Abstract

The octave-spanning spectrum was generated in a tellurite glass based microstructured fiber pumped by a 528 MHz repetition rate Yb:fiber ring laser without amplification. The laser achieved 40% output optical-to-optical efficiency with the output power of 410 mW. By adjusting the grating pair in the cavity, this oscillator can work at different cavity dispersion regimes with the shortest dechirped pulse width of 46 fs. The output pulses were then launched into a high-nonlinearity tellurite fiber, which has the zero-dispersion wavelength at ~1 μm. The high nonlinearity coefficient (1348 km−1W−1) and the matched zero-dispersion wavelength with pump laser enable the octave-spanning supercontinuum generated from 750 nm to 1700 nm with the coupled pulse energy above 10 pJ.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. T. Cundiff, “Metrology: new generation of combs,” Nature450(7173), 1175–1176 (2007).
    [CrossRef] [PubMed]
  2. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
    [CrossRef] [PubMed]
  3. T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and Th. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc.405(1), L16–L20 (2010).
    [CrossRef]
  4. T. Wilken, T. W. Hänsch, Th. Udem, T. Steinmetz, R. Holzwarth, A. Manescau, G. Lo Curto, L. Pasquini, and C. Lovis, “High precision Calibration of Spectrographs in Astronomy,” Conference on Laser and Electro-Optics (CLEO), paper CMHH3 (2010).
  5. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681 (2009).
    [CrossRef] [PubMed]
  6. M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, “Mode locking with cross-phase and self-phase modulation,” Opt. Lett.16(7), 502–504 (1991).
    [CrossRef] [PubMed]
  7. D. Ma, Y. Cai, C. Zhou, W. Zong, L. Chen, and Z. Zhang, “37.4 fs pulse generation in an Er:fiber laser at a 225 MHz repetition rate,” Opt. Lett.35(17), 2858–2860 (2010).
    [CrossRef] [PubMed]
  8. T. Wilken, P. Vilar-Welter, T. W. Hänsch, and Th. Udem, “High repetition rate, tunable femtosecond Yb-fiber laser,” Conference on Laser and Electro-Optics (CLEO), paper CFK2 (2010).
  9. A. Wang, H. Yang, and Z. Zhang, “503MHz repetition rate femtosecond Yb: fiber ring laser with an integrated WDM collimator,” Opt. Express19(25), 25412–25417 (2011).
    [CrossRef] [PubMed]
  10. H. Yang, A. Wang, and Z. Zhang, “Efficient femtosecond pulse generation in an all-normal-dispersion Yb:fiber ring laser at 605 MHz repetition rate,” Opt. Lett.37(5), 954–956 (2012).
    [CrossRef] [PubMed]
  11. P. Li, G. Wang, C. Li, A. Wang, Z. Zhang, F. Meng, S. Cao, and Z. Fang, “Characterization of the carrier envelope offset frequency from a 490 MHz Yb-fiber-ring laser,” Opt. Express20(14), 16017–16022 (2012).
    [CrossRef] [PubMed]
  12. A. Wang, H. Yang, C. Li, and Z. Zhang, “Octave-spanning spectrum generation with a 503MHz repetition rate femtosecond Yb:fiber ring laser,” Conference on Laser and Electro-Optics (CLEO), paper CTu3G.2 (2012).
  13. A. Chong, W. H. Renninger, and F. W. Wise, “Route to the minimum pulse duration in normal-dispersion fiber lasers,” Opt. Lett.33(22), 2638–2640 (2008).
    [CrossRef] [PubMed]
  14. L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett.36(9), 1578–1580 (2011).
    [CrossRef] [PubMed]
  15. Y. Song, C. Kim, K. Jung, H. Kim, and J. Kim, “Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime,” Opt. Express19(15), 14518–14525 (2011).
    [CrossRef] [PubMed]
  16. C. Farrell, K. A. Serrels, T. R. Lundquist, P. Vedagarbha, and D. T. Reid, “Octave-spanning super-continuum from a silica photonic crystal fiber pumped by a 386 MHz Yb:fiber laser,” Opt. Lett.37(10), 1778–1780 (2012).
    [CrossRef] [PubMed]
  17. H. Hundertmark, S. Rammler, T. Wilken, R. Holzwarth, T. W. Hänsch, and P. S. Russell, “Octave-spanning supercontinuum generated in SF6-glass PCF by a 1060 nm mode-locked fibre laser delivering 20 pJ per pulse,” Opt. Express17(3), 1919–1924 (2009).
    [CrossRef] [PubMed]
  18. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express16(10), 7161–7168 (2008).
    [CrossRef] [PubMed]
  19. A. Ishizawa, T. Nishikawa, S. Aozasa, A. Mori, O. Tadanaga, M. Asobe, and H. Nakano, “Demonstration of carrier envelope offset locking with low pulse energy,” Opt. Express16(7), 4706–4712 (2008).
    [CrossRef] [PubMed]
  20. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett.36(7), 1122–1124 (2011).
    [CrossRef] [PubMed]
  21. X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinear, tellurite glass hoely fibre,” Electron. Lett.41(15), 835–837 (2005).
    [CrossRef]
  22. T. Delmonte, M. A. Watson, E. J. O’Driscoll, X. Feng, T. M. Monro, V. Finazzi, P. Petropoulos, J. H. V. Price, J. C. Baggett, W. Loh, D. J. Richardson, and D. P. Hand, “Generation of mid-IR continuum using tellurite microstructured fiber,” Conference on Electro-Optics (CLEO), paper CTuA4 (2006).

