Abstract

We show that optical phase conjugation (OPC) based on third order nonlinear effects for mid-span spectral inversion (MSSI) can be improved by splitting the nonlinear element into two parts and adding an optical filter between them. This band-stop filter suppresses the cross-phase-modulation products that are generated around the pump, which, if not removed, will be shifted to fall around the output OPC signal band. Numerical simulations show that this method reduces the fundamental limitations introduced by OPC by 3 dB, which results in improvement of the maximum signal quality, Qmax, by 1 dB in a 10 × 80-km 4-QAM 224-Gb/s CO-OFDM system with MSSI.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems,” Opt. Express14(6), 2079–2084 (2006).
    [CrossRef] [PubMed]
  2. W. Shieh, X. Yi, Y. Ma, and Y. Tang, “Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems,” Opt. Express15(16), 9936–9947 (2007).
    [CrossRef] [PubMed]
  3. L. B. Du and A. J. Lowery, “Pilot-based cross-phase modulation compensation for coherent optical orthogonal frequency division multiplexing long-haul optical communications systems,” Opt. Lett.36, 3 (2011).
  4. L. B. Du and A. J. Lowery, “Practical XPM compensation method for coherent optical OFDM systems,” IEEE Photon. Technol. Lett.22, 320–322 (2009).
  5. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon limit,” J. Lightwave Technol.28(4), 423–433 (2010).
    [CrossRef]
  6. P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature411(6841), 1027–1030 (2001).
    [CrossRef] [PubMed]
  7. S. Watanabe, “Cancellation of four-wave mixing in a single-mode fiber by midway optical phase conjugation,” Opt. Lett.19(17), 1308–1310 (1994).
    [CrossRef] [PubMed]
  8. S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G. D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron.12(4), 505–520 (2006).
    [CrossRef]
  9. S. L. Jansen, S. Spalter, G. D. Khoe, H. Waardt, H. E. Escobar, L. Marshall, and M. Sher, “16×40 gb/s over 800 km of SSMF using mid-link spectral inversion,” IEEE Photon. Technol. Lett.16(7), 1763–1765 (2004).
    [CrossRef]
  10. L. Marazzi, P. Parolari, P. Martelli, R. Siano, P. Boffi, M. Ferrario, A. Righetti, M. Martinelli, V. Pusino, P. Minzioni, I. Cristiani, V. Degiorgio, C. Langrock, and M. M. Fejer, “Real-Time 100-Gb/s POLMUX RZ-DQPSK Transmission over Uncompensated 500 km of SSMF by Optical Phase Conjugation,” in National Fiber Optic Engineers Conference, (Optical Society of America, 2009), paper JWA44.
  11. P. Martelli, P. Boffi, M. Ferrario, L. Marazzi, P. Parolari, R. Siano, V. Pusino, P. Minzioni, I. Cristiani, C. Langrock, M. M. Fejer, M. Martinelli, and V. Degiorgio, “All-Optical Wavelength Conversion of a 100-Gb/s Polarization-Multiplexed Signal,” Opt. Express17(20), 17758–17763 (2009).
    [CrossRef] [PubMed]
  12. X. Liu, Y. Qiao, and Y. Ji, “Reduction of the fiber nonlinearity impairment using optical phase conjugation in 40Gb/s CO-OFDM systems,” Opt. Commun.283(13), 2749–2753 (2010).
    [CrossRef]
  13. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol.26(20), 3416–3425 (2008).
    [CrossRef]
  14. L. B. Du, M. M. Morshed, and A. J. Lowery, “Fiber nonlinearity compensation for OFDM super-channels using optical phase conjugation,” Opt. Express20(18), 19921–19927 (2012).
    [CrossRef] [PubMed]
  15. M. Morshed, L. B. Du, and A. J. Lowery, “Performance Limitation of Coherent Optical OFDM Systems with non-ideal Optical Phase Conjugation,” in IEEE Photonics Conference TuU4, pp. 394-395, 23-27 Sept. 2012.
  16. M. Morshed, L. B. Du, and A. J. Lowery, “Mid-Span Spectral Inversion for Coherent Optical OFDM Systems: Fundamental Limits to Performance,” J. Lightwave Technol.31(1), 58–66 (2013).
    [CrossRef]
  17. B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev.6(1), 97–114 (2012).
    [CrossRef]
  18. M. D. Pelusi, F. Luan, D. Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express18(25), 26686–26694 (2010).
    [CrossRef] [PubMed]
  19. P. Minzioni, F. Alberti, and A. Schiffini, “Techniques for nonlinearity cancellation into embedded links by optical phase conjugation,” J. Lightwave Technol.23(8), 2364–2370 (2005).
    [CrossRef]
  20. A. Chowdhury, G. Raybon, R. J. Essiambre, J. H. Sinsky, A. Adamiecki, J. Leuthold, C. R. Doerr, and S. Chandrasekhar, “Compensation of intrachannel nonlinearities in 40-Gb/s pseudolinear systems using optical-phase conjugation,” J. Lightwave Technol.23(1), 172–177 (2005).
    [CrossRef]
  21. S. L. Jansen, D. van den Borne, C. Climent, M. Serbay, C. J. Weiske, H. Suche, P. M. Krummrich, S. Spalter, S. Calabro, N. Hecker-Denschlag, P. Leisching, W. Rosenkranz, W. Sohler, G. D. Khoe, T. Koonen, and H. de Waardt, “10,200 km 22×2×10 Gbit/s RZ-DQPSK dense WDM transmission without inline dispersion compensation through optical phase conjugation,” Optical Fiber Communication Conference, 2005. Technical Digest. OFC/NFOEC, 6, PDP 28, 6-11 March 2005.
  22. S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabrò, H. Suche, P. M. Krummrich, W. Sohler, G. D. Khoe, and H. de Waardt, “Optical phase conjugation for ultra long-haul Phase-Shift-Keyed transmission,” J. Lightwave Technol.24(1), 54–64 (2006).
    [CrossRef]
  23. S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, H. Suche, W. Sohler, G. D. Khoe, H. de Waardt, I. Morita, and H. Tanaka, “Applications of optical phase conjugation in robust optical transmission systems,” in Proc. SPIE 6783 Optical Transmission, Switching, and Subsystems V, 67830P (November 19, 2007).

