Abstract

Enhanced light trapping is an attractive technique for improving the efficiency of thin film silicon solar cells. In this paper, we use FDTD simulations to study the scattering properties of silicon nanostructures on a silicon substrate and their application as enhanced light trappers. We find that the scattered spectrum and angular scattering distribution strongly depend on the excitation direction, that is, from air to substrate or from substrate to air. At the dipole resonance wavelength the scattering angles tend to be very narrow compared to those of silicon nanostructures in the absence of a substrate. Based on these properties, we propose a new thin film silicon solar cell design incorporating silicon nanostructures on both the front and back surfaces for enhanced light trapping.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett.75(8), 1063–1065 (1999).
    [CrossRef]
  2. N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett.9(3), 1255–1259 (2009).
    [CrossRef] [PubMed]
  3. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett.6(4), 827–832 (2006).
    [CrossRef] [PubMed]
  4. S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: Nanoparticles with built-in Fano resonances,” Nano Lett.10(7), 2694–2701 (2010).
    [CrossRef] [PubMed]
  5. N. T. Fofang, N. K. Grady, Z. Y. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton-plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett.11(4), 1556–1560 (2011).
    [CrossRef] [PubMed]
  6. N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
    [CrossRef] [PubMed]
  7. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano6(6), 5489–5497 (2012).
    [CrossRef] [PubMed]
  8. G. Pellegrini, P. Mazzoldi, and G. Mattei, “Asymmetric plasmonic nanoshells as subwavelength directional nanoantennas and color nanorouters: a multipole interference approach,” J. Phys. Chem. C116(40), 21536–21546 (2012).
    [CrossRef]
  9. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
    [CrossRef]
  10. M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett.9(5), 2188–2192 (2009).
    [CrossRef] [PubMed]
  11. S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys.109(7), 073105 (2011).
    [CrossRef]
  12. K. C. Vernon, A. M. Funston, C. Novo, D. E. Gómez, P. Mulvaney, and T. J. Davis, “Influence of particle-substrate interaction on localized plasmon resonances,” Nano Lett.10(6), 2080–2086 (2010).
    [CrossRef] [PubMed]
  13. H. J. Chen, T. Ming, S. R. Zhang, Z. Jin, B. C. Yang, and J. F. Wang, “Effect of the dielectric properties of substrates on the scattering patterns of gold nanorods,” ACS Nano5(6), 4865–4877 (2011).
    [CrossRef] [PubMed]
  14. H. J. Chen, L. Shao, T. Ming, K. C. Woo, Y. C. Man, J. F. Wang, and H. Q. Lin, “Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates,” ACS Nano5(8), 6754–6763 (2011).
    [CrossRef] [PubMed]
  15. Y. Wu and P. Nordlander, “Finite-difference time-domain modeling of the optical properties of nanoparticles near dielectric substrates,” J. Phys. Chem. C114(16), 7302–7307 (2010).
    [CrossRef]
  16. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun.3,692 (2012).
  17. Lumerical FDTD Solutions, www.lumerical.com .
  18. J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
    [CrossRef] [PubMed]
  19. A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett.12(12), 6459–6463 (2012).
    [CrossRef] [PubMed]
  20. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12(7), 3749–3755 (2012).
    [CrossRef] [PubMed]
  21. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express19(6), 4815–4826 (2011).
    [CrossRef] [PubMed]
  22. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010).
    [CrossRef]
  23. E. Xifré-Pérez, L. Shi, U. Tuzer, R. Fenollosa, F. Ramiro-Manzano, R. Quidant, and F. Meseguer, “Mirror-image-induced magnetic modes,” ACS Nano7(1), 664–668 (2013).
    [CrossRef] [PubMed]
  24. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express19(25), 25230–25241 (2011).
    [CrossRef] [PubMed]
  25. B. Rolly, B. Stout, and N. Bonod, “Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express20(18), 20376–20386 (2012).
    [CrossRef] [PubMed]
  26. A. Goetzberger, “Optical confinement in thin Si-solar cells by diffuse back reflectors,” 15th Photovoltaic Specialists Conference, (1981)
  27. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am.72(7), 899–907 (1982).
    [CrossRef]

