Abstract

This work reports on the efficient cooperative upconversion and infrared cascade downconversion emissions in a novel Y8V2O17:Eu:Yb nanophosphor. The excitation with UV light produces emission in the 950-1000 nm region, corresponding to the Yb3+:2F5/22F7/2 transition, as well as visible emissions of the Eu3+ ion. Time-resolved spectroscopy measurements revealed that the mechanism responsible for this transition is the efficient cascade nonresonant energy transfer from VO43-→Eu→Yb. When the same nanophosphor is excited with 976 nm radiation, bright reddish upconversion emission of the Eu3+:5DJ7FJ transition is observed as consequence of the Yb + Yb→Eu cooperative energy transfer mechanism, which was established by analyzing the emission power dependence and the time-resolved spectroscopy of radiative transitions.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [CrossRef] [PubMed]
  2. J.-C. G. Bunzil and G. R. Choppin, eds., Lanthanide probes in life, chemical and earth sciences: theory and practice (Elsevier, Amsterdam, 1989).
  3. Y. Dwivedi, A. Bahadur, and S. B. Rai, “Optical avalanche in Ho:Yb:Gd2O3 nanocrystals,” J. Appl. Phys. 110(4), 043103 (2011), doi:.
    [CrossRef]
  4. J. Zhou, Y. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. Xie, and J. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ toYb3+ in glasses,” Appl. Phys. Lett. 95(14), 141101 (2009), doi:.
    [CrossRef]
  5. T. Jüstel, H. Nikol, and C. Ronda, “New development in the field of luminescent materials for lighting and displays,” Angew. Chem. Int. Ed. 37(22), 3084–3103 (1998).
    [CrossRef]
  6. H.-J. Sung, K.-Y. Ko, S. K. Hyun, S.-S. Kweon, J.-Y. Park, Y. R. Do, and Y.-D. Huh, “Size dependence of the photo- and cathodo-luminescence of Y2O2S:Eu phosphors,” Bull. Korean Chem. Soc. 27(6), 841–846 (2006).
    [CrossRef]
  7. L. Thorington, “Temperature dependence of the emission of an improved manganese-activated magnesium germanate phosphor,” J. Opt. Soc. Am. 40(9), 579–583 (1950).
    [CrossRef]
  8. T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
    [CrossRef]
  9. C. H. Yang, Y. X. Pan, Q. Y. Zhang, and Z. H. Jiang, “Cooperative energy transfer and frequency upconversion in Yb3+-Tb 3+ and Nd 3+-Yb 3+-Tb 3+ codoped GdAl3(BO3)4 phosphors,” J. Fluoresc. 17(5), 500–504 (2007).
    [CrossRef] [PubMed]
  10. Y. Dwivedi, D. K. Rai, and S. B. Rai, “Stokes and anti-Stokes luminescence from Eu/Yb:BaB4O7nanocrystals,” Opt. Mater. 32(9), 913–919 (2010).
    [CrossRef]
  11. L. Sangaletti, B. Allieri, L. E. Depero, M. Bettinelli, K. Lebbou, and R. Moncorgé, “Search for impurity phases of Nd3+:YVO4 crystals for laser and luminescence applications,” J. Cryst. Growth 198-199, 454–459 (1999).
    [CrossRef]
  12. X. Wu, Y. Tao, C. Song, C. Mao, L. Dong, and J. Zhu, “Morphological control and luminescent properties of YVO4:Eu nanocrystals,” J. Phys. Chem. B 110(32), 15791–15796 (2006).
    [CrossRef] [PubMed]
  13. H. Ronde and G. Blasse, “The nature of the electronic transitions of the vanadate group,” J. Inorg. Nucl. Chem. 40(2), 215–219 (1978).
    [CrossRef]
  14. R. Kubo, “Electronic properties of metallic fine particles,” Int. J. Phys. Soc. Jpn. 17(6), 975–986 (1962).
    [CrossRef]
  15. L. Brus, “Electronic wave functions in semiconductor clusters: experiment and theory,” J. Phys. Chem. 90(12), 2555–2560 (1986).
    [CrossRef]
  16. R. Singh and S. J. Dhoble, “Combustion synthesis of Eu2+ and Dy3+ activated Sr3(VO4)2 phosphor for LEDs,” Bull. Mater. Sci. 34(3), 557–552 (2011).
    [CrossRef]
  17. H. Ronde and G. Blasse, “The nature of the electronic transitions of the vanadate group,” J. Inorg. Nucl. Chem. 40(2), 215–219 (1978).
    [CrossRef]
  18. A. Huignard, V. Buissette, G. Laurent, T. Gacoin, and J.-P. Boilot, “Synthesis and characterizations of YVO4:Eu colloids,” Chem. Mater. 14(5), 2264–2269 (2002).
    [CrossRef]
  19. X. Yin, Y. Wang, D. Wan, F. Huang, and J. Yao, “Red-luminescence enhancement of ZrO2-based phosphor by codoping Eu3+ and M5+ (M = Nb, Ta),” Opt. Mater. 34(8), 1353–1356 (2012).
    [CrossRef]
  20. Y. Song, H. You, Y. Huang, M. Yang, Y. Zheng, L. Zhang, and N. Guo, “Highly uniform and monodisperse Gd2O2S:Ln3+ (Ln = Eu, Tb) submicrospheres: solvothermal synthesis and luminescence properties,” Inorg. Chem. 49(24), 11499–11504 (2010).
    [CrossRef] [PubMed]
  21. B. Henderson and G. F. Imbusch, Optical Spectroscopy Of Inorganic Solids (Oxford University Press, 2006).
  22. S. S. Saleem and T. K. K. Srinivasan, “Hypersensitive and forbidden transitions of trivalent europium ion in Tb1.8Eu0.2(MoO4)3 single crystal” Pramana-,” J. Phys. 29, 87–92 (1987).
  23. R. Reisfeld, “Spectra and energy transfer of rare earths in inorganic glasses,” Structure and Bonding 13, 53–98 (1973).
    [CrossRef]
  24. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
    [CrossRef]
  25. G. S. Ofelt, “Intensities of crystal spectra of rare?earth ion,” J. Chem. Phys. 37(3), 511–520 (1962).
    [CrossRef]
  26. C. A. Kodaira, H. F. Brito, O. L. Malta, and O. A. Serra, “Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method,” J. Lumin. 101(1-2), 11–21 (2003).
    [CrossRef]
  27. X. T. Wei, G. Jiang, K. Deng, C. Duan, Y. Chen, and M. Yin, “Near-infrared downconversion through energy transfer from VO3?4 group to Yb3+ in Yb3+ doped YP0.9V0.1O4,” Appl. Phys. B 108(2), 463–467 (2012).
    [CrossRef]
  28. W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
    [CrossRef]
  29. N. S. Yamada, S. Shionoya, and T. Kushida, “Phonon-assisted energy transfer between trivalent rare earth ions,” J. Phys. Soc. Jpn. 32(6), 1577–1586 (1972).
    [CrossRef]
  30. V. Jubera, A. Garcia, J. P. Chaminade, F. Guillen, J. Sablayrolles, and C. Fouassier, “Yb3+ and Yb3+–Eu3+ luminescent properties of the Li2Lu5O4(BO3)3 phase,” J. Lumin. 124(1), 10–14 (2007).
    [CrossRef]
  31. A. I. Burshtein, “Energy transfer kinetics in disordered systems,” J. Lumin. 34(4), 167–188 (1985).
    [CrossRef]
  32. W. L. Wanmaker, A. Bril, J. W. Vrugt, and J. Broos, “Luminescent properties of Eu-activated phosphors of the type AIIIBnOn,” Philips Res. Rep. 21, 270–282 (1966).
  33. Q. Luo, X. Qiao, X. Fan, H. Fu, J. Huang, Y. Zhang, B. Fan, and X. Zhang, “Sensitized Yb3+ luminescence of Eu3+/Yb3+-codoped fluorosilicate glass ceramics,” J. Am. Ceram. Soc. 95, 1042–1047 (2012).
  34. C. Strohhöfer and A. Polman, “Absorption and emission spectroscopy in Er3+–Yb3+ doped aluminum oxide waveguides,” Opt. Mater. 21(4), 705–712 (2003).
    [CrossRef]
  35. J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14(24), 11539–11544 (2006).
    [CrossRef] [PubMed]