2013 (1)

2012 (2)

B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

L. B. Du, M. M. Morshed, and A. J. Lowery, “Fiber nonlinearity compensation for OFDM super-channels using optical phase conjugation,” Opt. Express20(18), 19921–19927 (2012).
[CrossRef] [PubMed]

2011 (1)

L. B. Du and A. J. Lowery, “Pilot-based cross-phase modulation compensation for coherent optical orthogonal frequency division multiplexing long-haul optical communications systems,” Opt. Lett.36, 3 (2011).

2010 (3)

2009 (2)

2008 (1)

2007 (1)

2006 (3)

2005 (2)

2004 (1)

S. L. Jansen, S. Spalter, G. D. Khoe, H. Waardt, H. E. Escobar, L. Marshall, and M. Sher, “16×40 gb/s over 800 km of SSMF using mid-link spectral inversion,” IEEE Photon. Technol. Lett.16(7), 1763–1765 (2004).
[CrossRef]

2001 (1)

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature411(6841), 1027–1030 (2001).
[CrossRef] [PubMed]

1994 (1)

Adamiecki, A.

Alberti, F.

Armstrong, J.

Boffi, P.

Bulla, D. A. P.

Calabrò, S.

Chandrasekhar, S.

Choi, D. Y.

Chowdhury, A.

Cotter, D.

Cristiani, I.

de Waardt, H.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G. D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron.12(4), 505–520 (2006).
[CrossRef]

S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabrò, H. Suche, P. M. Krummrich, W. Sohler, G. D. Khoe, and H. de Waardt, “Optical phase conjugation for ultra long-haul Phase-Shift-Keyed transmission,” J. Lightwave Technol.24(1), 54–64 (2006).
[CrossRef]

Degiorgio, V.

Doerr, C. R.

