Abstract

This paper is focused on analyzing the impact of a two-dimensional metal hole array structure integrated to the back-illuminated quantum dots-in-a-well (DWELL) infrared photodetectors. The metal hole array consisting of subwavelength-circular holes penetrating gold layer (2D-Au-CHA) provides the enhanced responsivity of DWELL infrared photodetector at certain wavelengths. The performance of 2D-Au-CHA is investigated by calculating the absorption of active layer in the DWELL structure using a finite integration technique. Simulation results show that the performance of the DWELL focal plane array (FPA) is improved by enhancing the coupling to active layer via local field engineering resulting from a surface plasmon polariton mode and a guided Fabry-Perot mode. Simulation method accomplished in this paper provides a generalized approach to optimize the design of any type of couplers integrated to infrared photodetectors. Experimental results demonstrate the enhanced signal-to-noise ratio by the 2D-Au-CHA integrated FPA as compared to the DWELL FPA. A comparison between the experiment and the simulation shows a good agreement.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ryzhii, “The theory of quantum-dot infrared phototransistors,” Semicond. Sci. Technol.11(5), 759–765 (1996).
    [CrossRef]
  2. S. Krishna, S. D. Gunapala, S. V. Bandara, C. Hill, and D. Z. Ting, “Quantum Dot Based Infrared Focal Plane Arrays,” Proc. IEEE95(9), 1838–1852 (2007).
    [CrossRef]
  3. P. Boucaud and S. Sauvage, “Infrared photodetection with semiconductor self-assembled quantum dots,” C. R. Phys.4(10), 1133–1154 (2003).
    [CrossRef]
  4. G. T. Liu, A. Stintz, H. Li, T. C. Newell, G. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-in-a-Well (DWELL) Structures,” IEEE J. Quantum Electron.36(11), 1272–1279 (2000).
    [CrossRef]
  5. A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys.105(9), 091101 (2009).
    [CrossRef]
  6. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  7. D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Midinfrared doping-tunable extraordinary transmission from sub-wavelength Gratings,” Appl. Phys. Lett.90(19), 191102 (2007).
    [CrossRef]
  8. C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett.10(5), 1704–1709 (2010).
    [CrossRef] [PubMed]
  9. S. C. Lee, Y. D. Sharma, S. Krishna, and S. R. J. Brueck, “Leaky-mode effects in plasmonic-coupled quantum dot infrared photodetectors,” Appl. Phys. Lett.100(1), 011110 (2012).
    [CrossRef]
  10. J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett.95(16), 161101 (2009).
    [CrossRef]
  11. S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun.2, 286 (2011).
    [CrossRef] [PubMed]
  12. www.cst.com
  13. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981).
    [CrossRef]
  14. I. N. Stranski and L. Krastanow, “Sitzungsberichte d. Akad. D. Wissenschaften in Wien,” Abt. IIb, Band146, 797–810 (1937).
  15. D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and Functional Materials Fabricated by Interferometric Lithography,” Adv. Mater. (Deerfield Beach Fla.)23(2), 147–179 (2011).
    [CrossRef] [PubMed]
  16. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22(7), 1099–20 (1983).
    [CrossRef] [PubMed]
  17. I. Brener, (personal communication).
  18. W. G. Spitzer and J. M. Whelan, “Infrared Absorption and Electron Effective Mass in n-Type Gallium Arsenide,” Phys. Rev.114(1), 59–63 (1959).
    [CrossRef]
  19. A. Barve, T. Rotter, Y. Sharma, S. J. Lee, S. K. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett.97(6), 061105 (2010).
    [CrossRef]
  20. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 3rd Edition, 1999).
  21. J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs Sub-monolayer Quantum Dots Infrared Photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
    [CrossRef]
  22. E. L. Dereniak and G. Boreman, Infrared Detectors and Systems (Wiley, 1996).
  23. T. E. Vandervelde, M. C. Lenz, E. Varley, A. Barve, J. Shao, R. Shenoi, D. A. Ramirez, W.-Y. Jang, Y. D. Sharma, and S. Krishna, “Quantum Dots-in-a-Well Focal Plane Arrays,” IEEE J. Sel. Top. Quantum Electron.14(4), 1150–1161 (2008).
    [CrossRef]
  24. J. R. Andrews, S. R. Restaino, S. W. Teare, Y. D. Sharma, W.-Y. Jang, T. E. Vandervelde, J. S. Brown, A. Reisinger, M. Sundaram, S. Krishna, and L. Lester, “Comparison of Quantum Dots-in-a-Double-Well and Quantum Dots-in-a-Well Focal Plane Arrays in the Long-Wave Infrared,” IEEE Trans. Electron. Dev.58(7), 2022–2027 (2011).
    [CrossRef]