2012 (3)

2011 (4)

2010 (2)

D. Ma, Y. Cai, C. Zhou, W. Zong, L. Chen, and Z. Zhang, “37.4 fs pulse generation in an Er:fiber laser at a 225 MHz repetition rate,” Opt. Lett.35(17), 2858–2860 (2010).
[CrossRef] [PubMed]

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and Th. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc.405(1), L16–L20 (2010).
[CrossRef]

2009 (2)

2008 (3)

2007 (2)

S. T. Cundiff, “Metrology: new generation of combs,” Nature450(7173), 1175–1176 (2007).
[CrossRef] [PubMed]

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

2005 (1)

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinear, tellurite glass hoely fibre,” Electron. Lett.41(15), 835–837 (2005).
[CrossRef]

1991 (1)

Aggarwal, I. D.

Aozasa, S.

Asobe, M.

Bartels, A.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681 (2009).
[CrossRef] [PubMed]

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

Cai, Y.

Cao, S.

Cerna, R.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

Chen, L.

Chong, A.

Cordeiro, C. M. B.

Cronin-Golomb, M.

Cundiff, S. T.

S. T. Cundiff, “Metrology: new generation of combs,” Nature450(7173), 1175–1176 (2007).
[CrossRef] [PubMed]

Dekker, S. A.

Dekorsy, T.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

Diddams, S. A.

Domachuk, P.

Eggleton, B. J.

Fang, Z.

Farrell, C.

Feng, X.

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinear, tellurite glass hoely fibre,” Electron. Lett.41(15), 835–837 (2005).
[CrossRef]

Fermann, M. E.

Finazzi, V.

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinear, tellurite glass hoely fibre,” Electron. Lett.41(15), 835–837 (2005).
[CrossRef]

Frampton, K.

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinear, tellurite glass hoely fibre,” Electron. Lett.41(15), 835–837 (2005).
[CrossRef]

George, A. K.

Haberl, F.

Hänsch, T. W.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and Th. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc.405(1), L16–L20 (2010).
[CrossRef]

H. Hundertmark, S. Rammler, T. Wilken, R. Holzwarth, T. W. Hänsch, and P. S. Russell, “Octave-spanning supercontinuum generated in SF6-glass PCF by a 1060 nm mode-locked fibre laser delivering 20 pJ per pulse,” Opt. Express17(3), 1919–1924 (2009).
[CrossRef] [PubMed]

Heinecke, D.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681 (2009).
[CrossRef] [PubMed]

Hofer, M.