Du, L. B.

M. Morshed, L. B. Du, and A. J. Lowery, “Mid-Span Spectral Inversion for Coherent Optical OFDM Systems: Fundamental Limits to Performance,” J. Lightwave Technol.31(1), 58–66 (2013).
[CrossRef]

L. B. Du, M. M. Morshed, and A. J. Lowery, “Fiber nonlinearity compensation for OFDM super-channels using optical phase conjugation,” Opt. Express20(18), 19921–19927 (2012).
[CrossRef] [PubMed]

L. B. Du and A. J. Lowery, “Pilot-based cross-phase modulation compensation for coherent optical orthogonal frequency division multiplexing long-haul optical communications systems,” Opt. Lett.36, 3 (2011).

L. B. Du and A. J. Lowery, “Practical XPM compensation method for coherent optical OFDM systems,” IEEE Photon. Technol. Lett.22, 320–322 (2009).

Eggleton, B. J.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

M. D. Pelusi, F. Luan, D. Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express18(25), 26686–26694 (2010).
[CrossRef] [PubMed]

Ellis, A. D.

Escobar, H. E.

S. L. Jansen, S. Spalter, G. D. Khoe, H. Waardt, H. E. Escobar, L. Marshall, and M. Sher, “16×40 gb/s over 800 km of SSMF using mid-link spectral inversion,” IEEE Photon. Technol. Lett.16(7), 1763–1765 (2004).
[CrossRef]

Essiambre, R. J.

Fejer, M. M.

Ferrario, M.

Ip, E.

Jansen, S. L.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G. D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron.12(4), 505–520 (2006).
[CrossRef]

S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabrò, H. Suche, P. M. Krummrich, W. Sohler, G. D. Khoe, and H. de Waardt, “Optical phase conjugation for ultra long-haul Phase-Shift-Keyed transmission,” J. Lightwave Technol.24(1), 54–64 (2006).
[CrossRef]

S. L. Jansen, S. Spalter, G. D. Khoe, H. Waardt, H. E. Escobar, L. Marshall, and M. Sher, “16×40 gb/s over 800 km of SSMF using mid-link spectral inversion,” IEEE Photon. Technol. Lett.16(7), 1763–1765 (2004).
[CrossRef]

Ji, Y.

X. Liu, Y. Qiao, and Y. Ji, “Reduction of the fiber nonlinearity impairment using optical phase conjugation in 40Gb/s CO-OFDM systems,” Opt. Commun.283(13), 2749–2753 (2010).
[CrossRef]

Kahn, J. M.

Khoe, G. D.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G. D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron.12(4), 505–520 (2006).
[CrossRef]

S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabrò, H. Suche, P. M. Krummrich, W. Sohler, G. D. Khoe, and H. de Waardt, “Optical phase conjugation for ultra long-haul Phase-Shift-Keyed transmission,” J. Lightwave Technol.24(1), 54–64 (2006).
[CrossRef]

S. L. Jansen, S. Spalter, G. D. Khoe, H. Waardt, H. E. Escobar, L. Marshall, and M. Sher, “16×40 gb/s over 800 km of SSMF using mid-link spectral inversion,” IEEE Photon. Technol. Lett.16(7), 1763–1765 (2004).
[CrossRef]

Krummrich, P. M.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G. D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron.12(4), 505–520 (2006).
[CrossRef]

S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabrò, H. Suche, P. M. Krummrich, W. Sohler, G. D. Khoe, and H. de Waardt, “Optical phase conjugation for ultra long-haul Phase-Shift-Keyed transmission,” J. Lightwave Technol.24(1), 54–64 (2006).
[CrossRef]

Langrock, C.

Leuthold, J.

Liu, X.

X. Liu, Y. Qiao, and Y. Ji, “Reduction of the fiber nonlinearity impairment using optical phase conjugation in 40Gb/s CO-OFDM systems,” Opt. Commun.283(13), 2749–2753 (2010).
[CrossRef]

Lowery, A. J.

Luan, F.

