. Lett.22(12), 914–916 (2010).
    [CrossRef]
  4. Y. C. Huang, J. S. Wang, K. M. Chu, T. C. Lin, W. L. Wang, T. L. Chou, S. M. Yeh, S. L. Huang, and W. H. Cheng, “Fabrication and characteristics of Cr-doped fibers employing powder-in-tube technique,” Optical Fiber Communication Conference (OFC), Los Angeles, CA, OWS1, March (2011).
  5. J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for faraday isolator applications,” Appl. Opt.34(30), 6848–6854 (1995).
    [CrossRef] [PubMed]
  6. J. S. Wang and F. H. Shen, “The development of SiO2 resistant Cr-doped glass ceramics high Cr4+ emission,” J. Non-Cryst. Solids358(2), 246–251 (2012).
    [CrossRef]
  7. S. M. Yeh, D. J. Y. Feng, K. Y. Huang, W. J. Zhuo, Y. C. Huang, T. S. Lay, S. L. Huang, P. Yeh, and W. H. Cheng, “Transmission and coupling characteristics of ultra-broadband Cr-doped multimode Fibers,” J. Lightwave Technol.27(14), 2834–2842 (2009).
  8. S. M. Yeh, S. L. Huang, Y. J. Chiu, H. Taga, P. L. Huang, Y. C. Huang, Y. K. Lu, J. P. Wu, W. L. Wang, D. M. Kong, K. Y. Huang, J. S. Wang, P. Yeh, and W.-H. Cheng, “Broadband chromium-doped fiber amplifiers for next-generation optical communication systems,” J. Lightwave Technol.30(6), 921–927 (2012).
    [CrossRef]
  9. R. A. Martin and J. C. Knight, “Silica-clad neodymium-doped lanthanum phosphate fibers and fiber lasers,” IEEE Photon. Technol. Lett.18(4), 574–576 (2006).
    [CrossRef]
  10. M. F. Hazenkamp, H. U. Güdel, M. Atanasov, U. Kesper, and D. Reinen, “Optical spectroscopy of Cr4+-doped Ca2GeO4 and Mg2SiO4.,” Phys. Rev. B Condens. Matter53(5), 2367–2377 (1996).
    [CrossRef] [PubMed]
  11. T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, “Compositional dependence of the valency state of Cr ions in oxide glasses,” J. Non-Cryst. Solids220(2–3), 139–146 (1997).
    [CrossRef]
  12. M. Kitaura, H. Nakagawa, and A. Ohnishi, “Optical spectra and electronic structures of forsterite (α-Mg2SiO4) single crystals,” J. Phys. Soc. Jpn.71(11), 2736–2741 (2002).
    [CrossRef]
  13. R. Erny, L. Labio, and W. Luthy, “A novel technique for active fibre production,” Opt. Mater.29(8), 919–922 (2007).
    [CrossRef]
  14. C. Koepke, K. Wisniewski, and M. Grinberg, “Excited state spectroscopy of chromium ions in various valence states in glasses,” J. Alloy. Comp.341(1–2), 19–27 (2002).
    [CrossRef]

2012 (2)

2010 (1)

Y. C. Huang, J. S. Wang, Y. S. Lin, T. C. Lin, W. L. Wang, Y. K. Lu, S. M. Yeh, H. H. Kuo, S. L. Huang, and W. H. Cheng, “Development of broadband single-mode Cr-doped silica fibers,” IEEE Photon. Technol. Lett.22(12), 914–916 (2010).
[CrossRef]

2009 (1)

2007 (2)

2006 (2)

R. A. Martin and J. C. Knight, “Silica-clad neodymium-doped lanthanum phosphate fibers and fiber lasers,” IEEE Photon. Technol. Lett.18(4), 574–576 (2006).
[CrossRef]

Y. C. Huang, Y. K. Lu, J. C. Chen, Y. C. Hsu, Y. M. Huang, S. L. Huang, and W. H. Cheng, “Broadband emission from Cr-doped fibers fabricated by drawing tower,” Opt. Express14(19), 8492–8497 (2006).
[CrossRef] [PubMed]

2002 (2)

M. Kitaura, H. Nakagawa, and A. Ohnishi, “Optical spectra and electronic structures of forsterite (α-Mg2SiO4) single crystals,” J. Phys. Soc. Jpn.71(11), 2736–2741 (2002).
[CrossRef]

C. Koepke, K. Wisniewski, and M. Grinberg, “Excited state spectroscopy of chromium ions in various valence states in glasses,” J. Alloy. Comp.341(1–2), 19–27 (2002).
[CrossRef]

1997 (1)

T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, “Compositional dependence of the valency state of Cr ions in oxide glasses,” J. Non-Cryst. Solids220(2–3), 139–146 (1997).
[CrossRef]

1996 (1)

M. F. Hazenkamp, H. U. Güdel, M. Atanasov, U. Kesper, and D. Reinen, “Optical spectroscopy of Cr4+-doped Ca2GeO4 and Mg2SiO4.,” Phys. Rev. B Condens. Matter53(5), 2367–2377 (1996).
[CrossRef] [PubMed]

1995 (1)

Atanasov, M.