2012

X. Yin, Y. Wang, D. Wan, F. Huang, and J. Yao, “Red-luminescence enhancement of ZrO2-based phosphor by codoping Eu3+ and M5+ (M = Nb, Ta),” Opt. Mater. 34(8), 1353–1356 (2012).
[CrossRef]

X. T. Wei, G. Jiang, K. Deng, C. Duan, Y. Chen, and M. Yin, “Near-infrared downconversion through energy transfer from VO3?4 group to Yb3+ in Yb3+ doped YP0.9V0.1O4,” Appl. Phys. B 108(2), 463–467 (2012).
[CrossRef]

Q. Luo, X. Qiao, X. Fan, H. Fu, J. Huang, Y. Zhang, B. Fan, and X. Zhang, “Sensitized Yb3+ luminescence of Eu3+/Yb3+-codoped fluorosilicate glass ceramics,” J. Am. Ceram. Soc. 95, 1042–1047 (2012).

2011

R. Singh and S. J. Dhoble, “Combustion synthesis of Eu2+ and Dy3+ activated Sr3(VO4)2 phosphor for LEDs,” Bull. Mater. Sci. 34(3), 557–552 (2011).
[CrossRef]

Y. Dwivedi, A. Bahadur, and S. B. Rai, “Optical avalanche in Ho:Yb:Gd2O3 nanocrystals,” J. Appl. Phys. 110(4), 043103 (2011), doi:.
[CrossRef]

2010

Y. Dwivedi, D. K. Rai, and S. B. Rai, “Stokes and anti-Stokes luminescence from Eu/Yb:BaB4O7nanocrystals,” Opt. Mater. 32(9), 913–919 (2010).
[CrossRef]

Y. Song, H. You, Y. Huang, M. Yang, Y. Zheng, L. Zhang, and N. Guo, “Highly uniform and monodisperse Gd2O2S:Ln3+ (Ln = Eu, Tb) submicrospheres: solvothermal synthesis and luminescence properties,” Inorg. Chem. 49(24), 11499–11504 (2010).
[CrossRef] [PubMed]

2009

J. Zhou, Y. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. Xie, and J. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ toYb3+ in glasses,” Appl. Phys. Lett. 95(14), 141101 (2009), doi:.
[CrossRef]

2007

C. H. Yang, Y. X. Pan, Q. Y. Zhang, and Z. H. Jiang, “Cooperative energy transfer and frequency upconversion in Yb3+-Tb 3+ and Nd 3+-Yb 3+-Tb 3+ codoped GdAl3(BO3)4 phosphors,” J. Fluoresc. 17(5), 500–504 (2007).
[CrossRef] [PubMed]

V. Jubera, A. Garcia, J. P. Chaminade, F. Guillen, J. Sablayrolles, and C. Fouassier, “Yb3+ and Yb3+–Eu3+ luminescent properties of the Li2Lu5O4(BO3)3 phase,” J. Lumin. 124(1), 10–14 (2007).
[CrossRef]

2006

J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14(24), 11539–11544 (2006).
[CrossRef] [PubMed]

X. Wu, Y. Tao, C. Song, C. Mao, L. Dong, and J. Zhu, “Morphological control and luminescent properties of YVO4:Eu nanocrystals,” J. Phys. Chem. B 110(32), 15791–15796 (2006).
[CrossRef] [PubMed]

H.-J. Sung, K.-Y. Ko, S. K. Hyun, S.-S. Kweon, J.-Y. Park, Y. R. Do, and Y.-D. Huh, “Size dependence of the photo- and cathodo-luminescence of Y2O2S:Eu phosphors,” Bull. Korean Chem. Soc. 27(6), 841–846 (2006).
[CrossRef]

2004

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[CrossRef] [PubMed]

2003

C. Strohhöfer and A. Polman, “Absorption and emission spectroscopy in Er3+–Yb3+ doped aluminum oxide waveguides,” Opt. Mater. 21(4), 705–712 (2003).
[CrossRef]

C. A. Kodaira, H. F. Brito, O. L. Malta, and O. A. Serra, “Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method,” J. Lumin. 101(1-2), 11–21 (2003).
[CrossRef]

2002

A. Huignard, V. Buissette, G. Laurent, T. Gacoin, and J.-P. Boilot, “Synthesis and characterizations of YVO4:Eu colloids,” Chem. Mater. 14(5), 2264–2269 (2002).
[CrossRef]

1999

L. Sangaletti, B. Allieri, L. E. Depero, M. Bettinelli, K. Lebbou, and R. Moncorgé, “Search for impurity phases of Nd3+:YVO4 crystals for laser and luminescence applications,” J. Cryst. Growth 198-199, 454–459 (1999).
[CrossRef]

1998

T. Jüstel, H. Nikol, and C. Ronda, “New development in the field of luminescent materials for lighting and displays,” Angew. Chem. Int. Ed. 37(22), 3084–3103 (1998).
[CrossRef]

1987

S. S. Saleem and T. K. K. Srinivasan, “Hypersensitive and forbidden transitions of trivalent europium ion in Tb1.8Eu0.2(MoO4)3 single crystal” Pramana-,” J. Phys. 29, 87–92 (1987).