2013 (1)

E. Xifré-Pérez, L. Shi, U. Tuzer, R. Fenollosa, F. Ramiro-Manzano, R. Quidant, and F. Meseguer, “Mirror-image-induced magnetic modes,” ACS Nano7(1), 664–668 (2013).
[CrossRef] [PubMed]

2012 (6)

B. Rolly, B. Stout, and N. Bonod, “Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express20(18), 20376–20386 (2012).
[CrossRef] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano6(6), 5489–5497 (2012).
[CrossRef] [PubMed]

G. Pellegrini, P. Mazzoldi, and G. Mattei, “Asymmetric plasmonic nanoshells as subwavelength directional nanoantennas and color nanorouters: a multipole interference approach,” J. Phys. Chem. C116(40), 21536–21546 (2012).
[CrossRef]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett.12(12), 6459–6463 (2012).
[CrossRef] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12(7), 3749–3755 (2012).
[CrossRef] [PubMed]

2011 (6)

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys.109(7), 073105 (2011).
[CrossRef]

H. J. Chen, T. Ming, S. R. Zhang, Z. Jin, B. C. Yang, and J. F. Wang, “Effect of the dielectric properties of substrates on the scattering patterns of gold nanorods,” ACS Nano5(6), 4865–4877 (2011).
[CrossRef] [PubMed]

H. J. Chen, L. Shao, T. Ming, K. C. Woo, Y. C. Man, J. F. Wang, and H. Q. Lin, “Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates,” ACS Nano5(8), 6754–6763 (2011).
[CrossRef] [PubMed]

N. T. Fofang, N. K. Grady, Z. Y. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton-plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett.11(4), 1556–1560 (2011).
[CrossRef] [PubMed]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express19(6), 4815–4826 (2011).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express19(25), 25230–25241 (2011).
[CrossRef] [PubMed]

2010 (4)

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: Nanoparticles with built-in Fano resonances,” Nano Lett.10(7), 2694–2701 (2010).
[CrossRef] [PubMed]

Y. Wu and P. Nordlander, “Finite-difference time-domain modeling of the optical properties of nanoparticles near dielectric substrates,” J. Phys. Chem. C114(16), 7302–7307 (2010).
[CrossRef]

K. C. Vernon, A. M. Funston, C. Novo, D. E. Gómez, P. Mulvaney, and T. J. Davis, “Influence of particle-substrate interaction on localized plasmon resonances,” Nano Lett.10(6), 2080–2086 (2010).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010).
[CrossRef]

2009 (2)

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett.9(3), 1255–1259 (2009).
[CrossRef] [PubMed]

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett.9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

2008 (2)

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

2006 (1)

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett.6(4), 827–832 (2006).
[CrossRef] [PubMed]

1999 (1)

S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett.75(8), 1063–1065 (1999).
[CrossRef]

1982 (1)

Aizpurua, J.

Bardhan, R.

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: Nanoparticles with built-in Fano resonances,” Nano Lett.10(7), 2694–2701 (2010).
[CrossRef] [PubMed]

Basilio, L. I.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

Beck, F. J.

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express19(25), 25230–25241 (2011).
[CrossRef] [PubMed]

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys.109(7), 073105 (2011).
[CrossRef]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010).
[CrossRef]

Bonod, N.

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12(7), 3749–3755 (2012).
[CrossRef] [PubMed]

Brandl, D. W.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett.6(4), 827–832 (2006).
[CrossRef] [PubMed]

Brener, I.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

Catchpole, K. R.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys.109(7), 073105 (2011).
[CrossRef]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express19(25), 25230–25241 (2011).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

Chantada, L.

Chen, H. J.