2013 (1)

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs Sub-monolayer Quantum Dots Infrared Photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

2012 (1)

S. C. Lee, Y. D. Sharma, S. Krishna, and S. R. J. Brueck, “Leaky-mode effects in plasmonic-coupled quantum dot infrared photodetectors,” Appl. Phys. Lett.100(1), 011110 (2012).
[CrossRef]

2011 (3)

J. R. Andrews, S. R. Restaino, S. W. Teare, Y. D. Sharma, W.-Y. Jang, T. E. Vandervelde, J. S. Brown, A. Reisinger, M. Sundaram, S. Krishna, and L. Lester, “Comparison of Quantum Dots-in-a-Double-Well and Quantum Dots-in-a-Well Focal Plane Arrays in the Long-Wave Infrared,” IEEE Trans. Electron. Dev.58(7), 2022–2027 (2011).
[CrossRef]

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun.2, 286 (2011).
[CrossRef] [PubMed]

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and Functional Materials Fabricated by Interferometric Lithography,” Adv. Mater. (Deerfield Beach Fla.)23(2), 147–179 (2011).
[CrossRef] [PubMed]

2010 (2)

A. Barve, T. Rotter, Y. Sharma, S. J. Lee, S. K. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett.97(6), 061105 (2010).
[CrossRef]

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett.10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

2009 (2)

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett.95(16), 161101 (2009).
[CrossRef]

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys.105(9), 091101 (2009).
[CrossRef]

2008 (1)

T. E. Vandervelde, M. C. Lenz, E. Varley, A. Barve, J. Shao, R. Shenoi, D. A. Ramirez, W.-Y. Jang, Y. D. Sharma, and S. Krishna, “Quantum Dots-in-a-Well Focal Plane Arrays,” IEEE J. Sel. Top. Quantum Electron.14(4), 1150–1161 (2008).
[CrossRef]

2007 (3)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Midinfrared doping-tunable extraordinary transmission from sub-wavelength Gratings,” Appl. Phys. Lett.90(19), 191102 (2007).
[CrossRef]

S. Krishna, S. D. Gunapala, S. V. Bandara, C. Hill, and D. Z. Ting, “Quantum Dot Based Infrared Focal Plane Arrays,” Proc. IEEE95(9), 1838–1852 (2007).
[CrossRef]

2003 (1)

P. Boucaud and S. Sauvage, “Infrared photodetection with semiconductor self-assembled quantum dots,” C. R. Phys.4(10), 1133–1154 (2003).
[CrossRef]

2000 (1)

G. T. Liu, A. Stintz, H. Li, T. C. Newell, G. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-in-a-Well (DWELL) Structures,” IEEE J. Quantum Electron.36(11), 1272–1279 (2000).
[CrossRef]

1996 (1)

V. Ryzhii, “The theory of quantum-dot infrared phototransistors,” Semicond. Sci. Technol.11(5), 759–765 (1996).
[CrossRef]

1983 (1)

1981 (1)

1959 (1)

W. G. Spitzer and J. M. Whelan, “Infrared Absorption and Electron Effective Mass in n-Type Gallium Arsenide,” Phys. Rev.114(1), 59–63 (1959).
[CrossRef]

1937 (1)

I. N. Stranski and L. Krastanow, “Sitzungsberichte d. Akad. D. Wissenschaften in Wien,” Abt. IIb, Band146, 797–810 (1937).

Adhikary, S.

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs Sub-monolayer Quantum Dots Infrared Photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

Alexander, R. W.

Allen, J. W.

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs Sub-monolayer Quantum Dots Infrared Photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

Allen, M. S.

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs Sub-monolayer Quantum Dots Infrared Photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

Andrews, J. R.

J. R. Andrews, S. R. Restaino, S. W. Teare, Y. D. Sharma, W.-Y. Jang, T. E. Vandervelde, J. S. Brown, A. Reisinger, M. Sundaram, S. Krishna, and L. Lester, “Comparison of Quantum Dots-in-a-Double-Well and Quantum Dots-in-a-Well Focal Plane Arrays in the Long-Wave Infrared,” IEEE Trans. Electron. Dev.58(7), 2022–2027 (2011).
[CrossRef]

Antoszewski, J.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys.105(9), 091101 (2009).
[CrossRef]

Bandara, S. V.