Holzwarth, R.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and Th. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc.405(1), L16–L20 (2010).
[CrossRef]

H. Hundertmark, S. Rammler, T. Wilken, R. Holzwarth, T. W. Hänsch, and P. S. Russell, “Octave-spanning supercontinuum generated in SF6-glass PCF by a 1060 nm mode-locked fibre laser delivering 20 pJ per pulse,” Opt. Express17(3), 1919–1924 (2009).
[CrossRef] [PubMed]

Hudert, F.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

Hudson, D. D.

Hundertmark, H.

Ishizawa, A.

Jackson, S. D.

Janke, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

Johnson, T. A.

Judge, A. C.

Jung, K.

Kim, C.

Kim, H.

Kim, J.

Kistner, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

Knight, J. C.

Kobayashi, Y.

Li, C.

Li, E.

Li, P.

Lo Curto, G.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and Th. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc.405(1), L16–L20 (2010).
[CrossRef]

Lovis, C.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and Th. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc.405(1), L16–L20 (2010).
[CrossRef]

Lundquist, T. R.

Ma, D.

Mägi, E. C.

Manescau, A.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and Th. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc.405(1), L16–L20 (2010).
[CrossRef]

Meng, F.

Monro, T. M.

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinear, tellurite glass hoely fibre,” Electron. Lett.41(15), 835–837 (2005).
[CrossRef]

Moore, R. C.

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinear, tellurite glass hoely fibre,” Electron. Lett.41(15), 835–837 (2005).
[CrossRef]

Mori, A.

Nakano, H.

Nishikawa, T.

Nugent-Glandorf, L.

Ober, M. H.

Omenetto, F. G.

Pasquini, L.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and Th. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc.405(1), L16–L20 (2010).
[CrossRef]

Petropoulos, P.

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinear, tellurite glass hoely fibre,” Electron. Lett.41(15), 835–837 (2005).
[CrossRef]

Rammler, S.

Reid, D. T.

Renninger, W. H.

Richardson, D. J.

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinear, tellurite glass hoely fibre,” Electron. Lett.41(15), 835–837 (2005).
[CrossRef]

Russell, P. S.

Sanghera, J. S.

Schmidt, A. J.

Serrels, K. A.

Shaw, L. B.

Song, Y.

Steinmetz, T.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and Th. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc.405(1), L16–L20 (2010).
[CrossRef]

Tadanaga, O.

Thoma, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

Udem, Th.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and Th. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc.405(1), L16–L20 (2010).
[CrossRef]

Vedagarbha, P.

Wang, A.

Wang, G.

Wilken, T.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and Th. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc.405(1), L16–L20 (2010).
[CrossRef]

H. Hundertmark, S. Rammler, T. Wilken, R. Holzwarth, T. W. Hänsch, and P. S. Russell, “Octave-spanning supercontinuum generated in SF6-glass PCF by a 1060 nm mode-locked fibre laser delivering 20 pJ per pulse,” Opt. Express17(3), 1919–1924 (2009).
[CrossRef] [PubMed]

Wise, F. W.

Wolchover, N. A.

Yang, H.

Zhang, Z.

Zhou, C.

Zong, W.