H. J. Chen, L. Shao, T. Ming, K. C. Woo, Y. C. Man, J. F. Wang, and H. Q. Lin, “Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates,” ACS Nano5(8), 6754–6763 (2011).
[CrossRef] [PubMed]

H. J. Chen, T. Ming, S. R. Zhang, Z. Jin, B. C. Yang, and J. F. Wang, “Effect of the dielectric properties of substrates on the scattering patterns of gold nanorods,” ACS Nano5(6), 4865–4877 (2011).
[CrossRef] [PubMed]

Chichkov, B. N.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12(7), 3749–3755 (2012).
[CrossRef] [PubMed]

Clem, P. G.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

Davis, T. J.

K. C. Vernon, A. M. Funston, C. Novo, D. E. Gómez, P. Mulvaney, and T. J. Davis, “Influence of particle-substrate interaction on localized plasmon resonances,” Nano Lett.10(6), 2080–2086 (2010).
[CrossRef] [PubMed]

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12(7), 3749–3755 (2012).
[CrossRef] [PubMed]

Evlyukhin, A. B.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12(7), 3749–3755 (2012).
[CrossRef] [PubMed]

Fan, Z. Y.

N. T. Fofang, N. K. Grady, Z. Y. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton-plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett.11(4), 1556–1560 (2011).
[CrossRef] [PubMed]

Fenollosa, R.

E. Xifré-Pérez, L. Shi, U. Tuzer, R. Fenollosa, F. Ramiro-Manzano, R. Quidant, and F. Meseguer, “Mirror-image-induced magnetic modes,” ACS Nano7(1), 664–668 (2013).
[CrossRef] [PubMed]

Fofang, N. T.

N. T. Fofang, N. K. Grady, Z. Y. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton-plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett.11(4), 1556–1560 (2011).
[CrossRef] [PubMed]

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Froufe-Pérez, L. S.

Funston, A. M.

K. C. Vernon, A. M. Funston, C. Novo, D. E. Gómez, P. Mulvaney, and T. J. Davis, “Influence of particle-substrate interaction on localized plasmon resonances,” Nano Lett.10(6), 2080–2086 (2010).
[CrossRef] [PubMed]

García-Etxarri, A.

Ginn, J. C.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

Gómez, D. E.

K. C. Vernon, A. M. Funston, C. Novo, D. E. Gómez, P. Mulvaney, and T. J. Davis, “Influence of particle-substrate interaction on localized plasmon resonances,” Nano Lett.10(6), 2080–2086 (2010).
[CrossRef] [PubMed]

Gómez-Medina, R.

Govorov, A. O.

N. T. Fofang, N. K. Grady, Z. Y. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton-plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett.11(4), 1556–1560 (2011).
[CrossRef] [PubMed]

Grady, N. K.

N. T. Fofang, N. K. Grady, Z. Y. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton-plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett.11(4), 1556–1560 (2011).
[CrossRef] [PubMed]

Green, M. A.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys.109(7), 073105 (2011).
[CrossRef]

Halas, N. J.

N. T. Fofang, N. K. Grady, Z. Y. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton-plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett.11(4), 1556–1560 (2011).
[CrossRef] [PubMed]

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: Nanoparticles with built-in Fano resonances,” Nano Lett.10(7), 2694–2701 (2010).
[CrossRef] [PubMed]

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett.9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett.9(3), 1255–1259 (2009).
[CrossRef] [PubMed]

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett.6(4), 827–832 (2006).
[CrossRef] [PubMed]

S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett.75(8), 1063–1065 (1999).
[CrossRef]

Hale, G. D.

S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett.75(8), 1063–1065 (1999).
[CrossRef]

Hines, P. F.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

Ihlefeld, J. F.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

Jackson, J. B.

S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett.75(8), 1063–1065 (1999).
[CrossRef]

Jin, Z.

H. J. Chen, T. Ming, S. R. Zhang, Z. Jin, B. C. Yang, and J. F. Wang, “Effect of the dielectric properties of substrates on the scattering patterns of gold nanorods,” ACS Nano5(6), 4865–4877 (2011).
[CrossRef] [PubMed]

Kivshar, Y. S.