S. Krishna, S. D. Gunapala, S. V. Bandara, C. Hill, and D. Z. Ting, “Quantum Dot Based Infrared Focal Plane Arrays,” Proc. IEEE95(9), 1838–1852 (2007).
[CrossRef]

Barve, A.

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun.2, 286 (2011).
[CrossRef] [PubMed]

A. Barve, T. Rotter, Y. Sharma, S. J. Lee, S. K. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett.97(6), 061105 (2010).
[CrossRef]

T. E. Vandervelde, M. C. Lenz, E. Varley, A. Barve, J. Shao, R. Shenoi, D. A. Ramirez, W.-Y. Jang, Y. D. Sharma, and S. Krishna, “Quantum Dots-in-a-Well Focal Plane Arrays,” IEEE J. Sel. Top. Quantum Electron.14(4), 1150–1161 (2008).
[CrossRef]

Barve, A. V.

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs Sub-monolayer Quantum Dots Infrared Photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Boucaud, P.

P. Boucaud and S. Sauvage, “Infrared photodetection with semiconductor self-assembled quantum dots,” C. R. Phys.4(10), 1133–1154 (2003).
[CrossRef]

Brown, J. S.

J. R. Andrews, S. R. Restaino, S. W. Teare, Y. D. Sharma, W.-Y. Jang, T. E. Vandervelde, J. S. Brown, A. Reisinger, M. Sundaram, S. Krishna, and L. Lester, “Comparison of Quantum Dots-in-a-Double-Well and Quantum Dots-in-a-Well Focal Plane Arrays in the Long-Wave Infrared,” IEEE Trans. Electron. Dev.58(7), 2022–2027 (2011).
[CrossRef]

Brueck, S. R. J.

S. C. Lee, Y. D. Sharma, S. Krishna, and S. R. J. Brueck, “Leaky-mode effects in plasmonic-coupled quantum dot infrared photodetectors,” Appl. Phys. Lett.100(1), 011110 (2012).
[CrossRef]

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun.2, 286 (2011).
[CrossRef] [PubMed]

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and Functional Materials Fabricated by Interferometric Lithography,” Adv. Mater. (Deerfield Beach Fla.)23(2), 147–179 (2011).
[CrossRef] [PubMed]

Bur, J. A.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett.10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

Cederberg, J. G.

D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Midinfrared doping-tunable extraordinary transmission from sub-wavelength Gratings,” Appl. Phys. Lett.90(19), 191102 (2007).
[CrossRef]

Chakrabarti, S.

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs Sub-monolayer Quantum Dots Infrared Photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

Chang, C.-C.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett.10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Faraone, L.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys.105(9), 091101 (2009).
[CrossRef]

Gaylord, T. K.

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Gray, G. L.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, G. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-in-a-Well (DWELL) Structures,” IEEE J. Quantum Electron.36(11), 1272–1279 (2000).
[CrossRef]

Gunapala, S. D.

S. Krishna, S. D. Gunapala, S. V. Bandara, C. Hill, and D. Z. Ting, “Quantum Dot Based Infrared Focal Plane Arrays,” Proc. IEEE95(9), 1838–1852 (2007).
[CrossRef]

Hill, C.

S. Krishna, S. D. Gunapala, S. V. Bandara, C. Hill, and D. Z. Ting, “Quantum Dot Based Infrared Focal Plane Arrays,” Proc. IEEE95(9), 1838–1852 (2007).
[CrossRef]

Huang, D.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett.10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

Jang, W.-Y.

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun.2, 286 (2011).
[CrossRef] [PubMed]

J. R. Andrews, S. R. Restaino, S. W. Teare, Y. D. Sharma, W.-Y. Jang, T. E. Vandervelde, J. S. Brown, A. Reisinger, M. Sundaram, S. Krishna, and L. Lester, “Comparison of Quantum Dots-in-a-Double-Well and Quantum Dots-in-a-Well Focal Plane Arrays in the Long-Wave Infrared,” IEEE Trans. Electron. Dev.58(7), 2022–2027 (2011).
[CrossRef]

T. E. Vandervelde, M. C. Lenz, E. Varley, A. Barve, J. Shao, R. Shenoi, D. A. Ramirez, W.-Y. Jang, Y. D. Sharma, and S. Krishna, “Quantum Dots-in-a-Well Focal Plane Arrays,” IEEE J. Sel. Top. Quantum Electron.14(4), 1150–1161 (2008).
[CrossRef]

Kim, J. O.