M. F. Hazenkamp, H. U. Güdel, M. Atanasov, U. Kesper, and D. Reinen, “Optical spectroscopy of Cr4+-doped Ca2GeO4 and Mg2SiO4.,” Phys. Rev. B Condens. Matter53(5), 2367–2377 (1996).
[CrossRef] [PubMed]

Ballato, J.

Chen, J. C.

Cheng, W. H.

Cheng, W.-H.

Chiu, Y. J.

Erny, R.

R. Erny, L. Labio, and W. Luthy, “A novel technique for active fibre production,” Opt. Mater.29(8), 919–922 (2007).
[CrossRef]

Feng, D. J. Y.

Grinberg, M.

C. Koepke, K. Wisniewski, and M. Grinberg, “Excited state spectroscopy of chromium ions in various valence states in glasses,” J. Alloy. Comp.341(1–2), 19–27 (2002).
[CrossRef]

Güdel, H. U.

M. F. Hazenkamp, H. U. Güdel, M. Atanasov, U. Kesper, and D. Reinen, “Optical spectroscopy of Cr4+-doped Ca2GeO4 and Mg2SiO4.,” Phys. Rev. B Condens. Matter53(5), 2367–2377 (1996).
[CrossRef] [PubMed]

Hazenkamp, M. F.

M. F. Hazenkamp, H. U. Güdel, M. Atanasov, U. Kesper, and D. Reinen, “Optical spectroscopy of Cr4+-doped Ca2GeO4 and Mg2SiO4.,” Phys. Rev. B Condens. Matter53(5), 2367–2377 (1996).
[CrossRef] [PubMed]

Hsu, Y. C.

Huang, K. Y.

Huang, P. L.

Huang, S. L.

Huang, Y. C.

Huang, Y. M.

Kesper, U.

M. F. Hazenkamp, H. U. Güdel, M. Atanasov, U. Kesper, and D. Reinen, “Optical spectroscopy of Cr4+-doped Ca2GeO4 and Mg2SiO4.,” Phys. Rev. B Condens. Matter53(5), 2367–2377 (1996).
[CrossRef] [PubMed]

Kitaura, M.

M. Kitaura, H. Nakagawa, and A. Ohnishi, “Optical spectra and electronic structures of forsterite (α-Mg2SiO4) single crystals,” J. Phys. Soc. Jpn.71(11), 2736–2741 (2002).
[CrossRef]

Knight, J. C.

R. A. Martin and J. C. Knight, “Silica-clad neodymium-doped lanthanum phosphate fibers and fiber lasers,” IEEE Photon. Technol. Lett.18(4), 574–576 (2006).
[CrossRef]

Koepke, C.

C. Koepke, K. Wisniewski, and M. Grinberg, “Excited state spectroscopy of chromium ions in various valence states in glasses,” J. Alloy. Comp.341(1–2), 19–27 (2002).
[CrossRef]

Kong, D. M.

Kuo, H. H.

Y. C. Huang, J. S. Wang, Y. S. Lin, T. C. Lin, W. L. Wang, Y. K. Lu, S. M. Yeh, H. H. Kuo, S. L. Huang, and W. H. Cheng, “Development of broadband single-mode Cr-doped silica fibers,” IEEE Photon. Technol. Lett.22(12), 914–916 (2010).
[CrossRef]

Labio, L.

R. Erny, L. Labio, and W. Luthy, “A novel technique for active fibre production,” Opt. Mater.29(8), 919–922 (2007).
[CrossRef]

Lay, T. S.

Lin, T. C.

Y. C. Huang, J. S. Wang, Y. S. Lin, T. C. Lin, W. L. Wang, Y. K. Lu, S. M. Yeh, H. H. Kuo, S. L. Huang, and W. H. Cheng, “Development of broadband single-mode Cr-doped silica fibers,” IEEE Photon. Technol. Lett.22(12), 914–916 (2010).
[CrossRef]

Lin, Y. S.