Luther-Davies, B.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

M. D. Pelusi, F. Luan, D. Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express18(25), 26686–26694 (2010).
[CrossRef] [PubMed]

Ma, Y.

Madden, S. J.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

M. D. Pelusi, F. Luan, D. Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express18(25), 26686–26694 (2010).
[CrossRef] [PubMed]

Marazzi, L.

Marshall, L.

S. L. Jansen, S. Spalter, G. D. Khoe, H. Waardt, H. E. Escobar, L. Marshall, and M. Sher, “16×40 gb/s over 800 km of SSMF using mid-link spectral inversion,” IEEE Photon. Technol. Lett.16(7), 1763–1765 (2004).
[CrossRef]

Martelli, P.

Martinelli, M.

Minzioni, P.

Mitra, P. P.

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature411(6841), 1027–1030 (2001).
[CrossRef] [PubMed]

Morshed, M.

Morshed, M. M.

Pant, R.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

Parolari, P.

Pelusi, M. D.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

M. D. Pelusi, F. Luan, D. Y. Choi, S. J. Madden, D. A. P. Bulla, B. Luther-Davies, and B. J. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Express18(25), 26686–26694 (2010).
[CrossRef] [PubMed]

Pusino, V.

Qiao, Y.

X. Liu, Y. Qiao, and Y. Ji, “Reduction of the fiber nonlinearity impairment using optical phase conjugation in 40Gb/s CO-OFDM systems,” Opt. Commun.283(13), 2749–2753 (2010).
[CrossRef]

Raybon, G.

Schiffini, A.

Schroeder, J.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

Sher, M.

S. L. Jansen, S. Spalter, G. D. Khoe, H. Waardt, H. E. Escobar, L. Marshall, and M. Sher, “16×40 gb/s over 800 km of SSMF using mid-link spectral inversion,” IEEE Photon. Technol. Lett.16(7), 1763–1765 (2004).
[CrossRef]

Shieh, W.

Siano, R.

Sinsky, J. H.

Sohler, W.

Spalter, S.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G. D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron.12(4), 505–520 (2006).
[CrossRef]

S. L. Jansen, S. Spalter, G. D. Khoe, H. Waardt, H. E. Escobar, L. Marshall, and M. Sher, “16×40 gb/s over 800 km of SSMF using mid-link spectral inversion,” IEEE Photon. Technol. Lett.16(7), 1763–1765 (2004).
[CrossRef]

Spinnler, B.

Stark, J. B.

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature411(6841), 1027–1030 (2001).
[CrossRef] [PubMed]

Suche, H.

Tang, Y.

van den Borne, D.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G. D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron.12(4), 505–520 (2006).
[CrossRef]

S. L. Jansen, D. van den Borne, B. Spinnler, S. Calabrò, H. Suche, P. M. Krummrich, W. Sohler, G. D. Khoe, and H. de Waardt, “Optical phase conjugation for ultra long-haul Phase-Shift-Keyed transmission,” J. Lightwave Technol.24(1), 54–64 (2006).
[CrossRef]

Vo, T. D.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

Waardt, H.

S. L. Jansen, S. Spalter, G. D. Khoe, H. Waardt, H. E. Escobar, L. Marshall, and M. Sher, “16×40 gb/s over 800 km of SSMF using mid-link spectral inversion,” IEEE Photon. Technol. Lett.16(7), 1763–1765 (2004).
[CrossRef]

Watanabe, S.

Yi, X.

Yong Choi, D.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

Zhao, J.

IEEE J. Sel. Top. Quantum Electron. (1)

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spalter, G. D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE J. Sel. Top. Quantum Electron.12(4), 505–520 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. L. Jansen, S. Spalter, G. D. Khoe, H. Waardt, H. E. Escobar, L. Marshall, and M. Sher, “16×40 gb/s over 800 km of SSMF using mid-link spectral inversion,” IEEE Photon. Technol. Lett.16(7), 1763–1765 (2004).
[CrossRef]

L. B. Du and A. J. Lowery, “Practical XPM compensation method for coherent optical OFDM systems,” IEEE Photon. Technol. Lett.22, 320–322 (2009).