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett.12(12), 6459–6463 (2012).
[CrossRef] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano6(6), 5489–5497 (2012).
[CrossRef] [PubMed]

Knight, M. W.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett.9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

Lassiter, J. B.

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: Nanoparticles with built-in Fano resonances,” Nano Lett.10(7), 2694–2701 (2010).
[CrossRef] [PubMed]

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett.9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

Le, F.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett.6(4), 827–832 (2006).
[CrossRef] [PubMed]

Lin, H. Q.

H. J. Chen, L. Shao, T. Ming, K. C. Woo, Y. C. Man, J. F. Wang, and H. Q. Lin, “Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates,” ACS Nano5(8), 6754–6763 (2011).
[CrossRef] [PubMed]

Liu, W.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano6(6), 5489–5497 (2012).
[CrossRef] [PubMed]

López, C.

Man, Y. C.

H. J. Chen, L. Shao, T. Ming, K. C. Woo, Y. C. Man, J. F. Wang, and H. Q. Lin, “Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates,” ACS Nano5(8), 6754–6763 (2011).
[CrossRef] [PubMed]

Mattei, G.

G. Pellegrini, P. Mazzoldi, and G. Mattei, “Asymmetric plasmonic nanoshells as subwavelength directional nanoantennas and color nanorouters: a multipole interference approach,” J. Phys. Chem. C116(40), 21536–21546 (2012).
[CrossRef]

Mazzoldi, P.

G. Pellegrini, P. Mazzoldi, and G. Mattei, “Asymmetric plasmonic nanoshells as subwavelength directional nanoantennas and color nanorouters: a multipole interference approach,” J. Phys. Chem. C116(40), 21536–21546 (2012).
[CrossRef]

Meseguer, F.

E. Xifré-Pérez, L. Shi, U. Tuzer, R. Fenollosa, F. Ramiro-Manzano, R. Quidant, and F. Meseguer, “Mirror-image-induced magnetic modes,” ACS Nano7(1), 664–668 (2013).
[CrossRef] [PubMed]

Ming, T.

H. J. Chen, T. Ming, S. R. Zhang, Z. Jin, B. C. Yang, and J. F. Wang, “Effect of the dielectric properties of substrates on the scattering patterns of gold nanorods,” ACS Nano5(6), 4865–4877 (2011).
[CrossRef] [PubMed]

H. J. Chen, L. Shao, T. Ming, K. C. Woo, Y. C. Man, J. F. Wang, and H. Q. Lin, “Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates,” ACS Nano5(8), 6754–6763 (2011).
[CrossRef] [PubMed]

Mirin, N. A.

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett.9(3), 1255–1259 (2009).
[CrossRef] [PubMed]

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Miroshnichenko, A. E.

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett.12(12), 6459–6463 (2012).
[CrossRef] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano6(6), 5489–5497 (2012).
[CrossRef] [PubMed]

Mokkapati, S.

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model,” Opt. Express19(25), 25230–25241 (2011).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010).
[CrossRef]

Mukherjee, S.

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: Nanoparticles with built-in Fano resonances,” Nano Lett.10(7), 2694–2701 (2010).
[CrossRef] [PubMed]

Mulvaney, P.

K. C. Vernon, A. M. Funston, C. Novo, D. E. Gómez, P. Mulvaney, and T. J. Davis, “Influence of particle-substrate interaction on localized plasmon resonances,” Nano Lett.10(6), 2080–2086 (2010).
[CrossRef] [PubMed]

Neshev, D. N.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano6(6), 5489–5497 (2012).
[CrossRef] [PubMed]

Neumann, O.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Nieto-Vesperinas, M.

Nordlander, P.

