Abstract

We report the highest power operation of a resonantly cladding-pumped, holmium-doped silica fibre laser. The cladding pumped all-glass fibre utilises a fluorine doped glass layer to provide low loss cladding guidance of the 1.95 µm pump radiation. The operation of both single mode and large-mode area fibre lasers was demonstrated, with up to 140 W of output power achieved. A slope efficiency of 59% versus launched pump power was demonstrated. The free running emission was measured to be 2.12-2.15 µm demonstrating the potential of this architecture to address the long wavelength operation of silica based fibre lasers with high efficiency.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Wu, Z. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “Single frequency fiber laser at 2.05 µm based on Ho-doped germanate glass fiber,” Proc. SPIE7195, 71951K, 71951K-7 (2009).
    [CrossRef]
  2. J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” Compt. Rend. Phys.7(2), 213–223 (2006).
    [CrossRef]
  3. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
    [CrossRef]
  4. N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE8237, 82373K, 82373K-6 (2012).
    [CrossRef]
  5. C. Kieleck, A. Hildenbrand, M. Eichhorn, D. Faye, E. Lallier, B. Gerard, and S. D. Jackson, “OP-GaAs OPO pumped by 2 µm Q-switched lasers: Tm:Ho:silica fiber laser and Ho:YAG laser,” Proc. SPIE7836, 783607, 783607-8 (2010).
    [CrossRef]
  6. D. Creeden, P. A. Ketteridge, P. A. Budni, S. D. Setzler, Y. E. Young, J. C. McCarthy, K. Zawilski, P. G. Schunemann, T. M. Pollak, E. P. Chicklis, and M. Jiang, “Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2µm Tm-doped fiber laser,” Opt. Lett.33(4), 315–317 (2008).
    [CrossRef] [PubMed]
  7. S. D. Jackson and T. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett.23(18), 1462–1464 (1998).
    [CrossRef] [PubMed]
  8. A. Carter, J. Farroni, B. Sampson, D. Machewirth, N. Jacobson, W. Torruellas, Y. Chen, M.-Y. Cheng, A. Galvanauskas, and A. Sanchez, “Robustly single-mode polarization maintaining Er/Yb co-doped LMA fiber for high power applications,” in Conference on Lasers and Electro-Optics, CLEO, (IEEE, 2007), pp. 1–2.
  9. S. U. Alam, A. T. Harker, R. J. Horley, F. Ghiringhelli, M. P. Varnham, P. W. Turner, M. N. Zervas, and S. R. Norman, “All-fibre, high power, cladding-pumped 1565 nm MOPA pumped by high brightness 1535 nm pump sources,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CWJ4.
  10. M. Meleshkevich, N. Platonov, D. Gapontsev, A. Drozhzhin, V. Sergeev, and V. Gapontsev, “415 W single-mode CW thulium fiber laser in all-fiber format,” in European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference. CLEOE-IQEC 2007, (IEEE, 2007), pp. CP2.
  11. Y. Tang, L. Xu, Y. Yang, and J. Xu, “High-power gain-switched Tm3+-doped fiber laser,” Opt. Express18(22), 22964–22972 (2010).
    [CrossRef] [PubMed]
  12. E. Stiles, “New developments in IPG fiber laser technology,” in Proceedings of the 5th International Workshop on Fiber Lasers (2009).
  13. S. D. Jackson, F. Bugge, and G. Erbert, “High-power and highly efficient diode-cladding-pumped Ho3+-doped silica fiber lasers,” Opt. Lett.32(22), 3349–3351 (2007).
    [CrossRef] [PubMed]
  14. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express17(2), 447–454 (2009).
    [CrossRef] [PubMed]
  15. S. D. Jackson, “Midinfrared holmium fiber lasers,” IEEE J. Quantum Electron.42(2), 187–191 (2006).
    [CrossRef]
  16. A. S. Kurkov, V. V. Dvoyrin, and A. V. Marakulin, “All-fiber 10 W holmium lasers pumped at λ=1.15 microm,” Opt. Lett.35(4), 490–492 (2010).
    [CrossRef] [PubMed]
  17. J. W. Kim, A. Boyland, J. K. Sahu, and W. A. Clarkson, “Ho-doped silica fibre laser in-band pumped by a Tm-doped fibre laser,” in CLEO/Europe and EQEC 2009 Conference Digest, (Optical Society of America, 2009), paper CJ6_5.
  18. S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett.32(3), 241–243 (2007).
    [CrossRef] [PubMed]
  19. A. S. Kurkov, E. M. Sholokhov, V. B. Tsvetkov, A. V. Marakulin, L. A. Minashina, O. I. Medvedkov, and A. F. Kosolapov, “Holmium fibre laser with record quantum efficiency,” Quantum Electron.41(6), 492–494 (2011).
    [CrossRef]
  20. S. Nagel, J. MacChesney, and K. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE Trans. Microw. Theory Tech.30(4), 305–322 (1982).
    [CrossRef]
  21. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
    [CrossRef]