1986

L. Brus, “Electronic wave functions in semiconductor clusters: experiment and theory,” J. Phys. Chem. 90(12), 2555–2560 (1986).
[CrossRef]

1985

A. I. Burshtein, “Energy transfer kinetics in disordered systems,” J. Lumin. 34(4), 167–188 (1985).
[CrossRef]

1978

H. Ronde and G. Blasse, “The nature of the electronic transitions of the vanadate group,” J. Inorg. Nucl. Chem. 40(2), 215–219 (1978).
[CrossRef]

H. Ronde and G. Blasse, “The nature of the electronic transitions of the vanadate group,” J. Inorg. Nucl. Chem. 40(2), 215–219 (1978).
[CrossRef]

1973

R. Reisfeld, “Spectra and energy transfer of rare earths in inorganic glasses,” Structure and Bonding 13, 53–98 (1973).
[CrossRef]

1972

N. S. Yamada, S. Shionoya, and T. Kushida, “Phonon-assisted energy transfer between trivalent rare earth ions,” J. Phys. Soc. Jpn. 32(6), 1577–1586 (1972).
[CrossRef]

1970

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
[CrossRef]

1968

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[CrossRef]

1966

W. L. Wanmaker, A. Bril, J. W. Vrugt, and J. Broos, “Luminescent properties of Eu-activated phosphors of the type AIIIBnOn,” Philips Res. Rep. 21, 270–282 (1966).

1962

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare?earth ion,” J. Chem. Phys. 37(3), 511–520 (1962).
[CrossRef]

R. Kubo, “Electronic properties of metallic fine particles,” Int. J. Phys. Soc. Jpn. 17(6), 975–986 (1962).
[CrossRef]

1950

Allieri, B.

L. Sangaletti, B. Allieri, L. E. Depero, M. Bettinelli, K. Lebbou, and R. Moncorgé, “Search for impurity phases of Nd3+:YVO4 crystals for laser and luminescence applications,” J. Cryst. Growth 198-199, 454–459 (1999).
[CrossRef]

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[CrossRef] [PubMed]

Bahadur, A.

Y. Dwivedi, A. Bahadur, and S. B. Rai, “Optical avalanche in Ho:Yb:Gd2O3 nanocrystals,” J. Appl. Phys. 110(4), 043103 (2011), doi:.
[CrossRef]

Bettinelli, M.

L. Sangaletti, B. Allieri, L. E. Depero, M. Bettinelli, K. Lebbou, and R. Moncorgé, “Search for impurity phases of Nd3+:YVO4 crystals for laser and luminescence applications,” J. Cryst. Growth 198-199, 454–459 (1999).
[CrossRef]

Blasse, G.

H. Ronde and G. Blasse, “The nature of the electronic transitions of the vanadate group,” J. Inorg. Nucl. Chem. 40(2), 215–219 (1978).
[CrossRef]

H. Ronde and G. Blasse, “The nature of the electronic transitions of the vanadate group,” J. Inorg. Nucl. Chem. 40(2), 215–219 (1978).
[CrossRef]

Boilot, J.-P.

A. Huignard, V. Buissette, G. Laurent, T. Gacoin, and J.-P. Boilot, “Synthesis and characterizations of YVO4:Eu colloids,” Chem. Mater. 14(5), 2264–2269 (2002).
[CrossRef]

Bril, A.

W. L. Wanmaker, A. Bril, J. W. Vrugt, and J. Broos, “Luminescent properties of Eu-activated phosphors of the type AIIIBnOn,” Philips Res. Rep. 21, 270–282 (1966).

Brito, H. F.

C. A. Kodaira, H. F. Brito, O. L. Malta, and O. A. Serra, “Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method,” J. Lumin. 101(1-2), 11–21 (2003).
[CrossRef]

Broos, J.

W. L. Wanmaker, A. Bril, J. W. Vrugt, and J. Broos, “Luminescent properties of Eu-activated phosphors of the type AIIIBnOn,” Philips Res. Rep. 21, 270–282 (1966).

Brus, L.

L. Brus, “Electronic wave functions in semiconductor clusters: experiment and theory,” J. Phys. Chem. 90(12), 2555–2560 (1986).
[CrossRef]

Buissette, V.

A. Huignard, V. Buissette, G. Laurent, T. Gacoin, and J.-P. Boilot, “Synthesis and characterizations of YVO4:Eu colloids,” Chem. Mater. 14(5), 2264–2269 (2002).
[CrossRef]

Burshtein, A. I.

A. I. Burshtein, “Energy transfer kinetics in disordered systems,” J. Lumin. 34(4), 167–188 (1985).
[CrossRef]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[CrossRef]

Chaminade, J. P.

V. Jubera, A. Garcia, J. P. Chaminade, F. Guillen, J. Sablayrolles, and C. Fouassier, “Yb3+ and Yb3+–Eu3+ luminescent properties of the Li2Lu5O4(BO3)3 phase,” J. Lumin. 124(1), 10–14 (2007).
[CrossRef]

Chen, Y.

X. T. Wei, G. Jiang, K. Deng, C. Duan, Y. Chen, and M. Yin, “Near-infrared downconversion through energy transfer from VO3?4 group to Yb3+ in Yb3+ doped YP0.9V0.1O4,” Appl. Phys. B 108(2), 463–467 (2012).
[CrossRef]

Deng, K.

X. T. Wei, G. Jiang, K. Deng, C. Duan, Y. Chen, and M. Yin, “Near-infrared downconversion through energy transfer from VO3?4 group to Yb3+ in Yb3+ doped YP0.9V0.1O4,” Appl. Phys. B 108(2), 463–467 (2012).
[CrossRef]

Depero, L. E.

L. Sangaletti, B. Allieri, L. E. Depero, M. Bettinelli, K. Lebbou, and R. Moncorgé, “Search for impurity phases of Nd3+:YVO4 crystals for laser and luminescence applications,” J. Cryst. Growth 198-199, 454–459 (1999).
[CrossRef]

Dexter, D. L.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
[CrossRef]

Dhoble, S. J.

R. Singh and S. J. Dhoble, “Combustion synthesis of Eu2+ and Dy3+ activated Sr3(VO4)2 phosphor for LEDs,” Bull. Mater. Sci. 34(3), 557–552 (2011).
[CrossRef]

Do, Y. R.

H.-J. Sung, K.-Y. Ko, S. K. Hyun, S.-S. Kweon, J.-Y. Park, Y. R. Do, and Y.-D. Huh, “Size dependence of the photo- and cathodo-luminescence of Y2O2S:Eu phosphors,” Bull. Korean Chem. Soc. 27(6), 841–846 (2006).
[CrossRef]

Dong, L.

X. Wu, Y. Tao, C. Song, C. Mao, L. Dong, and J. Zhu, “Morphological control and luminescent properties of YVO4:Eu nanocrystals,” J. Phys. Chem. B 110(32), 15791–15796 (2006).
[CrossRef] [PubMed]

Duan, C.

X. T. Wei, G. Jiang, K. Deng, C. Duan, Y. Chen, and M. Yin, “Near-infrared downconversion through energy transfer from VO3?4 group to Yb3+ in Yb3+ doped YP0.9V0.1O4,” Appl. Phys. B 108(2), 463–467 (2012).
[CrossRef]

Dwivedi, Y.

Y. Dwivedi, A. Bahadur, and S. B. Rai, “Optical avalanche in Ho:Yb:Gd2O3 nanocrystals,” J. Appl. Phys. 110(4), 043103 (2011), doi:.
[CrossRef]

Y. Dwivedi, D. K. Rai, and S. B. Rai, “Stokes and anti-Stokes luminescence from Eu/Yb:BaB4O7nanocrystals,” Opt. Mater. 32(9), 913–919 (2010).
[CrossRef]

Fan, B.