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: Nanoparticles with built-in Fano resonances,” Nano Lett.10(7), 2694–2701 (2010).
[CrossRef] [PubMed]

Y. Wu and P. Nordlander, “Finite-difference time-domain modeling of the optical properties of nanoparticles near dielectric substrates,” J. Phys. Chem. C114(16), 7302–7307 (2010).
[CrossRef]

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett.9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett.6(4), 827–832 (2006).
[CrossRef] [PubMed]

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12(7), 3749–3755 (2012).
[CrossRef] [PubMed]

Novo, C.

K. C. Vernon, A. M. Funston, C. Novo, D. E. Gómez, P. Mulvaney, and T. J. Davis, “Influence of particle-substrate interaction on localized plasmon resonances,” Nano Lett.10(6), 2080–2086 (2010).
[CrossRef] [PubMed]

Oldenburg, S. J.

S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett.75(8), 1063–1065 (1999).
[CrossRef]

Ouyang, Z.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys.109(7), 073105 (2011).
[CrossRef]

Park, T. H.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Pellegrini, G.

G. Pellegrini, P. Mazzoldi, and G. Mattei, “Asymmetric plasmonic nanoshells as subwavelength directional nanoantennas and color nanorouters: a multipole interference approach,” J. Phys. Chem. C116(40), 21536–21546 (2012).
[CrossRef]

Peters, D. W.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

Pillai, S.

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys.109(7), 073105 (2011).
[CrossRef]

Polman, A.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun.3,692 (2012).

Quidant, R.

E. Xifré-Pérez, L. Shi, U. Tuzer, R. Fenollosa, F. Ramiro-Manzano, R. Quidant, and F. Meseguer, “Mirror-image-induced magnetic modes,” ACS Nano7(1), 664–668 (2013).
[CrossRef] [PubMed]

Ramiro-Manzano, F.

E. Xifré-Pérez, L. Shi, U. Tuzer, R. Fenollosa, F. Ramiro-Manzano, R. Quidant, and F. Meseguer, “Mirror-image-induced magnetic modes,” ACS Nano7(1), 664–668 (2013).
[CrossRef] [PubMed]

Reinhardt, C.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12(7), 3749–3755 (2012).
[CrossRef] [PubMed]

Rolly, B.

Sáenz, J. J.

Scheffold, F.

Shao, L.

H. J. Chen, L. Shao, T. Ming, K. C. Woo, Y. C. Man, J. F. Wang, and H. Q. Lin, “Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates,” ACS Nano5(8), 6754–6763 (2011).
[CrossRef] [PubMed]

Shi, L.

E. Xifré-Pérez, L. Shi, U. Tuzer, R. Fenollosa, F. Ramiro-Manzano, R. Quidant, and F. Meseguer, “Mirror-image-induced magnetic modes,” ACS Nano7(1), 664–668 (2013).
[CrossRef] [PubMed]

Sinclair, M. B.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

Sobhani, H.

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: Nanoparticles with built-in Fano resonances,” Nano Lett.10(7), 2694–2701 (2010).
[CrossRef] [PubMed]

Spinelli, P.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun.3,692 (2012).

Stevens, J. O.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

Stout, B.

Tuzer, U.

E. Xifré-Pérez, L. Shi, U. Tuzer, R. Fenollosa, F. Ramiro-Manzano, R. Quidant, and F. Meseguer, “Mirror-image-induced magnetic modes,” ACS Nano7(1), 664–668 (2013).
[CrossRef] [PubMed]

Vernon, K. C.

K. C. Vernon, A. M. Funston, C. Novo, D. E. Gómez, P. Mulvaney, and T. J. Davis, “Influence of particle-substrate interaction on localized plasmon resonances,” Nano Lett.10(6), 2080–2086 (2010).
[CrossRef] [PubMed]

Verschuuren, M. A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun.3,692 (2012).

Wang, H.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett.6(4), 827–832 (2006).
[CrossRef] [PubMed]

Wang, J. F.