Y. C. Huang, J. S. Wang, Y. S. Lin, T. C. Lin, W. L. Wang, Y. K. Lu, S. M. Yeh, H. H. Kuo, S. L. Huang, and W. H. Cheng, “Development of broadband single-mode Cr-doped silica fibers,” IEEE Photon. Technol. Lett.22(12), 914–916 (2010).
[CrossRef]

Liu, W. K.

Lu, Y. K.

Luthy, W.

R. Erny, L. Labio, and W. Luthy, “A novel technique for active fibre production,” Opt. Mater.29(8), 919–922 (2007).
[CrossRef]

Martin, R. A.

R. A. Martin and J. C. Knight, “Silica-clad neodymium-doped lanthanum phosphate fibers and fiber lasers,” IEEE Photon. Technol. Lett.18(4), 574–576 (2006).
[CrossRef]

Morinaga, K.

T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, “Compositional dependence of the valency state of Cr ions in oxide glasses,” J. Non-Cryst. Solids220(2–3), 139–146 (1997).
[CrossRef]

Murata, T.

T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, “Compositional dependence of the valency state of Cr ions in oxide glasses,” J. Non-Cryst. Solids220(2–3), 139–146 (1997).
[CrossRef]

Nakagawa, H.

M. Kitaura, H. Nakagawa, and A. Ohnishi, “Optical spectra and electronic structures of forsterite (α-Mg2SiO4) single crystals,” J. Phys. Soc. Jpn.71(11), 2736–2741 (2002).
[CrossRef]

Ohnishi, A.

M. Kitaura, H. Nakagawa, and A. Ohnishi, “Optical spectra and electronic structures of forsterite (α-Mg2SiO4) single crystals,” J. Phys. Soc. Jpn.71(11), 2736–2741 (2002).
[CrossRef]

Reinen, D.

M. F. Hazenkamp, H. U. Güdel, M. Atanasov, U. Kesper, and D. Reinen, “Optical spectroscopy of Cr4+-doped Ca2GeO4 and Mg2SiO4.,” Phys. Rev. B Condens. Matter53(5), 2367–2377 (1996).
[CrossRef] [PubMed]

Shen, F. H.

J. S. Wang and F. H. Shen, “The development of SiO2 resistant Cr-doped glass ceramics high Cr4+ emission,” J. Non-Cryst. Solids358(2), 246–251 (2012).
[CrossRef]

Snitzer, E.

Taga, H.

Takebe, H.

T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, “Compositional dependence of the valency state of Cr ions in oxide glasses,” J. Non-Cryst. Solids220(2–3), 139–146 (1997).
[CrossRef]

Torisaka, M.

T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, “Compositional dependence of the valency state of Cr ions in oxide glasses,” J. Non-Cryst. Solids220(2–3), 139–146 (1997).
[CrossRef]

Wang, J. S.

J. S. Wang and F. H. Shen, “The development of SiO2 resistant Cr-doped glass ceramics high Cr4+ emission,” J. Non-Cryst. Solids358(2), 246–251 (2012).
[CrossRef]

S. M. Yeh, S. L. Huang, Y. J. Chiu, H. Taga, P. L. Huang, Y. C. Huang, Y. K. Lu, J. P. Wu, W. L. Wang, D. M. Kong, K. Y. Huang, J. S. Wang, P. Yeh, and W.-H. Cheng, “Broadband chromium-doped fiber amplifiers for next-generation optical communication systems,” J. Lightwave Technol.30(6), 921–927 (2012).
[CrossRef]

Y. C. Huang, J. S. Wang, Y. S. Lin, T. C. Lin, W. L. Wang, Y. K. Lu, S. M. Yeh, H. H. Kuo, S. L. Huang, and W. H. Cheng, “Development of broadband single-mode Cr-doped silica fibers,” IEEE Photon. Technol. Lett.22(12), 914–916 (2010).
[CrossRef]

Y. C. Huang, J. S. Wang, Y. K. Lu, W. K. Liu, K. Y. Huang, S. L. Huang, and W. H. Cheng, “Preform fabrication and fiber drawing of 300 nm broadband Cr-doped fibers,” Opt. Express15(22), 14382–14388 (2007).
[CrossRef] [PubMed]

Wang, W. L.