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs Sub-monolayer Quantum Dots Infrared Photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

Kim, Y.-S.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett.10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

Krastanow, L.

I. N. Stranski and L. Krastanow, “Sitzungsberichte d. Akad. D. Wissenschaften in Wien,” Abt. IIb, Band146, 797–810 (1937).

Krishna, S.

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs Sub-monolayer Quantum Dots Infrared Photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

S. C. Lee, Y. D. Sharma, S. Krishna, and S. R. J. Brueck, “Leaky-mode effects in plasmonic-coupled quantum dot infrared photodetectors,” Appl. Phys. Lett.100(1), 011110 (2012).
[CrossRef]

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun.2, 286 (2011).
[CrossRef] [PubMed]

J. R. Andrews, S. R. Restaino, S. W. Teare, Y. D. Sharma, W.-Y. Jang, T. E. Vandervelde, J. S. Brown, A. Reisinger, M. Sundaram, S. Krishna, and L. Lester, “Comparison of Quantum Dots-in-a-Double-Well and Quantum Dots-in-a-Well Focal Plane Arrays in the Long-Wave Infrared,” IEEE Trans. Electron. Dev.58(7), 2022–2027 (2011).
[CrossRef]

A. Barve, T. Rotter, Y. Sharma, S. J. Lee, S. K. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett.97(6), 061105 (2010).
[CrossRef]

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett.10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett.95(16), 161101 (2009).
[CrossRef]

T. E. Vandervelde, M. C. Lenz, E. Varley, A. Barve, J. Shao, R. Shenoi, D. A. Ramirez, W.-Y. Jang, Y. D. Sharma, and S. Krishna, “Quantum Dots-in-a-Well Focal Plane Arrays,” IEEE J. Sel. Top. Quantum Electron.14(4), 1150–1161 (2008).
[CrossRef]

S. Krishna, S. D. Gunapala, S. V. Bandara, C. Hill, and D. Z. Ting, “Quantum Dot Based Infrared Focal Plane Arrays,” Proc. IEEE95(9), 1838–1852 (2007).
[CrossRef]

Ku, Z.

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun.2, 286 (2011).
[CrossRef] [PubMed]

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and Functional Materials Fabricated by Interferometric Lithography,” Adv. Mater. (Deerfield Beach Fla.)23(2), 147–179 (2011).
[CrossRef] [PubMed]

Lee, S. C.

S. C. Lee, Y. D. Sharma, S. Krishna, and S. R. J. Brueck, “Leaky-mode effects in plasmonic-coupled quantum dot infrared photodetectors,” Appl. Phys. Lett.100(1), 011110 (2012).
[CrossRef]

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and Functional Materials Fabricated by Interferometric Lithography,” Adv. Mater. (Deerfield Beach Fla.)23(2), 147–179 (2011).
[CrossRef] [PubMed]

Lee, S. J.

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs Sub-monolayer Quantum Dots Infrared Photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun.2, 286 (2011).
[CrossRef] [PubMed]

A. Barve, T. Rotter, Y. Sharma, S. J. Lee, S. K. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett.97(6), 061105 (2010).
[CrossRef]

Lenz, M. C.

T. E. Vandervelde, M. C. Lenz, E. Varley, A. Barve, J. Shao, R. Shenoi, D. A. Ramirez, W.-Y. Jang, Y. D. Sharma, and S. Krishna, “Quantum Dots-in-a-Well Focal Plane Arrays,” IEEE J. Sel. Top. Quantum Electron.14(4), 1150–1161 (2008).
[CrossRef]

Lester, L.

