Abstract

In this paper, a high-Q/Veff gap-mode plasmonic Fabry-Perot nanocavity, which is composed of a silver nanowire on a flat silver substrate spaced by patterned dielectric distributed Bragg gratings, is investigated both analytically and numerically. The design parameters and properties of the nanocavity are exploited with the use of generalized Fabry-Perot model. The Veff ~0.0026 (λ/n)3 and Q/Veff ~1.4 × 105/μm3 of the nanocavity can be achieved. Such a gap-mode plasmonic Fabry-Perot nanocavity design provides a promising realization for wide novel band filters and spaser.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
    [Crossref]
  2. P. Bianucci, X. Wang, J. G. Veinot, and A. Meldrum, “Silicon nanocrystals on bottle resonators: Mode structure, loss mechanisms and emission dynamics,” Opt. Express 18(8), 8466–8481 (2010).
    [Crossref] [PubMed]
  3. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  4. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
    [Crossref] [PubMed]
  5. R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave–particle duality of single surface plasmon polaritons,” Nat. Phys. 5(7), 470–474 (2009).
    [Crossref]
  6. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
    [Crossref] [PubMed]
  7. K. J. Russell and E. L. Hu, “Gap-mode plasmonic nanocavity,” Appl. Phys. Lett. 97(16), 163115 (2010).
    [Crossref]
  8. K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
    [Crossref]
  9. A. Hohenau, P. Kusar, C. Gruber, and J. R. Krenn, “Analysis of damping-induced phase flips of plasmonic nanowire modes,” Opt. Lett. 37(4), 746–748 (2012).
    [Crossref] [PubMed]
  10. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  11. N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
    [Crossref] [PubMed]
  12. M. Yi, D. Zhang, X. Wen, Q. Fu, P. Wang, Y. Lu, and H. Ming, “Fluorescence enhancement caused by plasmonics coupling between silver nano-cubes and silver film,” Plasmonics 6(2), 213–217 (2011).
    [Crossref]
  13. X. Wen, M. Yi, D. Zhang, P. Wang, Y. Lu, and H. Ming, “Tunable plasmonic coupling between silver nano-cubes and silver nano-hole arrays,” Nanotechnology 22(8), 085203 (2011).
    [Crossref] [PubMed]
  14. C. L. Zou, F. W. Sun, Y. F. Xiao, C. H. Dong, X. D. Chen, J. M. Cui, Q. Gong, Z. F. Han, and G. C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
    [Crossref]
  15. P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  16. R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A 299(2-3), 309–312 (2002).
    [Crossref]
  17. Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, 1985).

2012 (3)

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

A. Hohenau, P. Kusar, C. Gruber, and J. R. Krenn, “Analysis of damping-induced phase flips of plasmonic nanowire modes,” Opt. Lett. 37(4), 746–748 (2012).
[Crossref] [PubMed]

2011 (2)

M. Yi, D. Zhang, X. Wen, Q. Fu, P. Wang, Y. Lu, and H. Ming, “Fluorescence enhancement caused by plasmonics coupling between silver nano-cubes and silver film,” Plasmonics 6(2), 213–217 (2011).
[Crossref]

X. Wen, M. Yi, D. Zhang, P. Wang, Y. Lu, and H. Ming, “Tunable plasmonic coupling between silver nano-cubes and silver nano-hole arrays,” Nanotechnology 22(8), 085203 (2011).
[Crossref] [PubMed]

2010 (3)

C. L. Zou, F. W. Sun, Y. F. Xiao, C. H. Dong, X. D. Chen, J. M. Cui, Q. Gong, Z. F. Han, and G. C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

P. Bianucci, X. Wang, J. G. Veinot, and A. Meldrum, “Silicon nanocrystals on bottle resonators: Mode structure, loss mechanisms and emission dynamics,” Opt. Express 18(8), 8466–8481 (2010).
[Crossref] [PubMed]

K. J. Russell and E. L. Hu, “Gap-mode plasmonic nanocavity,” Appl. Phys. Lett. 97(16), 163115 (2010).
[Crossref]

2009 (2)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave–particle duality of single surface plasmon polaritons,” Nat. Phys. 5(7), 470–474 (2009).
[Crossref]

2007 (2)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

2006 (1)

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
[Crossref] [PubMed]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

2002 (1)

R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A 299(2-3), 309–312 (2002).
[Crossref]

1972 (1)

P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Akimov, A. V.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Asano, T.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

Balasubramanian, G.