Q. Luo, X. Qiao, X. Fan, H. Fu, J. Huang, Y. Zhang, B. Fan, and X. Zhang, “Sensitized Yb3+ luminescence of Eu3+/Yb3+-codoped fluorosilicate glass ceramics,” J. Am. Ceram. Soc. 95, 1042–1047 (2012).

Fan, X.

Q. Luo, X. Qiao, X. Fan, H. Fu, J. Huang, Y. Zhang, B. Fan, and X. Zhang, “Sensitized Yb3+ luminescence of Eu3+/Yb3+-codoped fluorosilicate glass ceramics,” J. Am. Ceram. Soc. 95, 1042–1047 (2012).

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[CrossRef]

Fouassier, C.

V. Jubera, A. Garcia, J. P. Chaminade, F. Guillen, J. Sablayrolles, and C. Fouassier, “Yb3+ and Yb3+–Eu3+ luminescent properties of the Li2Lu5O4(BO3)3 phase,” J. Lumin. 124(1), 10–14 (2007).
[CrossRef]

Fu, H.

Q. Luo, X. Qiao, X. Fan, H. Fu, J. Huang, Y. Zhang, B. Fan, and X. Zhang, “Sensitized Yb3+ luminescence of Eu3+/Yb3+-codoped fluorosilicate glass ceramics,” J. Am. Ceram. Soc. 95, 1042–1047 (2012).

Gacoin, T.

A. Huignard, V. Buissette, G. Laurent, T. Gacoin, and J.-P. Boilot, “Synthesis and characterizations of YVO4:Eu colloids,” Chem. Mater. 14(5), 2264–2269 (2002).
[CrossRef]

Garcia, A.

V. Jubera, A. Garcia, J. P. Chaminade, F. Guillen, J. Sablayrolles, and C. Fouassier, “Yb3+ and Yb3+–Eu3+ luminescent properties of the Li2Lu5O4(BO3)3 phase,” J. Lumin. 124(1), 10–14 (2007).
[CrossRef]

Guillen, F.

V. Jubera, A. Garcia, J. P. Chaminade, F. Guillen, J. Sablayrolles, and C. Fouassier, “Yb3+ and Yb3+–Eu3+ luminescent properties of the Li2Lu5O4(BO3)3 phase,” J. Lumin. 124(1), 10–14 (2007).
[CrossRef]

Guo, N.

Y. Song, H. You, Y. Huang, M. Yang, Y. Zheng, L. Zhang, and N. Guo, “Highly uniform and monodisperse Gd2O2S:Ln3+ (Ln = Eu, Tb) submicrospheres: solvothermal synthesis and luminescence properties,” Inorg. Chem. 49(24), 11499–11504 (2010).
[CrossRef] [PubMed]

Hoffman, H. J.

Huang, F.

X. Yin, Y. Wang, D. Wan, F. Huang, and J. Yao, “Red-luminescence enhancement of ZrO2-based phosphor by codoping Eu3+ and M5+ (M = Nb, Ta),” Opt. Mater. 34(8), 1353–1356 (2012).
[CrossRef]

Huang, J.

Q. Luo, X. Qiao, X. Fan, H. Fu, J. Huang, Y. Zhang, B. Fan, and X. Zhang, “Sensitized Yb3+ luminescence of Eu3+/Yb3+-codoped fluorosilicate glass ceramics,” J. Am. Ceram. Soc. 95, 1042–1047 (2012).

Huang, Y.

Y. Song, H. You, Y. Huang, M. Yang, Y. Zheng, L. Zhang, and N. Guo, “Highly uniform and monodisperse Gd2O2S:Ln3+ (Ln = Eu, Tb) submicrospheres: solvothermal synthesis and luminescence properties,” Inorg. Chem. 49(24), 11499–11504 (2010).
[CrossRef] [PubMed]

Huh, Y.-D.

H.-J. Sung, K.-Y. Ko, S. K. Hyun, S.-S. Kweon, J.-Y. Park, Y. R. Do, and Y.-D. Huh, “Size dependence of the photo- and cathodo-luminescence of Y2O2S:Eu phosphors,” Bull. Korean Chem. Soc. 27(6), 841–846 (2006).
[CrossRef]

Huignard, A.

A. Huignard, V. Buissette, G. Laurent, T. Gacoin, and J.-P. Boilot, “Synthesis and characterizations of YVO4:Eu colloids,” Chem. Mater. 14(5), 2264–2269 (2002).
[CrossRef]

Hyun, S. K.

H.-J. Sung, K.-Y. Ko, S. K. Hyun, S.-S. Kweon, J.-Y. Park, Y. R. Do, and Y.-D. Huh, “Size dependence of the photo- and cathodo-luminescence of Y2O2S:Eu phosphors,” Bull. Korean Chem. Soc. 27(6), 841–846 (2006).
[CrossRef]

Jiang, G.

X. T. Wei, G. Jiang, K. Deng, C. Duan, Y. Chen, and M. Yin, “Near-infrared downconversion through energy transfer from VO3?4 group to Yb3+ in Yb3+ doped YP0.9V0.1O4,” Appl. Phys. B 108(2), 463–467 (2012).
[CrossRef]

Jiang, Z. H.

C. H. Yang, Y. X. Pan, Q. Y. Zhang, and Z. H. Jiang, “Cooperative energy transfer and frequency upconversion in Yb3+-Tb 3+ and Nd 3+-Yb 3+-Tb 3+ codoped GdAl3(BO3)4 phosphors,” J. Fluoresc. 17(5), 500–504 (2007).
[CrossRef] [PubMed]

Jubera, V.

V. Jubera, A. Garcia, J. P. Chaminade, F. Guillen, J. Sablayrolles, and C. Fouassier, “Yb3+ and Yb3+–Eu3+ luminescent properties of the Li2Lu5O4(BO3)3 phase,” J. Lumin. 124(1), 10–14 (2007).
[CrossRef]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[CrossRef]

Jüstel, T.

T. Jüstel, H. Nikol, and C. Ronda, “New development in the field of luminescent materials for lighting and displays,” Angew. Chem. Int. Ed. 37(22), 3084–3103 (1998).
[CrossRef]

Ko, K.-Y.

H.-J. Sung, K.-Y. Ko, S. K. Hyun, S.-S. Kweon, J.-Y. Park, Y. R. Do, and Y.-D. Huh, “Size dependence of the photo- and cathodo-luminescence of Y2O2S:Eu phosphors,” Bull. Korean Chem. Soc. 27(6), 841–846 (2006).
[CrossRef]

Kodaira, C. A.

C. A. Kodaira, H. F. Brito, O. L. Malta, and O. A. Serra, “Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method,” J. Lumin. 101(1-2), 11–21 (2003).
[CrossRef]

Koponen, J. J.

Kubo, R.