J. R. Andrews, S. R. Restaino, S. W. Teare, Y. D. Sharma, W.-Y. Jang, T. E. Vandervelde, J. S. Brown, A. Reisinger, M. Sundaram, S. Krishna, and L. Lester, “Comparison of Quantum Dots-in-a-Double-Well and Quantum Dots-in-a-Well Focal Plane Arrays in the Long-Wave Infrared,” IEEE Trans. Electron. Dev.58(7), 2022–2027 (2011).
[CrossRef]

Lester, L. F.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, G. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-in-a-Well (DWELL) Structures,” IEEE J. Quantum Electron.36(11), 1272–1279 (2000).
[CrossRef]

Li, H.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, G. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-in-a-Well (DWELL) Structures,” IEEE J. Quantum Electron.36(11), 1272–1279 (2000).
[CrossRef]

Lin, S.-Y.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett.10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

Liu, G. T.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, G. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-in-a-Well (DWELL) Structures,” IEEE J. Quantum Electron.36(11), 1272–1279 (2000).
[CrossRef]

Long, L. L.

Malloy, K. J.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, G. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-in-a-Well (DWELL) Structures,” IEEE J. Quantum Electron.36(11), 1272–1279 (2000).
[CrossRef]

Moharam, M. G.

Montoya, J.

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun.2, 286 (2011).
[CrossRef] [PubMed]

Newell, T. C.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, G. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-in-a-Well (DWELL) Structures,” IEEE J. Quantum Electron.36(11), 1272–1279 (2000).
[CrossRef]

Noh, S. K.

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs Sub-monolayer Quantum Dots Infrared Photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun.2, 286 (2011).
[CrossRef] [PubMed]

A. Barve, T. Rotter, Y. Sharma, S. J. Lee, S. K. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett.97(6), 061105 (2010).
[CrossRef]

Ordal, M. A.

Painter, O.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett.95(16), 161101 (2009).
[CrossRef]

Ramirez, D. A.

T. E. Vandervelde, M. C. Lenz, E. Varley, A. Barve, J. Shao, R. Shenoi, D. A. Ramirez, W.-Y. Jang, Y. D. Sharma, and S. Krishna, “Quantum Dots-in-a-Well Focal Plane Arrays,” IEEE J. Sel. Top. Quantum Electron.14(4), 1150–1161 (2008).
[CrossRef]

Reisinger, A.

J. R. Andrews, S. R. Restaino, S. W. Teare, Y. D. Sharma, W.-Y. Jang, T. E. Vandervelde, J. S. Brown, A. Reisinger, M. Sundaram, S. Krishna, and L. Lester, “Comparison of Quantum Dots-in-a-Double-Well and Quantum Dots-in-a-Well Focal Plane Arrays in the Long-Wave Infrared,” IEEE Trans. Electron. Dev.58(7), 2022–2027 (2011).
[CrossRef]

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun.2, 286 (2011).
[CrossRef] [PubMed]

Restaino, S. R.

J. R. Andrews, S. R. Restaino, S. W. Teare, Y. D. Sharma, W.-Y. Jang, T. E. Vandervelde, J. S. Brown, A. Reisinger, M. Sundaram, S. Krishna, and L. Lester, “Comparison of Quantum Dots-in-a-Double-Well and Quantum Dots-in-a-Well Focal Plane Arrays in the Long-Wave Infrared,” IEEE Trans. Electron. Dev.58(7), 2022–2027 (2011).
[CrossRef]

Rogalski, A.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys.105(9), 091101 (2009).
[CrossRef]

Rosenberg, J.

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett.95(16), 161101 (2009).
[CrossRef]

Rotter, T.

A. Barve, T. Rotter, Y. Sharma, S. J. Lee, S. K. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett.97(6), 061105 (2010).
[CrossRef]

Ryzhii, V.

V. Ryzhii, “The theory of quantum-dot infrared phototransistors,” Semicond. Sci. Technol.11(5), 759–765 (1996).
[CrossRef]

Sauvage, S.

P. Boucaud and S. Sauvage, “Infrared photodetection with semiconductor self-assembled quantum dots,” C. R. Phys.4(10), 1133–1154 (2003).
[CrossRef]

Sengupta, S.

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs Sub-monolayer Quantum Dots Infrared Photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

Shaner, E. A.

D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Midinfrared doping-tunable extraordinary transmission from sub-wavelength Gratings,” Appl. Phys. Lett.90(19), 191102 (2007).
[CrossRef]

Shao, J.

T. E. Vandervelde, M. C. Lenz, E. Varley, A. Barve, J. Shao, R. Shenoi, D. A. Ramirez, W.-Y. Jang, Y. D. Sharma, and S. Krishna, “Quantum Dots-in-a-Well Focal Plane Arrays,” IEEE J. Sel. Top. Quantum Electron.14(4), 1150–1161 (2008).
[CrossRef]

Sharma, Y.