R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave–particle duality of single surface plasmon polaritons,” Nat. Phys. 5(7), 470–474 (2009).
[Crossref]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Bianucci, P.

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
[Crossref] [PubMed]

Chen, X. D.

C. L. Zou, F. W. Sun, Y. F. Xiao, C. H. Dong, X. D. Chen, J. M. Cui, Q. Gong, Z. F. Han, and G. C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Christy, R.

P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cui, J. M.

C. L. Zou, F. W. Sun, Y. F. Xiao, C. H. Dong, X. D. Chen, J. M. Cui, Q. Gong, Z. F. Han, and G. C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Cui, S.

K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

de Leon, N. P.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

Dong, C. H.

C. L. Zou, F. W. Sun, Y. F. Xiao, C. H. Dong, X. D. Chen, J. M. Cui, Q. Gong, Z. F. Han, and G. C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Englund, D. E.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

Fu, Q.

M. Yi, D. Zhang, X. Wen, Q. Fu, P. Wang, Y. Lu, and H. Ming, “Fluorescence enhancement caused by plasmonics coupling between silver nano-cubes and silver film,” Plasmonics 6(2), 213–217 (2011).
[Crossref]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Gong, Q.

C. L. Zou, F. W. Sun, Y. F. Xiao, C. H. Dong, X. D. Chen, J. M. Cui, Q. Gong, Z. F. Han, and G. C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Grotz, B.

R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave–particle duality of single surface plasmon polaritons,” Nat. Phys. 5(7), 470–474 (2009).
[Crossref]

Gruber, C.

Guo, G. C.

C. L. Zou, F. W. Sun, Y. F. Xiao, C. H. Dong, X. D. Chen, J. M. Cui, Q. Gong, Z. F. Han, and G. C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Han, Z. F.

C. L. Zou, F. W. Sun, Y. F. Xiao, C. H. Dong, X. D. Chen, J. M. Cui, Q. Gong, Z. F. Han, and G. C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Hemmer, P. R.

R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave–particle duality of single surface plasmon polaritons,” Nat. Phys. 5(7), 470–474 (2009).
[Crossref]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
[Crossref] [PubMed]

Hohenau, A.

Hu, E. L.

K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

K. J. Russell and E. L. Hu, “Gap-mode plasmonic nanocavity,” Appl. Phys. Lett. 97(16), 163115 (2010).
[Crossref]

Jelezko, F.

R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave–particle duality of single surface plasmon polaritons,” Nat. Phys. 5(7), 470–474 (2009).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kolesov, R.

R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave–particle duality of single surface plasmon polaritons,” Nat. Phys. 5(7), 470–474 (2009).
[Crossref]

Krenn, J. R.

Kusar, P.

Liu, T. L.

K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

Lu, Y.

M. Yi, D. Zhang, X. Wen, Q. Fu, P. Wang, Y. Lu, and H. Ming, “Fluorescence enhancement caused by plasmonics coupling between silver nano-cubes and silver film,” Plasmonics 6(2), 213–217 (2011).
[Crossref]

X. Wen, M. Yi, D. Zhang, P. Wang, Y. Lu, and H. Ming, “Tunable plasmonic coupling between silver nano-cubes and silver nano-hole arrays,” Nanotechnology 22(8), 085203 (2011).
[Crossref] [PubMed]

Lukin, M. D.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
[Crossref] [PubMed]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Meldrum, A.

Ming, H.