R. Kubo, “Electronic properties of metallic fine particles,” Int. J. Phys. Soc. Jpn. 17(6), 975–986 (1962).
[CrossRef]

Kushida, T.

N. S. Yamada, S. Shionoya, and T. Kushida, “Phonon-assisted energy transfer between trivalent rare earth ions,” J. Phys. Soc. Jpn. 32(6), 1577–1586 (1972).
[CrossRef]

Kweon, S.-S.

H.-J. Sung, K.-Y. Ko, S. K. Hyun, S.-S. Kweon, J.-Y. Park, Y. R. Do, and Y.-D. Huh, “Size dependence of the photo- and cathodo-luminescence of Y2O2S:Eu phosphors,” Bull. Korean Chem. Soc. 27(6), 841–846 (2006).
[CrossRef]

Laurent, G.

A. Huignard, V. Buissette, G. Laurent, T. Gacoin, and J.-P. Boilot, “Synthesis and characterizations of YVO4:Eu colloids,” Chem. Mater. 14(5), 2264–2269 (2002).
[CrossRef]

Lebbou, K.

L. Sangaletti, B. Allieri, L. E. Depero, M. Bettinelli, K. Lebbou, and R. Moncorgé, “Search for impurity phases of Nd3+:YVO4 crystals for laser and luminescence applications,” J. Cryst. Growth 198-199, 454–459 (1999).
[CrossRef]

Lin, G.

J. Zhou, Y. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. Xie, and J. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ toYb3+ in glasses,” Appl. Phys. Lett. 95(14), 141101 (2009), doi:.
[CrossRef]

Luo, Q.

Q. Luo, X. Qiao, X. Fan, H. Fu, J. Huang, Y. Zhang, B. Fan, and X. Zhang, “Sensitized Yb3+ luminescence of Eu3+/Yb3+-codoped fluorosilicate glass ceramics,” J. Am. Ceram. Soc. 95, 1042–1047 (2012).

Malta, O. L.

C. A. Kodaira, H. F. Brito, O. L. Malta, and O. A. Serra, “Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method,” J. Lumin. 101(1-2), 11–21 (2003).
[CrossRef]

Mao, C.

X. Wu, Y. Tao, C. Song, C. Mao, L. Dong, and J. Zhu, “Morphological control and luminescent properties of YVO4:Eu nanocrystals,” J. Phys. Chem. B 110(32), 15791–15796 (2006).
[CrossRef] [PubMed]

Miyakawa, T.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
[CrossRef]

Moncorgé, R.

L. Sangaletti, B. Allieri, L. E. Depero, M. Bettinelli, K. Lebbou, and R. Moncorgé, “Search for impurity phases of Nd3+:YVO4 crystals for laser and luminescence applications,” J. Cryst. Growth 198-199, 454–459 (1999).
[CrossRef]

Nikol, H.

T. Jüstel, H. Nikol, and C. Ronda, “New development in the field of luminescent materials for lighting and displays,” Angew. Chem. Int. Ed. 37(22), 3084–3103 (1998).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare?earth ion,” J. Chem. Phys. 37(3), 511–520 (1962).
[CrossRef]

Pan, Y. X.

C. H. Yang, Y. X. Pan, Q. Y. Zhang, and Z. H. Jiang, “Cooperative energy transfer and frequency upconversion in Yb3+-Tb 3+ and Nd 3+-Yb 3+-Tb 3+ codoped GdAl3(BO3)4 phosphors,” J. Fluoresc. 17(5), 500–504 (2007).
[CrossRef] [PubMed]

Park, J.-Y.

H.-J. Sung, K.-Y. Ko, S. K. Hyun, S.-S. Kweon, J.-Y. Park, Y. R. Do, and Y.-D. Huh, “Size dependence of the photo- and cathodo-luminescence of Y2O2S:Eu phosphors,” Bull. Korean Chem. Soc. 27(6), 841–846 (2006).
[CrossRef]

Polman, A.

C. Strohhöfer and A. Polman, “Absorption and emission spectroscopy in Er3+–Yb3+ doped aluminum oxide waveguides,” Opt. Mater. 21(4), 705–712 (2003).
[CrossRef]

Qiao, X.

Q. Luo, X. Qiao, X. Fan, H. Fu, J. Huang, Y. Zhang, B. Fan, and X. Zhang, “Sensitized Yb3+ luminescence of Eu3+/Yb3+-codoped fluorosilicate glass ceramics,” J. Am. Ceram. Soc. 95, 1042–1047 (2012).

Qiu, J.

J. Zhou, Y. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. Xie, and J. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ toYb3+ in glasses,” Appl. Phys. Lett. 95(14), 141101 (2009), doi:.
[CrossRef]

Rai, D. K.

Y. Dwivedi, D. K. Rai, and S. B. Rai, “Stokes and anti-Stokes luminescence from Eu/Yb:BaB4O7nanocrystals,” Opt. Mater. 32(9), 913–919 (2010).
[CrossRef]

Rai, S. B.

Y. Dwivedi, A. Bahadur, and S. B. Rai, “Optical avalanche in Ho:Yb:Gd2O3 nanocrystals,” J. Appl. Phys. 110(4), 043103 (2011), doi:.
[CrossRef]

Y. Dwivedi, D. K. Rai, and S. B. Rai, “Stokes and anti-Stokes luminescence from Eu/Yb:BaB4O7nanocrystals,” Opt. Mater. 32(9), 913–919 (2010).
[CrossRef]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[CrossRef]

Reisfeld, R.

R. Reisfeld, “Spectra and energy transfer of rare earths in inorganic glasses,” Structure and Bonding 13, 53–98 (1973).
[CrossRef]

Ronda, C.

T. Jüstel, H. Nikol, and C. Ronda, “New development in the field of luminescent materials for lighting and displays,” Angew. Chem. Int. Ed. 37(22), 3084–3103 (1998).
[CrossRef]

Ronde, H.

H. Ronde and G. Blasse, “The nature of the electronic transitions of the vanadate group,” J. Inorg. Nucl. Chem. 40(2), 215–219 (1978).
[CrossRef]

H. Ronde and G. Blasse, “The nature of the electronic transitions of the vanadate group,” J. Inorg. Nucl. Chem. 40(2), 215–219 (1978).
[CrossRef]

Sablayrolles, J.

V. Jubera, A. Garcia, J. P. Chaminade, F. Guillen, J. Sablayrolles, and C. Fouassier, “Yb3+ and Yb3+–Eu3+ luminescent properties of the Li2Lu5O4(BO3)3 phase,” J. Lumin. 124(1), 10–14 (2007).
[CrossRef]

Saleem, S. S.

S. S. Saleem and T. K. K. Srinivasan, “Hypersensitive and forbidden transitions of trivalent europium ion in Tb1.8Eu0.2(MoO4)3 single crystal” Pramana-,” J. Phys. 29, 87–92 (1987).

Sangaletti, L.