2012 (1)

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE8237, 82373K, 82373K-6 (2012).
[CrossRef]

2011 (1)

A. S. Kurkov, E. M. Sholokhov, V. B. Tsvetkov, A. V. Marakulin, L. A. Minashina, O. I. Medvedkov, and A. F. Kosolapov, “Holmium fibre laser with record quantum efficiency,” Quantum Electron.41(6), 492–494 (2011).
[CrossRef]

2010 (3)

C. Kieleck, A. Hildenbrand, M. Eichhorn, D. Faye, E. Lallier, B. Gerard, and S. D. Jackson, “OP-GaAs OPO pumped by 2 µm Q-switched lasers: Tm:Ho:silica fiber laser and Ho:YAG laser,” Proc. SPIE7836, 783607, 783607-8 (2010).
[CrossRef]

A. S. Kurkov, V. V. Dvoyrin, and A. V. Marakulin, “All-fiber 10 W holmium lasers pumped at λ=1.15 microm,” Opt. Lett.35(4), 490–492 (2010).
[CrossRef] [PubMed]

Y. Tang, L. Xu, Y. Yang, and J. Xu, “High-power gain-switched Tm3+-doped fiber laser,” Opt. Express18(22), 22964–22972 (2010).
[CrossRef] [PubMed]

2009 (3)

A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express17(2), 447–454 (2009).
[CrossRef] [PubMed]

J. Wu, Z. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “Single frequency fiber laser at 2.05 µm based on Ho-doped germanate glass fiber,” Proc. SPIE7195, 71951K, 71951K-7 (2009).
[CrossRef]

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

2008 (1)

2007 (2)

2006 (2)

J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” Compt. Rend. Phys.7(2), 213–223 (2006).
[CrossRef]

S. D. Jackson, “Midinfrared holmium fiber lasers,” IEEE J. Quantum Electron.42(2), 187–191 (2006).
[CrossRef]

1998 (1)

1996 (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

1982 (1)

S. Nagel, J. MacChesney, and K. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE Trans. Microw. Theory Tech.30(4), 305–322 (1982).
[CrossRef]

Augere, B.

J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” Compt. Rend. Phys.7(2), 213–223 (2006).
[CrossRef]

Bennetts, S.

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE8237, 82373K, 82373K-6 (2012).
[CrossRef]

S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett.32(3), 241–243 (2007).
[CrossRef] [PubMed]

Broeng, J.

Budni, P. A.

Bugge, F.

Cariou, J.-P.

J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” Compt. Rend. Phys.7(2), 213–223 (2006).
[CrossRef]

Carmody, N.

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE8237, 82373K, 82373K-6 (2012).
[CrossRef]

Carter, A. L. G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Chavez-Pirson, A.

J. Wu, Z. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “Single frequency fiber laser at 2.05 µm based on Ho-doped germanate glass fiber,” Proc. SPIE7195, 71951K, 71951K-7 (2009).
[CrossRef]

Chicklis, E. P.

Creeden, D.

Davidson, A.

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE8237, 82373K, 82373K-6 (2012).
[CrossRef]

Davies, P.

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE8237, 82373K, 82373K-6 (2012).
[CrossRef]

Dvoyrin, V. V.

Eichhorn, M.

C. Kieleck, A. Hildenbrand, M. Eichhorn, D. Faye, E. Lallier, B. Gerard, and S. D. Jackson, “OP-GaAs OPO pumped by 2 µm Q-switched lasers: Tm:Ho:silica fiber laser and Ho:YAG laser,” Proc. SPIE7836, 783607, 783607-8 (2010).
[CrossRef]

Erbert, G.

Fabian, H.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

Faye, D.

C. Kieleck, A. Hildenbrand, M. Eichhorn, D. Faye, E. Lallier, B. Gerard, and S. D. Jackson, “OP-GaAs OPO pumped by 2 µm Q-switched lasers: Tm:Ho:silica fiber laser and Ho:YAG laser,” Proc. SPIE7836, 783607, 783607-8 (2010).
[CrossRef]

Frith, G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Gerard, B.