X. Wen, M. Yi, D. Zhang, P. Wang, Y. Lu, and H. Ming, “Tunable plasmonic coupling between silver nano-cubes and silver nano-hole arrays,” Nanotechnology 22(8), 085203 (2011).
[Crossref] [PubMed]

M. Yi, D. Zhang, X. Wen, Q. Fu, P. Wang, Y. Lu, and H. Ming, “Fluorescence enhancement caused by plasmonics coupling between silver nano-cubes and silver film,” Plasmonics 6(2), 213–217 (2011).
[Crossref]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Nicolet, A. A. L.

R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave–particle duality of single surface plasmon polaritons,” Nat. Phys. 5(7), 470–474 (2009).
[Crossref]

Noda, S.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Park, H.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Ruppin, R.

R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A 299(2-3), 309–312 (2002).
[Crossref]

Russell, K. J.

K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

K. J. Russell and E. L. Hu, “Gap-mode plasmonic nanocavity,” Appl. Phys. Lett. 97(16), 163115 (2010).
[Crossref]

Shields, B. J.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

Sørensen, A. S.

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
[Crossref] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Stöhr, R. J.

R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave–particle duality of single surface plasmon polaritons,” Nat. Phys. 5(7), 470–474 (2009).
[Crossref]

Sun, F. W.

C. L. Zou, F. W. Sun, Y. F. Xiao, C. H. Dong, X. D. Chen, J. M. Cui, Q. Gong, Z. F. Han, and G. C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Veinot, J. G.

Wang, P.

X. Wen, M. Yi, D. Zhang, P. Wang, Y. Lu, and H. Ming, “Tunable plasmonic coupling between silver nano-cubes and silver nano-hole arrays,” Nanotechnology 22(8), 085203 (2011).
[Crossref] [PubMed]

M. Yi, D. Zhang, X. Wen, Q. Fu, P. Wang, Y. Lu, and H. Ming, “Fluorescence enhancement caused by plasmonics coupling between silver nano-cubes and silver film,” Plasmonics 6(2), 213–217 (2011).
[Crossref]

Wang, X.

Wen, X.

M. Yi, D. Zhang, X. Wen, Q. Fu, P. Wang, Y. Lu, and H. Ming, “Fluorescence enhancement caused by plasmonics coupling between silver nano-cubes and silver film,” Plasmonics 6(2), 213–217 (2011).
[Crossref]

X. Wen, M. Yi, D. Zhang, P. Wang, Y. Lu, and H. Ming, “Tunable plasmonic coupling between silver nano-cubes and silver nano-hole arrays,” Nanotechnology 22(8), 085203 (2011).
[Crossref] [PubMed]

Wrachtrup, J.

R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave–particle duality of single surface plasmon polaritons,” Nat. Phys. 5(7), 470–474 (2009).
[Crossref]

Xiao, Y. F.

C. L. Zou, F. W. Sun, Y. F. Xiao, C. H. Dong, X. D. Chen, J. M. Cui, Q. Gong, Z. F. Han, and G. C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Yi, M.

X. Wen, M. Yi, D. Zhang, P. Wang, Y. Lu, and H. Ming, “Tunable plasmonic coupling between silver nano-cubes and silver nano-hole arrays,” Nanotechnology 22(8), 085203 (2011).
[Crossref] [PubMed]

M. Yi, D. Zhang, X. Wen, Q. Fu, P. Wang, Y. Lu, and H. Ming, “Fluorescence enhancement caused by plasmonics coupling between silver nano-cubes and silver film,” Plasmonics 6(2), 213–217 (2011).
[Crossref]

Yu, C. L.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhang, D.

M. Yi, D. Zhang, X. Wen, Q. Fu, P. Wang, Y. Lu, and H. Ming, “Fluorescence enhancement caused by plasmonics coupling between silver nano-cubes and silver film,” Plasmonics 6(2), 213–217 (2011).
[Crossref]

X. Wen, M. Yi, D. Zhang, P. Wang, Y. Lu, and H. Ming, “Tunable plasmonic coupling between silver nano-cubes and silver nano-hole arrays,” Nanotechnology 22(8), 085203 (2011).
[Crossref] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Zou, C. L.