A. Barve, T. Rotter, Y. Sharma, S. J. Lee, S. K. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett.97(6), 061105 (2010).
[CrossRef]

Sharma, Y. D.

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs Sub-monolayer Quantum Dots Infrared Photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

S. C. Lee, Y. D. Sharma, S. Krishna, and S. R. J. Brueck, “Leaky-mode effects in plasmonic-coupled quantum dot infrared photodetectors,” Appl. Phys. Lett.100(1), 011110 (2012).
[CrossRef]

J. R. Andrews, S. R. Restaino, S. W. Teare, Y. D. Sharma, W.-Y. Jang, T. E. Vandervelde, J. S. Brown, A. Reisinger, M. Sundaram, S. Krishna, and L. Lester, “Comparison of Quantum Dots-in-a-Double-Well and Quantum Dots-in-a-Well Focal Plane Arrays in the Long-Wave Infrared,” IEEE Trans. Electron. Dev.58(7), 2022–2027 (2011).
[CrossRef]

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett.10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

T. E. Vandervelde, M. C. Lenz, E. Varley, A. Barve, J. Shao, R. Shenoi, D. A. Ramirez, W.-Y. Jang, Y. D. Sharma, and S. Krishna, “Quantum Dots-in-a-Well Focal Plane Arrays,” IEEE J. Sel. Top. Quantum Electron.14(4), 1150–1161 (2008).
[CrossRef]

Shenoi, R.

T. E. Vandervelde, M. C. Lenz, E. Varley, A. Barve, J. Shao, R. Shenoi, D. A. Ramirez, W.-Y. Jang, Y. D. Sharma, and S. Krishna, “Quantum Dots-in-a-Well Focal Plane Arrays,” IEEE J. Sel. Top. Quantum Electron.14(4), 1150–1161 (2008).
[CrossRef]

Shenoi, R. V.

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett.10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett.95(16), 161101 (2009).
[CrossRef]

Spitzer, W. G.

W. G. Spitzer and J. M. Whelan, “Infrared Absorption and Electron Effective Mass in n-Type Gallium Arsenide,” Phys. Rev.114(1), 59–63 (1959).
[CrossRef]

Stintz, A.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, G. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-in-a-Well (DWELL) Structures,” IEEE J. Quantum Electron.36(11), 1272–1279 (2000).
[CrossRef]

Stranski, I. N.

I. N. Stranski and L. Krastanow, “Sitzungsberichte d. Akad. D. Wissenschaften in Wien,” Abt. IIb, Band146, 797–810 (1937).

Sundaram, M.

J. R. Andrews, S. R. Restaino, S. W. Teare, Y. D. Sharma, W.-Y. Jang, T. E. Vandervelde, J. S. Brown, A. Reisinger, M. Sundaram, S. Krishna, and L. Lester, “Comparison of Quantum Dots-in-a-Double-Well and Quantum Dots-in-a-Well Focal Plane Arrays in the Long-Wave Infrared,” IEEE Trans. Electron. Dev.58(7), 2022–2027 (2011).
[CrossRef]

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun.2, 286 (2011).
[CrossRef] [PubMed]

Teare, S. W.

J. R. Andrews, S. R. Restaino, S. W. Teare, Y. D. Sharma, W.-Y. Jang, T. E. Vandervelde, J. S. Brown, A. Reisinger, M. Sundaram, S. Krishna, and L. Lester, “Comparison of Quantum Dots-in-a-Double-Well and Quantum Dots-in-a-Well Focal Plane Arrays in the Long-Wave Infrared,” IEEE Trans. Electron. Dev.58(7), 2022–2027 (2011).
[CrossRef]

Ting, D. Z.

S. Krishna, S. D. Gunapala, S. V. Bandara, C. Hill, and D. Z. Ting, “Quantum Dot Based Infrared Focal Plane Arrays,” Proc. IEEE95(9), 1838–1852 (2007).
[CrossRef]

Vandervelde, T. E.