L. Sangaletti, B. Allieri, L. E. Depero, M. Bettinelli, K. Lebbou, and R. Moncorgé, “Search for impurity phases of Nd3+:YVO4 crystals for laser and luminescence applications,” J. Cryst. Growth 198-199, 454–459 (1999).
[CrossRef]

Serra, O. A.

C. A. Kodaira, H. F. Brito, O. L. Malta, and O. A. Serra, “Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method,” J. Lumin. 101(1-2), 11–21 (2003).
[CrossRef]

Shionoya, S.

N. S. Yamada, S. Shionoya, and T. Kushida, “Phonon-assisted energy transfer between trivalent rare earth ions,” J. Phys. Soc. Jpn. 32(6), 1577–1586 (1972).
[CrossRef]

Singh, R.

R. Singh and S. J. Dhoble, “Combustion synthesis of Eu2+ and Dy3+ activated Sr3(VO4)2 phosphor for LEDs,” Bull. Mater. Sci. 34(3), 557–552 (2011).
[CrossRef]

Söderlund, M. J.

Song, C.

X. Wu, Y. Tao, C. Song, C. Mao, L. Dong, and J. Zhu, “Morphological control and luminescent properties of YVO4:Eu nanocrystals,” J. Phys. Chem. B 110(32), 15791–15796 (2006).
[CrossRef] [PubMed]

Song, Y.

Y. Song, H. You, Y. Huang, M. Yang, Y. Zheng, L. Zhang, and N. Guo, “Highly uniform and monodisperse Gd2O2S:Ln3+ (Ln = Eu, Tb) submicrospheres: solvothermal synthesis and luminescence properties,” Inorg. Chem. 49(24), 11499–11504 (2010).
[CrossRef] [PubMed]

Srinivasan, T. K. K.

S. S. Saleem and T. K. K. Srinivasan, “Hypersensitive and forbidden transitions of trivalent europium ion in Tb1.8Eu0.2(MoO4)3 single crystal” Pramana-,” J. Phys. 29, 87–92 (1987).

Strohhöfer, C.

C. Strohhöfer and A. Polman, “Absorption and emission spectroscopy in Er3+–Yb3+ doped aluminum oxide waveguides,” Opt. Mater. 21(4), 705–712 (2003).
[CrossRef]

Sung, H.-J.

H.-J. Sung, K.-Y. Ko, S. K. Hyun, S.-S. Kweon, J.-Y. Park, Y. R. Do, and Y.-D. Huh, “Size dependence of the photo- and cathodo-luminescence of Y2O2S:Eu phosphors,” Bull. Korean Chem. Soc. 27(6), 841–846 (2006).
[CrossRef]

Tammela, S. K. T.

Tao, Y.

X. Wu, Y. Tao, C. Song, C. Mao, L. Dong, and J. Zhu, “Morphological control and luminescent properties of YVO4:Eu nanocrystals,” J. Phys. Chem. B 110(32), 15791–15796 (2006).
[CrossRef] [PubMed]

Teng, Y.

J. Zhou, Y. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. Xie, and J. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ toYb3+ in glasses,” Appl. Phys. Lett. 95(14), 141101 (2009), doi:.
[CrossRef]

Thorington, L.

Vrugt, J. W.

W. L. Wanmaker, A. Bril, J. W. Vrugt, and J. Broos, “Luminescent properties of Eu-activated phosphors of the type AIIIBnOn,” Philips Res. Rep. 21, 270–282 (1966).

Wan, D.

X. Yin, Y. Wang, D. Wan, F. Huang, and J. Yao, “Red-luminescence enhancement of ZrO2-based phosphor by codoping Eu3+ and M5+ (M = Nb, Ta),” Opt. Mater. 34(8), 1353–1356 (2012).
[CrossRef]

Wang, Y.

X. Yin, Y. Wang, D. Wan, F. Huang, and J. Yao, “Red-luminescence enhancement of ZrO2-based phosphor by codoping Eu3+ and M5+ (M = Nb, Ta),” Opt. Mater. 34(8), 1353–1356 (2012).
[CrossRef]

Wanmaker, W. L.

W. L. Wanmaker, A. Bril, J. W. Vrugt, and J. Broos, “Luminescent properties of Eu-activated phosphors of the type AIIIBnOn,” Philips Res. Rep. 21, 270–282 (1966).

Wei, X. T.

X. T. Wei, G. Jiang, K. Deng, C. Duan, Y. Chen, and M. Yin, “Near-infrared downconversion through energy transfer from VO3?4 group to Yb3+ in Yb3+ doped YP0.9V0.1O4,” Appl. Phys. B 108(2), 463–467 (2012).
[CrossRef]

Wu, X.

X. Wu, Y. Tao, C. Song, C. Mao, L. Dong, and J. Zhu, “Morphological control and luminescent properties of YVO4:Eu nanocrystals,” J. Phys. Chem. B 110(32), 15791–15796 (2006).
[CrossRef] [PubMed]

Xie, J.

J. Zhou, Y. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. Xie, and J. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ toYb3+ in glasses,” Appl. Phys. Lett. 95(14), 141101 (2009), doi:.
[CrossRef]

Yamada, N. S.

N. S. Yamada, S. Shionoya, and T. Kushida, “Phonon-assisted energy transfer between trivalent rare earth ions,” J. Phys. Soc. Jpn. 32(6), 1577–1586 (1972).
[CrossRef]

Yang, C. H.

C. H. Yang, Y. X. Pan, Q. Y. Zhang, and Z. H. Jiang, “Cooperative energy transfer and frequency upconversion in Yb3+-Tb 3+ and Nd 3+-Yb 3+-Tb 3+ codoped GdAl3(BO3)4 phosphors,” J. Fluoresc. 17(5), 500–504 (2007).
[CrossRef] [PubMed]

Yang, M.

Y. Song, H. You, Y. Huang, M. Yang, Y. Zheng, L. Zhang, and N. Guo, “Highly uniform and monodisperse Gd2O2S:Ln3+ (Ln = Eu, Tb) submicrospheres: solvothermal synthesis and luminescence properties,” Inorg. Chem. 49(24), 11499–11504 (2010).
[CrossRef] [PubMed]

Yao, J.

X. Yin, Y. Wang, D. Wan, F. Huang, and J. Yao, “Red-luminescence enhancement of ZrO2-based phosphor by codoping Eu3+ and M5+ (M = Nb, Ta),” Opt. Mater. 34(8), 1353–1356 (2012).
[CrossRef]

Ye, S.

J. Zhou, Y. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. Xie, and J. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ toYb3+ in glasses,” Appl. Phys. Lett. 95(14), 141101 (2009), doi:.
[CrossRef]

Yin, M.

X. T. Wei, G. Jiang, K. Deng, C. Duan, Y. Chen, and M. Yin, “Near-infrared downconversion through energy transfer from VO3?4 group to Yb3+ in Yb3+ doped YP0.9V0.1O4,” Appl. Phys. B 108(2), 463–467 (2012).
[CrossRef]

Yin, X.

X. Yin, Y. Wang, D. Wan, F. Huang, and J. Yao, “Red-luminescence enhancement of ZrO2-based phosphor by codoping Eu3+ and M5+ (M = Nb, Ta),” Opt. Mater. 34(8), 1353–1356 (2012).
[CrossRef]

You, H.