C. Kieleck, A. Hildenbrand, M. Eichhorn, D. Faye, E. Lallier, B. Gerard, and S. D. Jackson, “OP-GaAs OPO pumped by 2 µm Q-switched lasers: Tm:Ho:silica fiber laser and Ho:YAG laser,” Proc. SPIE7836, 783607, 783607-8 (2010).
[CrossRef]

Grzesik, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

Haken, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

Haub, J.

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE8237, 82373K, 82373K-6 (2012).
[CrossRef]

Heitmann, W.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

Hemming, A.

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE8237, 82373K, 82373K-6 (2012).
[CrossRef]

S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett.32(3), 241–243 (2007).
[CrossRef] [PubMed]

Hildenbrand, A.

C. Kieleck, A. Hildenbrand, M. Eichhorn, D. Faye, E. Lallier, B. Gerard, and S. D. Jackson, “OP-GaAs OPO pumped by 2 µm Q-switched lasers: Tm:Ho:silica fiber laser and Ho:YAG laser,” Proc. SPIE7836, 783607, 783607-8 (2010).
[CrossRef]

Hughes, M.

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE8237, 82373K, 82373K-6 (2012).
[CrossRef]

Humbach, O.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

Jackson, S. D.

Jiang, M.

Ketteridge, P. A.

Kieleck, C.

C. Kieleck, A. Hildenbrand, M. Eichhorn, D. Faye, E. Lallier, B. Gerard, and S. D. Jackson, “OP-GaAs OPO pumped by 2 µm Q-switched lasers: Tm:Ho:silica fiber laser and Ho:YAG laser,” Proc. SPIE7836, 783607, 783607-8 (2010).
[CrossRef]

King, T.

Kosolapov, A. F.

A. S. Kurkov, E. M. Sholokhov, V. B. Tsvetkov, A. V. Marakulin, L. A. Minashina, O. I. Medvedkov, and A. F. Kosolapov, “Holmium fibre laser with record quantum efficiency,” Quantum Electron.41(6), 492–494 (2011).
[CrossRef]

Kurkov, A. S.

A. S. Kurkov, E. M. Sholokhov, V. B. Tsvetkov, A. V. Marakulin, L. A. Minashina, O. I. Medvedkov, and A. F. Kosolapov, “Holmium fibre laser with record quantum efficiency,” Quantum Electron.41(6), 492–494 (2011).
[CrossRef]

A. S. Kurkov, V. V. Dvoyrin, and A. V. Marakulin, “All-fiber 10 W holmium lasers pumped at λ=1.15 microm,” Opt. Lett.35(4), 490–492 (2010).
[CrossRef] [PubMed]

Lallier, E.

C. Kieleck, A. Hildenbrand, M. Eichhorn, D. Faye, E. Lallier, B. Gerard, and S. D. Jackson, “OP-GaAs OPO pumped by 2 µm Q-switched lasers: Tm:Ho:silica fiber laser and Ho:YAG laser,” Proc. SPIE7836, 783607, 783607-8 (2010).
[CrossRef]

Lancaster, D. G.

Lyngsø, J. K.

MacChesney, J.

S. Nagel, J. MacChesney, and K. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE Trans. Microw. Theory Tech.30(4), 305–322 (1982).
[CrossRef]

Marakulin, A. V.

A. S. Kurkov, E. M. Sholokhov, V. B. Tsvetkov, A. V. Marakulin, L. A. Minashina, O. I. Medvedkov, and A. F. Kosolapov, “Holmium fibre laser with record quantum efficiency,” Quantum Electron.41(6), 492–494 (2011).
[CrossRef]

A. S. Kurkov, V. V. Dvoyrin, and A. V. Marakulin, “All-fiber 10 W holmium lasers pumped at λ=1.15 microm,” Opt. Lett.35(4), 490–492 (2010).
[CrossRef] [PubMed]

Maruyama, H.

McCarthy, J. C.

Medvedkov, O. I.

A. S. Kurkov, E. M. Sholokhov, V. B. Tsvetkov, A. V. Marakulin, L. A. Minashina, O. I. Medvedkov, and A. F. Kosolapov, “Holmium fibre laser with record quantum efficiency,” Quantum Electron.41(6), 492–494 (2011).
[CrossRef]

Minashina, L. A.