J. R. Andrews, S. R. Restaino, S. W. Teare, Y. D. Sharma, W.-Y. Jang, T. E. Vandervelde, J. S. Brown, A. Reisinger, M. Sundaram, S. Krishna, and L. Lester, “Comparison of Quantum Dots-in-a-Double-Well and Quantum Dots-in-a-Well Focal Plane Arrays in the Long-Wave Infrared,” IEEE Trans. Electron. Dev.58(7), 2022–2027 (2011).
[CrossRef]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett.95(16), 161101 (2009).
[CrossRef]

T. E. Vandervelde, M. C. Lenz, E. Varley, A. Barve, J. Shao, R. Shenoi, D. A. Ramirez, W.-Y. Jang, Y. D. Sharma, and S. Krishna, “Quantum Dots-in-a-Well Focal Plane Arrays,” IEEE J. Sel. Top. Quantum Electron.14(4), 1150–1161 (2008).
[CrossRef]

Varangis, P. M.

G. T. Liu, A. Stintz, H. Li, T. C. Newell, G. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-in-a-Well (DWELL) Structures,” IEEE J. Quantum Electron.36(11), 1272–1279 (2000).
[CrossRef]

Varley, E.

T. E. Vandervelde, M. C. Lenz, E. Varley, A. Barve, J. Shao, R. Shenoi, D. A. Ramirez, W.-Y. Jang, Y. D. Sharma, and S. Krishna, “Quantum Dots-in-a-Well Focal Plane Arrays,” IEEE J. Sel. Top. Quantum Electron.14(4), 1150–1161 (2008).
[CrossRef]

Ward, C. A.

Wasserman, D.

D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Midinfrared doping-tunable extraordinary transmission from sub-wavelength Gratings,” Appl. Phys. Lett.90(19), 191102 (2007).
[CrossRef]

Whelan, J. M.

W. G. Spitzer and J. M. Whelan, “Infrared Absorption and Electron Effective Mass in n-Type Gallium Arsenide,” Phys. Rev.114(1), 59–63 (1959).
[CrossRef]

Xia, D.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and Functional Materials Fabricated by Interferometric Lithography,” Adv. Mater. (Deerfield Beach Fla.)23(2), 147–179 (2011).
[CrossRef] [PubMed]

Abt. IIb, Band (1)

I. N. Stranski and L. Krastanow, “Sitzungsberichte d. Akad. D. Wissenschaften in Wien,” Abt. IIb, Band146, 797–810 (1937).

Adv. Mater. (Deerfield Beach Fla.) (1)

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and Functional Materials Fabricated by Interferometric Lithography,” Adv. Mater. (Deerfield Beach Fla.)23(2), 147–179 (2011).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

S. C. Lee, Y. D. Sharma, S. Krishna, and S. R. J. Brueck, “Leaky-mode effects in plasmonic-coupled quantum dot infrared photodetectors,” Appl. Phys. Lett.100(1), 011110 (2012).
[CrossRef]

J. Rosenberg, R. V. Shenoi, T. E. Vandervelde, S. Krishna, and O. Painter, “A multispectral and polarization-selective surface-plasmon resonant midinfrared detector,” Appl. Phys. Lett.95(16), 161101 (2009).
[CrossRef]

D. Wasserman, E. A. Shaner, and J. G. Cederberg, “Midinfrared doping-tunable extraordinary transmission from sub-wavelength Gratings,” Appl. Phys. Lett.90(19), 191102 (2007).
[CrossRef]

A. Barve, T. Rotter, Y. Sharma, S. J. Lee, S. K. Noh, and S. Krishna, “Systematic study of different transitions in high operating temperature quantum dots in a well photodetectors,” Appl. Phys. Lett.97(6), 061105 (2010).
[CrossRef]

J. O. Kim, S. Sengupta, A. V. Barve, Y. D. Sharma, S. Adhikary, S. J. Lee, S. K. Noh, M. S. Allen, J. W. Allen, S. Chakrabarti, and S. Krishna, “Multi-stack InAs/InGaAs Sub-monolayer Quantum Dots Infrared Photodetectors,” Appl. Phys. Lett.102(1), 011131 (2013).
[CrossRef]

C. R. Phys. (1)

P. Boucaud and S. Sauvage, “Infrared photodetection with semiconductor self-assembled quantum dots,” C. R. Phys.4(10), 1133–1154 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. T. Liu, A. Stintz, H. Li, T. C. Newell, G. L. Gray, P. M. Varangis, K. J. Malloy, and L. F. Lester, “The Influence of Quantum-Well Composition on the Performance of Quantum Dot Lasers Using InAs/InGaAs Dots-in-a-Well (DWELL) Structures,” IEEE J. Quantum Electron.36(11), 1272–1279 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. E. Vandervelde, M. C. Lenz, E. Varley, A. Barve, J. Shao, R. Shenoi, D. A. Ramirez, W.-Y. Jang, Y. D. Sharma, and S. Krishna, “Quantum Dots-in-a-Well Focal Plane Arrays,” IEEE J. Sel. Top. Quantum Electron.14(4), 1150–1161 (2008).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