S. M. Yeh, S. L. Huang, Y. J. Chiu, H. Taga, P. L. Huang, Y. C. Huang, Y. K. Lu, J. P. Wu, W. L. Wang, D. M. Kong, K. Y. Huang, J. S. Wang, P. Yeh, and W.-H. Cheng, “Broadband chromium-doped fiber amplifiers for next-generation optical communication systems,” J. Lightwave Technol.30(6), 921–927 (2012).
[CrossRef]

Y. C. Huang, J. S. Wang, Y. S. Lin, T. C. Lin, W. L. Wang, Y. K. Lu, S. M. Yeh, H. H. Kuo, S. L. Huang, and W. H. Cheng, “Development of broadband single-mode Cr-doped silica fibers,” IEEE Photon. Technol. Lett.22(12), 914–916 (2010).
[CrossRef]

Wisniewski, K.

C. Koepke, K. Wisniewski, and M. Grinberg, “Excited state spectroscopy of chromium ions in various valence states in glasses,” J. Alloy. Comp.341(1–2), 19–27 (2002).
[CrossRef]

Wu, J. P.

Yeh, P.

Yeh, S. M.

Zhuo, W. J.

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (2)

Y. C. Huang, J. S. Wang, Y. S. Lin, T. C. Lin, W. L. Wang, Y. K. Lu, S. M. Yeh, H. H. Kuo, S. L. Huang, and W. H. Cheng, “Development of broadband single-mode Cr-doped silica fibers,” IEEE Photon. Technol. Lett.22(12), 914–916 (2010).
[CrossRef]

R. A. Martin and J. C. Knight, “Silica-clad neodymium-doped lanthanum phosphate fibers and fiber lasers,” IEEE Photon. Technol. Lett.18(4), 574–576 (2006).
[CrossRef]

J. Alloy. Comp. (1)

C. Koepke, K. Wisniewski, and M. Grinberg, “Excited state spectroscopy of chromium ions in various valence states in glasses,” J. Alloy. Comp.341(1–2), 19–27 (2002).
[CrossRef]

J. Lightwave Technol. (2)

J. Non-Cryst. Solids (2)

J. S. Wang and F. H. Shen, “The development of SiO2 resistant Cr-doped glass ceramics high Cr4+ emission,” J. Non-Cryst. Solids358(2), 246–251 (2012).
[CrossRef]

T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, “Compositional dependence of the valency state of Cr ions in oxide glasses,” J. Non-Cryst. Solids220(2–3), 139–146 (1997).
[CrossRef]

J. Phys. Soc. Jpn. (1)

M. Kitaura, H. Nakagawa, and A. Ohnishi, “Optical spectra and electronic structures of forsterite (α-Mg2SiO4) single crystals,” J. Phys. Soc. Jpn.71(11), 2736–2741 (2002).
[CrossRef]

Opt. Express (2)

Opt. Mater. (1)

R. Erny, L. Labio, and W. Luthy, “A novel technique for active fibre production,” Opt. Mater.29(8), 919–922 (2007).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

M. F. Hazenkamp, H. U. Güdel, M. Atanasov, U. Kesper, and D. Reinen, “Optical spectroscopy of Cr4+-doped Ca2GeO4 and Mg2SiO4.,” Phys. Rev. B Condens. Matter53(5), 2367–2377 (1996).
[CrossRef] [PubMed]

Other (1)

Y. C. Huang, J. S. Wang, K. M. Chu, T. C. Lin, W. L. Wang, T. L. Chou, S. M. Yeh, S. L. Huang, and W. H. Cheng, “Fabrication and characteristics of Cr-doped fibers employing powder-in-tube technique,” Optical Fiber Communication Conference (OFC), Los Angeles, CA, OWS1, March (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of a Cr-doped powder preform.

Fig. 2
Fig. 2

Cleaved end-face of a CDF with a 10-μm core: (a) before heat-treatment, (b) after heat-treatment.

Fig. 3
Fig. 3

The fluorescence spectra of CDFs: (a) without heat treatment, (b) with heat treatment.

Fig. 4
Fig. 4

(a) EPMA line-scan of a CDF without heat treatment, (b) enlargement of (a).

Fig. 5
Fig. 5

(a) EPMA line-scan of a CDF with heat treatment, (b) enlargement of (a).

Fig. 6
Fig. 6

HRTEM images showing: (a) core of a CDF without heat-treatment, (b) enlarged area from (a), (c) SAED pattern from (a), (d) core of a CDF with heat-treatment, (e) enlarged area from (d), (f) SAED pattern from (d).

Fig. 7
Fig. 7

EDX spectra of CDFs (a) without heat treatment, (b) with heat treatment.

Fig. 8
Fig. 8

Structural environment of Cr4+ ion in olivine structure that Si4+ ions substituted by Cr4+ ions.

Tables (1)

Tables Icon

Table 1 Powder compositions

Metrics