J. Lightwave Technol. (6)

Laser Photon. Rev. (1)

B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

Nature (1)

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature411(6841), 1027–1030 (2001).
[CrossRef] [PubMed]

Opt. Commun. (1)

X. Liu, Y. Qiao, and Y. Ji, “Reduction of the fiber nonlinearity impairment using optical phase conjugation in 40Gb/s CO-OFDM systems,” Opt. Commun.283(13), 2749–2753 (2010).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

L. B. Du and A. J. Lowery, “Pilot-based cross-phase modulation compensation for coherent optical orthogonal frequency division multiplexing long-haul optical communications systems,” Opt. Lett.36, 3 (2011).

S. Watanabe, “Cancellation of four-wave mixing in a single-mode fiber by midway optical phase conjugation,” Opt. Lett.19(17), 1308–1310 (1994).
[CrossRef] [PubMed]

Other (4)

L. Marazzi, P. Parolari, P. Martelli, R. Siano, P. Boffi, M. Ferrario, A. Righetti, M. Martinelli, V. Pusino, P. Minzioni, I. Cristiani, V. Degiorgio, C. Langrock, and M. M. Fejer, “Real-Time 100-Gb/s POLMUX RZ-DQPSK Transmission over Uncompensated 500 km of SSMF by Optical Phase Conjugation,” in National Fiber Optic Engineers Conference, (Optical Society of America, 2009), paper JWA44.

S. L. Jansen, D. van den Borne, C. Climent, M. Serbay, C. J. Weiske, H. Suche, P. M. Krummrich, S. Spalter, S. Calabro, N. Hecker-Denschlag, P. Leisching, W. Rosenkranz, W. Sohler, G. D. Khoe, T. Koonen, and H. de Waardt, “10,200 km 22×2×10 Gbit/s RZ-DQPSK dense WDM transmission without inline dispersion compensation through optical phase conjugation,” Optical Fiber Communication Conference, 2005. Technical Digest. OFC/NFOEC, 6, PDP 28, 6-11 March 2005.

M. Morshed, L. B. Du, and A. J. Lowery, “Performance Limitation of Coherent Optical OFDM Systems with non-ideal Optical Phase Conjugation,” in IEEE Photonics Conference TuU4, pp. 394-395, 23-27 Sept. 2012.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, H. Suche, W. Sohler, G. D. Khoe, H. de Waardt, I. Morita, and H. Tanaka, “Applications of optical phase conjugation in robust optical transmission systems,” in Proc. SPIE 6783 Optical Transmission, Switching, and Subsystems V, 67830P (November 19, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) System schematic,; and (b) block diagram a single-stage OPC module. Insets: (i) spectrum after the HNLF; (ii) spectrum at the output of the OPC module.

Fig. 2
Fig. 2

Block diagram of the two-part OPC module; (i): spectrum after the first part; (ii): spectrum after the BSF; (iii): spectrum after the second half of HNLF; (iv): spectrum at the output of the OPC module.

Fig. 3
Fig. 3

Back-to-back performance comparison between the conventional OPC module and the two-part OPC module with mid-way filtering.

Fig. 4
Fig. 4

Pump power and HNLF length dependence of performance improvement. All results are back-to-back.

Fig. 5
Fig. 5

Bandwidth dependence of performance improvement. All results are back-to-back.

Fig. 6
Fig. 6

Performance comparison between 10 × 80 km systems using the conventional OPC and two-part OPC for MSSI. (i): spectrum showing various signals and XPM levels in the two-part OPC module; (ii): spectrum showing various signals and XPM level with a conventional OPC module for MSSI.

Fig. 7
Fig. 7

Transmission distance and pump power dependence of performance improvement due to the mid-stage filter.

Fig. 8
Fig. 8

Signal bandwidth dependence of performance improvement in transmission system.

Fig. 9
Fig. 9

Effect of phase difference between the pumps injected into the first and second part of the HNLF on performance improvement.

Tables (1)

Tables Icon

Table 1 Simulation Parameters

Metrics