Y. Song, H. You, Y. Huang, M. Yang, Y. Zheng, L. Zhang, and N. Guo, “Highly uniform and monodisperse Gd2O2S:Ln3+ (Ln = Eu, Tb) submicrospheres: solvothermal synthesis and luminescence properties,” Inorg. Chem. 49(24), 11499–11504 (2010).
[CrossRef] [PubMed]

Zhang, L.

Y. Song, H. You, Y. Huang, M. Yang, Y. Zheng, L. Zhang, and N. Guo, “Highly uniform and monodisperse Gd2O2S:Ln3+ (Ln = Eu, Tb) submicrospheres: solvothermal synthesis and luminescence properties,” Inorg. Chem. 49(24), 11499–11504 (2010).
[CrossRef] [PubMed]

Zhang, Q. Y.

C. H. Yang, Y. X. Pan, Q. Y. Zhang, and Z. H. Jiang, “Cooperative energy transfer and frequency upconversion in Yb3+-Tb 3+ and Nd 3+-Yb 3+-Tb 3+ codoped GdAl3(BO3)4 phosphors,” J. Fluoresc. 17(5), 500–504 (2007).
[CrossRef] [PubMed]

Zhang, X.

Q. Luo, X. Qiao, X. Fan, H. Fu, J. Huang, Y. Zhang, B. Fan, and X. Zhang, “Sensitized Yb3+ luminescence of Eu3+/Yb3+-codoped fluorosilicate glass ceramics,” J. Am. Ceram. Soc. 95, 1042–1047 (2012).

Zhang, Y.

Q. Luo, X. Qiao, X. Fan, H. Fu, J. Huang, Y. Zhang, B. Fan, and X. Zhang, “Sensitized Yb3+ luminescence of Eu3+/Yb3+-codoped fluorosilicate glass ceramics,” J. Am. Ceram. Soc. 95, 1042–1047 (2012).

Zheng, Y.

Y. Song, H. You, Y. Huang, M. Yang, Y. Zheng, L. Zhang, and N. Guo, “Highly uniform and monodisperse Gd2O2S:Ln3+ (Ln = Eu, Tb) submicrospheres: solvothermal synthesis and luminescence properties,” Inorg. Chem. 49(24), 11499–11504 (2010).
[CrossRef] [PubMed]

Zhou, J.

J. Zhou, Y. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. Xie, and J. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ toYb3+ in glasses,” Appl. Phys. Lett. 95(14), 141101 (2009), doi:.
[CrossRef]

Zhu, B.

J. Zhou, Y. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. Xie, and J. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ toYb3+ in glasses,” Appl. Phys. Lett. 95(14), 141101 (2009), doi:.
[CrossRef]

Zhu, J.

X. Wu, Y. Tao, C. Song, C. Mao, L. Dong, and J. Zhu, “Morphological control and luminescent properties of YVO4:Eu nanocrystals,” J. Phys. Chem. B 110(32), 15791–15796 (2006).
[CrossRef] [PubMed]

Zhuang, Y.

J. Zhou, Y. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. Xie, and J. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ toYb3+ in glasses,” Appl. Phys. Lett. 95(14), 141101 (2009), doi:.
[CrossRef]

Angew. Chem. Int. Ed.

T. Jüstel, H. Nikol, and C. Ronda, “New development in the field of luminescent materials for lighting and displays,” Angew. Chem. Int. Ed. 37(22), 3084–3103 (1998).
[CrossRef]

Appl. Phys. B

X. T. Wei, G. Jiang, K. Deng, C. Duan, Y. Chen, and M. Yin, “Near-infrared downconversion through energy transfer from VO3?4 group to Yb3+ in Yb3+ doped YP0.9V0.1O4,” Appl. Phys. B 108(2), 463–467 (2012).
[CrossRef]

Appl. Phys. Lett.

J. Zhou, Y. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. Xie, and J. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ toYb3+ in glasses,” Appl. Phys. Lett. 95(14), 141101 (2009), doi:.
[CrossRef]

Bull. Korean Chem. Soc.

H.-J. Sung, K.-Y. Ko, S. K. Hyun, S.-S. Kweon, J.-Y. Park, Y. R. Do, and Y.-D. Huh, “Size dependence of the photo- and cathodo-luminescence of Y2O2S:Eu phosphors,” Bull. Korean Chem. Soc. 27(6), 841–846 (2006).
[CrossRef]

Bull. Mater. Sci.

R. Singh and S. J. Dhoble, “Combustion synthesis of Eu2+ and Dy3+ activated Sr3(VO4)2 phosphor for LEDs,” Bull. Mater. Sci. 34(3), 557–552 (2011).
[CrossRef]

Chem. Mater.

A. Huignard, V. Buissette, G. Laurent, T. Gacoin, and J.-P. Boilot, “Synthesis and characterizations of YVO4:Eu colloids,” Chem. Mater. 14(5), 2264–2269 (2002).
[CrossRef]

Chem. Rev.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[CrossRef] [PubMed]

Inorg. Chem.

Y. Song, H. You, Y. Huang, M. Yang, Y. Zheng, L. Zhang, and N. Guo, “Highly uniform and monodisperse Gd2O2S:Ln3+ (Ln = Eu, Tb) submicrospheres: solvothermal synthesis and luminescence properties,” Inorg. Chem. 49(24), 11499–11504 (2010).
[CrossRef] [PubMed]

Int. J. Phys. Soc. Jpn.

R. Kubo, “Electronic properties of metallic fine particles,” Int. J. Phys. Soc. Jpn. 17(6), 975–986 (1962).
[CrossRef]

J. Am. Ceram. Soc.

Q. Luo, X. Qiao, X. Fan, H. Fu, J. Huang, Y. Zhang, B. Fan, and X. Zhang, “Sensitized Yb3+ luminescence of Eu3+/Yb3+-codoped fluorosilicate glass ceramics,” J. Am. Ceram. Soc. 95, 1042–1047 (2012).