H. J. Chen, L. Shao, T. Ming, K. C. Woo, Y. C. Man, J. F. Wang, and H. Q. Lin, “Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates,” ACS Nano5(8), 6754–6763 (2011).
[CrossRef] [PubMed]

H. J. Chen, T. Ming, S. R. Zhang, Z. Jin, B. C. Yang, and J. F. Wang, “Effect of the dielectric properties of substrates on the scattering patterns of gold nanorods,” ACS Nano5(6), 4865–4877 (2011).
[CrossRef] [PubMed]

Warne, L. K.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

Wendt, J. R.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

Woo, K. C.

H. J. Chen, L. Shao, T. Ming, K. C. Woo, Y. C. Man, J. F. Wang, and H. Q. Lin, “Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates,” ACS Nano5(8), 6754–6763 (2011).
[CrossRef] [PubMed]

Wu, Y.

Y. Wu and P. Nordlander, “Finite-difference time-domain modeling of the optical properties of nanoparticles near dielectric substrates,” J. Phys. Chem. C114(16), 7302–7307 (2010).
[CrossRef]

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett.9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

Xifré-Pérez, E.

E. Xifré-Pérez, L. Shi, U. Tuzer, R. Fenollosa, F. Ramiro-Manzano, R. Quidant, and F. Meseguer, “Mirror-image-induced magnetic modes,” ACS Nano7(1), 664–668 (2013).
[CrossRef] [PubMed]

Yablonovitch, E.

Yang, B. C.

H. J. Chen, T. Ming, S. R. Zhang, Z. Jin, B. C. Yang, and J. F. Wang, “Effect of the dielectric properties of substrates on the scattering patterns of gold nanorods,” ACS Nano5(6), 4865–4877 (2011).
[CrossRef] [PubMed]

Zhang, S. R.

H. J. Chen, T. Ming, S. R. Zhang, Z. Jin, B. C. Yang, and J. F. Wang, “Effect of the dielectric properties of substrates on the scattering patterns of gold nanorods,” ACS Nano5(6), 4865–4877 (2011).
[CrossRef] [PubMed]

Zywietz, U.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12(7), 3749–3755 (2012).
[CrossRef] [PubMed]

ACS Nano (4)

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano6(6), 5489–5497 (2012).
[CrossRef] [PubMed]

H. J. Chen, T. Ming, S. R. Zhang, Z. Jin, B. C. Yang, and J. F. Wang, “Effect of the dielectric properties of substrates on the scattering patterns of gold nanorods,” ACS Nano5(6), 4865–4877 (2011).
[CrossRef] [PubMed]

H. J. Chen, L. Shao, T. Ming, K. C. Woo, Y. C. Man, J. F. Wang, and H. Q. Lin, “Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates,” ACS Nano5(8), 6754–6763 (2011).
[CrossRef] [PubMed]

E. Xifré-Pérez, L. Shi, U. Tuzer, R. Fenollosa, F. Ramiro-Manzano, R. Quidant, and F. Meseguer, “Mirror-image-induced magnetic modes,” ACS Nano7(1), 664–668 (2013).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett.75(8), 1063–1065 (1999).
[CrossRef]

J. Appl. Phys. (1)

S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, and M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions,” J. Appl. Phys.109(7), 073105 (2011).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Chem. C (2)

Y. Wu and P. Nordlander, “Finite-difference time-domain modeling of the optical properties of nanoparticles near dielectric substrates,” J. Phys. Chem. C114(16), 7302–7307 (2010).
[CrossRef]

G. Pellegrini, P. Mazzoldi, and G. Mattei, “Asymmetric plasmonic nanoshells as subwavelength directional nanoantennas and color nanorouters: a multipole interference approach,” J. Phys. Chem. C116(40), 21536–21546 (2012).
[CrossRef]

Nano Lett. (9)

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett.9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

N. A. Mirin and N. J. Halas, “Light-bending nanoparticles,” Nano Lett.9(3), 1255–1259 (2009).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett.6(4), 827–832 (2006).
[CrossRef] [PubMed]

S. Mukherjee, H. Sobhani, J. B. Lassiter, R. Bardhan, P. Nordlander, and N. J. Halas, “Fanoshells: Nanoparticles with built-in Fano resonances,” Nano Lett.10(7), 2694–2701 (2010).
[CrossRef] [PubMed]