Electron. Lett. (1)

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinear, tellurite glass hoely fibre,” Electron. Lett.41(15), 835–837 (2005).
[CrossRef]

Mon. Not. R. Astron. Soc. (1)

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and Th. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc.405(1), L16–L20 (2010).
[CrossRef]

Nature (1)

S. T. Cundiff, “Metrology: new generation of combs,” Nature450(7173), 1175–1176 (2007).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (7)

C. Farrell, K. A. Serrels, T. R. Lundquist, P. Vedagarbha, and D. T. Reid, “Octave-spanning super-continuum from a silica photonic crystal fiber pumped by a 386 MHz Yb:fiber laser,” Opt. Lett.37(10), 1778–1780 (2012).
[CrossRef] [PubMed]

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett.36(7), 1122–1124 (2011).
[CrossRef] [PubMed]

A. Chong, W. H. Renninger, and F. W. Wise, “Route to the minimum pulse duration in normal-dispersion fiber lasers,” Opt. Lett.33(22), 2638–2640 (2008).
[CrossRef] [PubMed]

L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett.36(9), 1578–1580 (2011).
[CrossRef] [PubMed]

H. Yang, A. Wang, and Z. Zhang, “Efficient femtosecond pulse generation in an all-normal-dispersion Yb:fiber ring laser at 605 MHz repetition rate,” Opt. Lett.37(5), 954–956 (2012).
[CrossRef] [PubMed]

M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, “Mode locking with cross-phase and self-phase modulation,” Opt. Lett.16(7), 502–504 (1991).
[CrossRef] [PubMed]

D. Ma, Y. Cai, C. Zhou, W. Zong, L. Chen, and Z. Zhang, “37.4 fs pulse generation in an Er:fiber laser at a 225 MHz repetition rate,” Opt. Lett.35(17), 2858–2860 (2010).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

Science (1)

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681 (2009).
[CrossRef] [PubMed]

Other (4)

T. Delmonte, M. A. Watson, E. J. O’Driscoll, X. Feng, T. M. Monro, V. Finazzi, P. Petropoulos, J. H. V. Price, J. C. Baggett, W. Loh, D. J. Richardson, and D. P. Hand, “Generation of mid-IR continuum using tellurite microstructured fiber,” Conference on Electro-Optics (CLEO), paper CTuA4 (2006).

T. Wilken, T. W. Hänsch, Th. Udem, T. Steinmetz, R. Holzwarth, A. Manescau, G. Lo Curto, L. Pasquini, and C. Lovis, “High precision Calibration of Spectrographs in Astronomy,” Conference on Laser and Electro-Optics (CLEO), paper CMHH3 (2010).

T. Wilken, P. Vilar-Welter, T. W. Hänsch, and Th. Udem, “High repetition rate, tunable femtosecond Yb-fiber laser,” Conference on Laser and Electro-Optics (CLEO), paper CFK2 (2010).

A. Wang, H. Yang, C. Li, and Z. Zhang, “Octave-spanning spectrum generation with a 503MHz repetition rate femtosecond Yb:fiber ring laser,” Conference on Laser and Electro-Optics (CLEO), paper CTu3G.2 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of 528 MHz Yb fiber ring laser (PBS: polarization beam splitter, FR: faraday rotator, λ/2: half-wave plate, λ /4: quarter-wave plate, YDF: Yb doped fiber).

Fig. 2
Fig. 2

(a) (b) (c): spectra with the separation of grating pair at 1.4 mm (a), 1.1 mm (b) and 0.8 mm (c); (d) (e) (f): the corresponding measured autocorrelation traces of the compressed pulses. The dechirped pulse width was calculated to be 96 fs (d), 62 fs (e) and 46 fs (f) with Gauss profile assumed.

Fig. 3
Fig. 3

(a): Radio frequency spectrum from 0 GHz to 1.1 GHz at the resolution bandwidth of 1MHz. Inset: Radio frequency spectrum at the resolution bandwidth of 10 kHz. (b): phase noise spectrum. PSD: power spectral density.

Fig. 4
Fig. 4

Dispersion curve of the tellurite fiber with the zero dispersion wavelength around 1 μm. Inset: scanning electron micrograph of the core region in the tellurite fiber.

Fig. 5
Fig. 5

Spectrum evolution for the coupled pulse energy from 1.3 pJ to 17.5 pJ in the tellurite fiber.

Metrics