J. Appl. Phys.

Y. Dwivedi, A. Bahadur, and S. B. Rai, “Optical avalanche in Ho:Yb:Gd2O3 nanocrystals,” J. Appl. Phys. 110(4), 043103 (2011), doi:.
[CrossRef]

J. Chem. Phys.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49(10), 4412–4423 (1968).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare?earth ion,” J. Chem. Phys. 37(3), 511–520 (1962).
[CrossRef]

J. Cryst. Growth

L. Sangaletti, B. Allieri, L. E. Depero, M. Bettinelli, K. Lebbou, and R. Moncorgé, “Search for impurity phases of Nd3+:YVO4 crystals for laser and luminescence applications,” J. Cryst. Growth 198-199, 454–459 (1999).
[CrossRef]

J. Fluoresc.

C. H. Yang, Y. X. Pan, Q. Y. Zhang, and Z. H. Jiang, “Cooperative energy transfer and frequency upconversion in Yb3+-Tb 3+ and Nd 3+-Yb 3+-Tb 3+ codoped GdAl3(BO3)4 phosphors,” J. Fluoresc. 17(5), 500–504 (2007).
[CrossRef] [PubMed]

J. Inorg. Nucl. Chem.

H. Ronde and G. Blasse, “The nature of the electronic transitions of the vanadate group,” J. Inorg. Nucl. Chem. 40(2), 215–219 (1978).
[CrossRef]

H. Ronde and G. Blasse, “The nature of the electronic transitions of the vanadate group,” J. Inorg. Nucl. Chem. 40(2), 215–219 (1978).
[CrossRef]

J. Lumin.

C. A. Kodaira, H. F. Brito, O. L. Malta, and O. A. Serra, “Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method,” J. Lumin. 101(1-2), 11–21 (2003).
[CrossRef]

V. Jubera, A. Garcia, J. P. Chaminade, F. Guillen, J. Sablayrolles, and C. Fouassier, “Yb3+ and Yb3+–Eu3+ luminescent properties of the Li2Lu5O4(BO3)3 phase,” J. Lumin. 124(1), 10–14 (2007).
[CrossRef]

A. I. Burshtein, “Energy transfer kinetics in disordered systems,” J. Lumin. 34(4), 167–188 (1985).
[CrossRef]

J. Opt. Soc. Am.

J. Phys.

S. S. Saleem and T. K. K. Srinivasan, “Hypersensitive and forbidden transitions of trivalent europium ion in Tb1.8Eu0.2(MoO4)3 single crystal” Pramana-,” J. Phys. 29, 87–92 (1987).

J. Phys. Chem.

L. Brus, “Electronic wave functions in semiconductor clusters: experiment and theory,” J. Phys. Chem. 90(12), 2555–2560 (1986).
[CrossRef]

J. Phys. Chem. B

X. Wu, Y. Tao, C. Song, C. Mao, L. Dong, and J. Zhu, “Morphological control and luminescent properties of YVO4:Eu nanocrystals,” J. Phys. Chem. B 110(32), 15791–15796 (2006).
[CrossRef] [PubMed]

J. Phys. Soc. Jpn.

N. S. Yamada, S. Shionoya, and T. Kushida, “Phonon-assisted energy transfer between trivalent rare earth ions,” J. Phys. Soc. Jpn. 32(6), 1577–1586 (1972).
[CrossRef]

Opt. Express

Opt. Mater.

C. Strohhöfer and A. Polman, “Absorption and emission spectroscopy in Er3+–Yb3+ doped aluminum oxide waveguides,” Opt. Mater. 21(4), 705–712 (2003).
[CrossRef]

X. Yin, Y. Wang, D. Wan, F. Huang, and J. Yao, “Red-luminescence enhancement of ZrO2-based phosphor by codoping Eu3+ and M5+ (M = Nb, Ta),” Opt. Mater. 34(8), 1353–1356 (2012).
[CrossRef]

Y. Dwivedi, D. K. Rai, and S. B. Rai, “Stokes and anti-Stokes luminescence from Eu/Yb:BaB4O7nanocrystals,” Opt. Mater. 32(9), 913–919 (2010).
[CrossRef]

Philips Res. Rep.

W. L. Wanmaker, A. Bril, J. W. Vrugt, and J. Broos, “Luminescent properties of Eu-activated phosphors of the type AIIIBnOn,” Philips Res. Rep. 21, 270–282 (1966).

Phys. Rev.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[CrossRef]

Phys. Rev. B

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1(7), 2961–2969 (1970).
[CrossRef]

Structure and Bonding

R. Reisfeld, “Spectra and energy transfer of rare earths in inorganic glasses,” Structure and Bonding 13, 53–98 (1973).
[CrossRef]

Other

B. Henderson and G. F. Imbusch, Optical Spectroscopy Of Inorganic Solids (Oxford University Press, 2006).

J.-C. G. Bunzil and G. R. Choppin, eds., Lanthanide probes in life, chemical and earth sciences: theory and practice (Elsevier, Amsterdam, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

X-ray diffraction patterns of as-synthesized and heated nanophosphor samples.

Fig. 2
Fig. 2

(a) Scanning electron image (bar: 1 μm), (b) transmission electron images (bar: 50 nm), selected area diffraction pattern (c) and high resolution TEM image (d) of the annealed YVE9Yb nanophosphor sample.

Fig. 3
Fig. 3

(a) Transmission spectrum of annealed YVEu nanophosphor in aqueous suspension. (b) Photo-luminescence excitation (PLE) spectrum of the same sample for emission wavelength of 615 nm. The inset shows an enlarged portion of the spectrum, with the excitation peaks of Eu3+ ions.

Fig. 4
Fig. 4

Lower panel: Photoluminescence spectra of as-synthesized (YVEu9Yb) and annealed (YVEu and YVEu9Yb) nanophosphors on excitation with 325 nm laser at 500 mW/cm2 irradiance. Upper panel: magnified (x 18) spectrum with the wavelength region 585-715 nm excluded for a better visualization of the low intensity peaks.

Fig. 5
Fig. 5

(a) Visual images of annealed nanophosphor (Eu) in ambient light, (b) in aqueous colloidal solutions of Eu phosphor (1 x 10−4 M) under excitation with 325 nm (500 mW/cm−2) and (c) transparent aqueous colloidal solution of 1Eu:9Yb (1x10−5 M in 1 mm cuvette) on 976 nm (15 W/cm−2) laser radiations. Due to the mixing of red (Eu3+) and blue scattered laser radiation from beaker solution (b) looks pink.

Fig. 6
Fig. 6

Energy level diagram and various optical processes [energy transfer (I and II); cooperative upconversion (III) processes] in Yb and Eu ions.

Fig. 7
Fig. 7

(a) Semilog plot of decay curves of 5D07F2 transition at different Yb concentrations for 532 nm laser excitation. (b) Normalized decay curves corresponding to 2F5/22F7/2 transition of Yb3+ ions (9 mol%) with and without Eu (1 mol%) under 976 nm laser excitation.

Fig. 8
Fig. 8

Effect of Yb concentrations on Eu:615 nm and Yb:976 nm emission intensities.

Fig. 9
Fig. 9

Emission spectra of 9Yb and 1Eu:9Yb (as-synthesized and annealed) codoped Y8V2O17 nanophosphors under 976 nm excitation at a power of 15 W/cm2. The lower inset shows a log-log plot of the irradiance dependence of the upconversion intensity in the 1Eu:9Yb annealed sample.

Tables (1)

Tables Icon

Table 1 Values of effective decay times τeff (Eu:5D0), energy transfer probabilities (WD-A), energy transfer efficiencies (ηYb), and quantum efficiencies (η) as a function of the Yb3+ doping concentration.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

[ 1( x+y ) ] Y ( NO 3 ) 3 + x Eu ( NO 3 ) 3 + x Yb ( NO 3 ) 3 + Na 3 VO 4 ® Y 8 V 2 O 17 :Eu:Yb + 3 NaNO 3

Metrics