C. L. Zou, F. W. Sun, Y. F. Xiao, C. H. Dong, X. D. Chen, J. M. Cui, Q. Gong, Z. F. Han, and G. C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

Appl. Phys. Lett. (2)

C. L. Zou, F. W. Sun, Y. F. Xiao, C. H. Dong, X. D. Chen, J. M. Cui, Q. Gong, Z. F. Han, and G. C. Guo, “Plasmon modes of silver nanowire on a silica substrate,” Appl. Phys. Lett. 97(18), 183102 (2010).
[Crossref]

K. J. Russell and E. L. Hu, “Gap-mode plasmonic nanocavity,” Appl. Phys. Lett. 97(16), 163115 (2010).
[Crossref]

Nanotechnology (1)

X. Wen, M. Yi, D. Zhang, P. Wang, Y. Lu, and H. Ming, “Tunable plasmonic coupling between silver nano-cubes and silver nano-hole arrays,” Nanotechnology 22(8), 085203 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012).
[Crossref]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[Crossref]

Nat. Phys. (1)

R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Wave–particle duality of single surface plasmon polaritons,” Nat. Phys. 5(7), 470–474 (2009).
[Crossref]

Nature (3)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Lett. A (1)

R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A 299(2-3), 309–312 (2002).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (2)

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97(5), 053002 (2006).
[Crossref] [PubMed]

Plasmonics (1)

M. Yi, D. Zhang, X. Wen, Q. Fu, P. Wang, Y. Lu, and H. Ming, “Fluorescence enhancement caused by plasmonics coupling between silver nano-cubes and silver film,” Plasmonics 6(2), 213–217 (2011).
[Crossref]

Other (1)

Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the gap-mode plasmonic Fabry-Perot nanocavity.

Fig. 2
Fig. 2

(a)Transmission spectrum of plasmonic nanocavity with different cavity lengths and without cavity (black line). (b), (c), (d) Electric field distributions of the resonance at L = 0.14μm, 0.28μm, and 0.7μm, respectively, in y-z plan which across the centre of the nanowire.

Fig. 3
Fig. 3

Schematic diagram of a generalized Fabry-Perot model.

Fig. 4
Fig. 4

Numerical solutions of (a) the real part and (b) the imaginary part of the SPP–gap mode dispersion relation (ksp). Inset of (a), energy density distribution on the cross section of this silver nanowires-PMMA-silver film structure, the wavelength used here is λ = 650nm. (c)The normalized transmission spectrum of the DBRs (black line), transmission | t ˜ | is approximately set to the red short dash line. (d) The light path shift (generalized wave loss) between the border of the cavity and the nearest maxima of electric field isΔL = −6nm, when cavity length is L = 0.14μm.

Fig. 5
Fig. 5

Theoretical spectra calculated by a generalized Fabry-Perot model.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

V eff = ε | E | 2 dV max( ε | E | 2 ) =0.0026 (λ/n) 3 ,
U t ˜ +A r ˜ = U 1 ,
U + =A t ˜ + U r ˜ ,
U + exp(i k sp L)× t ˜ = U 2 ,
U exp(i k sp L)= U + exp(i k sp L)× r ˜ .
U 1 =Ar 1 r ˜ 2 exp(2i k sp L)+ t ˜ 2 exp(2i k sp L) 1 r ˜ 2 exp(2i k sp L) ,
U 2 = A t ˜ 2 exp(i k sp L) 1 r ˜ 2 exp(2i k sp L) .
I 2 = U 2 U 2 * = | A t ˜ 2 exp(i k sp L) | 2 | 1 r ˜ 2 exp(2i k sp L) | 2 = | A | t ˜ | 2 exp(i k sp L) | 2 | 1 | r ˜ | 2 exp(2i k sp L+2iφ) | 2 .
I 2 | A | t ˜ | 2 exp(i k sp L) | 2 | 1 | r ˜ | 2 exp[ 2i k sp (L+ΔL) ] | 2 .
| t ˜ (λ) |={ 0.65, λ600nm 0.20,600nm<λ<700nm 0.45,λ700nm

Metrics