J. R. Andrews, S. R. Restaino, S. W. Teare, Y. D. Sharma, W.-Y. Jang, T. E. Vandervelde, J. S. Brown, A. Reisinger, M. Sundaram, S. Krishna, and L. Lester, “Comparison of Quantum Dots-in-a-Double-Well and Quantum Dots-in-a-Well Focal Plane Arrays in the Long-Wave Infrared,” IEEE Trans. Electron. Dev.58(7), 2022–2027 (2011).
[CrossRef]

J. Appl. Phys. (1)

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys.105(9), 091101 (2009).
[CrossRef]

J. Opt. Soc. Am. (1)

Nano Lett. (1)

C.-C. Chang, Y. D. Sharma, Y.-S. Kim, J. A. Bur, R. V. Shenoi, S. Krishna, D. Huang, and S.-Y. Lin, “A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots,” Nano Lett.10(5), 1704–1709 (2010).
[CrossRef] [PubMed]

Nat. Commun. (1)

S. J. Lee, Z. Ku, A. Barve, J. Montoya, W.-Y. Jang, S. R. J. Brueck, M. Sundaram, A. Reisinger, S. Krishna, and S. K. Noh, “A monolithically integrated plasmonic infrared quantum dot camera,” Nat. Commun.2, 286 (2011).
[CrossRef] [PubMed]

Nature (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Phys. Rev. (1)

W. G. Spitzer and J. M. Whelan, “Infrared Absorption and Electron Effective Mass in n-Type Gallium Arsenide,” Phys. Rev.114(1), 59–63 (1959).
[CrossRef]

Proc. IEEE (1)

S. Krishna, S. D. Gunapala, S. V. Bandara, C. Hill, and D. Z. Ting, “Quantum Dot Based Infrared Focal Plane Arrays,” Proc. IEEE95(9), 1838–1852 (2007).
[CrossRef]

Semicond. Sci. Technol. (1)

V. Ryzhii, “The theory of quantum-dot infrared phototransistors,” Semicond. Sci. Technol.11(5), 759–765 (1996).
[CrossRef]

Other (4)

www.cst.com

I. Brener, (personal communication).

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 3rd Edition, 1999).

E. L. Dereniak and G. Boreman, Infrared Detectors and Systems (Wiley, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustration of (a) a pixel in the 2D-Au-CHA:DWELL FPA (after substrate and AlAs etch stop layer were removed) and (b) the DWELL heterostructure. (c) Schematic view of a simplified unit cell of the 2D-Au-CHA:DWELL FPA used for numerical simulation. Geometrical parameters of 2D-Au-CHA:DWELL FPA: p = 1.8 μm; d = p/2; tm = 50 nm; tup = 1 μm; tabs = 1.12 μm; tdown = 0.2 μm; tmgp = 0.2 μm. In addition, the configuration of polarization and propagation is depicted (E, H, and k denote electric field, magnetic field, and wave vector, respectively).

Fig. 2
Fig. 2

Absorption calculated in the different layers of the 2D-Au-CHA:DWELL FPA as a function of the illumination wavelength.

Fig. 3
Fig. 3

Simulated responsivities of the DWELL FPA (gray square), 2D-Au-CHA:DWELL FPA (black square) and enhancement ratio (red circle) resulting from 2D-Au-CHA, i.e., R2D-Au-CHA:DWELL FPA / RDWELL FPA. Note that unity internal quantum efficiency in effective absorbing layer is used. The simulated electric field distributions at the corresponding resonances (resulting from surface plasmon polariton and guided Fabry-Perot modes) are shown in the inset to the figure.

Fig. 4
Fig. 4

Experimental SNRs of the DWELL FPA (gray triangle) and 2D-Au-CHA:DWELL FPA (black triangle), and the corresponding enhancement ratio (red diamond) by 2D-Au-CHA:DWELL FPA over the DWELL FPA.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A EA 2DAuCHA = ω ε EA (λ)[ | E EA x (λ) | 2 +η | E EA z (λ) | 2 ] 2 d V EA

Metrics