N. T. Fofang, N. K. Grady, Z. Y. Fan, A. O. Govorov, and N. J. Halas, “Plexciton dynamics: exciton-plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity,” Nano Lett.11(4), 1556–1560 (2011).
[CrossRef] [PubMed]

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

K. C. Vernon, A. M. Funston, C. Novo, D. E. Gómez, P. Mulvaney, and T. J. Davis, “Influence of particle-substrate interaction on localized plasmon resonances,” Nano Lett.10(6), 2080–2086 (2010).
[CrossRef] [PubMed]

A. E. Miroshnichenko and Y. S. Kivshar, “Fano resonances in all-dielectric oligomers,” Nano Lett.12(12), 6459–6463 (2012).
[CrossRef] [PubMed]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12(7), 3749–3755 (2012).
[CrossRef] [PubMed]

Opt. Express (3)

Phys. Rev. Lett. (1)

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

Other (3)

A. Goetzberger, “Optical confinement in thin Si-solar cells by diffuse back reflectors,” 15th Photovoltaic Specialists Conference, (1981)

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun.3,692 (2012).

Lumerical FDTD Solutions, www.lumerical.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Cross-section of FDTD simulation set-up. Monitor S1 comprises two 2-D monitors orthogonal to each other, i.e., one in the Z-X plane and the other in the Z-Y plane. Intensity field distribution within the Si nanoparticle and also the angular distribution of power scattered by Si nanoparticle is obtained from monitor S1. Scattered spectrum of Si nanoparticle is obtained from monitor S2. Monitor S2 consist of six 2-D monitors arranged to form a box around the Si nanoparticle. TFSF source is a box with Si nanoparticle at its center. The TFSF source divides simulation space into total field region (space within TFSF box) and scattered field region (space outside of TFSF box). Propagation is in the z-direction with polarization along the x-axis.

Fig. 2
Fig. 2

(a) A: silicon nano-cylinder in air; B: silicon nano-cylinder on silicon substrate with excitation direction from air to silicon substrate; C: silicon nano-cylinder on silicon substrate with excitation direction from silicon substrate to air. (b) Normalized scattering cross-section from the three scenarios

Fig. 3
Fig. 3

These figures correspond to plots of | E | 2 for scenarios A, B, and C (see Fig. 2(a)) at resonant wavelengths of 800 nm for A and B, and, 900 nm for C (see Fig. 2(b)). The presence of the silicon substrate has modified the intensity field distributions. (d) and (g) further indicates differences based on the direction of excitation. Polar plots of scattered power indicate extreme narrowing of scattered angles for B and C compared to A. For B and C, upper half of polar plot lies inside the silicon substrate.

Fig. 4
Fig. 4

Plots of | E | 2 for scenarios A (a, b, c), B (d, e, f), and C (g, h, i) (see Fig. 2(a)) at magnetic dipole resonant wavelengths of 1000 nm for A, 1050 nm for B, and, 1100 nm for C (see Fig. 2(b)). Circular intensity field distribution seen in (b), (e), and, (h) is an indication of the presence of a magnetic dipole resonance. (c), (f), and, (i) correspond to angular scattering patterns.

Fig. 5
Fig. 5

(a) proposed double sided solar cell structure with silicon nanoparticles on the front and back surfaces. Silicon nanoparticle on front surface scatters light into cell and nanoparticles on back surface scatter the light back into the cell. Monitor M2 (M1) measures power scattered out through the back (front) surface of the cell. (b) Spectra of scattered power measured by M2 (inset is measured by M1). Black (red) spectrum corresponds to nanoparticles present (absent) on the back surface of cell.

Fig. 6
Fig. 6

Black: absorption by 2 µm thick silicon solar cell structure incorporating front and back silicon nanoparticles. Red: Yablonovitch theoretical absorption limit for 2 µm thick silicon solar cell. Blue: absorption by 2 µm thick silicon film.

Metrics