A. S. Kurkov, E. M. Sholokhov, V. B. Tsvetkov, A. V. Marakulin, L. A. Minashina, O. I. Medvedkov, and A. F. Kosolapov, “Holmium fibre laser with record quantum efficiency,” Quantum Electron.41(6), 492–494 (2011).
[CrossRef]

Moulton, P. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Nagel, S.

S. Nagel, J. MacChesney, and K. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE Trans. Microw. Theory Tech.30(4), 305–322 (1982).
[CrossRef]

Olausson, C. B.

Peyghambarian, N.

J. Wu, Z. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “Single frequency fiber laser at 2.05 µm based on Ho-doped germanate glass fiber,” Proc. SPIE7195, 71951K, 71951K-7 (2009).
[CrossRef]

Pollak, T. M.

Rines, G. A.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Sabella, A.

Samson, B.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Schunemann, P. G.

Setzler, S. D.

Shirakawa, A.

Sholokhov, E. M.

A. S. Kurkov, E. M. Sholokhov, V. B. Tsvetkov, A. V. Marakulin, L. A. Minashina, O. I. Medvedkov, and A. F. Kosolapov, “Holmium fibre laser with record quantum efficiency,” Quantum Electron.41(6), 492–494 (2011).
[CrossRef]

Simakov, N.

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE8237, 82373K, 82373K-6 (2012).
[CrossRef]

Slobodtchikov, E. V.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Tang, Y.

Tsvetkov, V. B.

A. S. Kurkov, E. M. Sholokhov, V. B. Tsvetkov, A. V. Marakulin, L. A. Minashina, O. I. Medvedkov, and A. F. Kosolapov, “Holmium fibre laser with record quantum efficiency,” Quantum Electron.41(6), 492–494 (2011).
[CrossRef]

Ueda, K.

Valla, M.

J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” Compt. Rend. Phys.7(2), 213–223 (2006).
[CrossRef]

Walker, K.

S. Nagel, J. MacChesney, and K. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE Trans. Microw. Theory Tech.30(4), 305–322 (1982).
[CrossRef]

Wall, K. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Wu, J.

J. Wu, Z. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “Single frequency fiber laser at 2.05 µm based on Ho-doped germanate glass fiber,” Proc. SPIE7195, 71951K, 71951K-7 (2009).
[CrossRef]

Xu, J.

Xu, L.

Yang, Y.

Yao, Z.

J. Wu, Z. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “Single frequency fiber laser at 2.05 µm based on Ho-doped germanate glass fiber,” Proc. SPIE7195, 71951K, 71951K-7 (2009).
[CrossRef]

Young, Y. E.

Yu, J.

J. Wu, Z. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “Single frequency fiber laser at 2.05 µm based on Ho-doped germanate glass fiber,” Proc. SPIE7195, 71951K, 71951K-7 (2009).
[CrossRef]

Zawilski, K.

Zong, J.

J. Wu, Z. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “Single frequency fiber laser at 2.05 µm based on Ho-doped germanate glass fiber,” Proc. SPIE7195, 71951K, 71951K-7 (2009).
[CrossRef]

Compt. Rend. Phys. (1)

J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” Compt. Rend. Phys.7(2), 213–223 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. D. Jackson, “Midinfrared holmium fiber lasers,” IEEE J. Quantum Electron.42(2), 187–191 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

S. Nagel, J. MacChesney, and K. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE Trans. Microw. Theory Tech.30(4), 305–322 (1982).
[CrossRef]

J. Non-Cryst. Solids (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Proc. SPIE (3)

N. Simakov, A. Davidson, A. Hemming, S. Bennetts, M. Hughes, N. Carmody, P. Davies, and J. Haub, “Mid-infrared generation in ZnGeP2 pumped by a monolithic, power scalable 2-µm source,” Proc. SPIE8237, 82373K, 82373K-6 (2012).
[CrossRef]

C. Kieleck, A. Hildenbrand, M. Eichhorn, D. Faye, E. Lallier, B. Gerard, and S. D. Jackson, “OP-GaAs OPO pumped by 2 µm Q-switched lasers: Tm:Ho:silica fiber laser and Ho:YAG laser,” Proc. SPIE7836, 783607, 783607-8 (2010).
[CrossRef]

J. Wu, Z. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. Yu, “Single frequency fiber laser at 2.05 µm based on Ho-doped germanate glass fiber,” Proc. SPIE7195, 71951K, 71951K-7 (2009).
[CrossRef]

Quantum Electron. (1)

A. S. Kurkov, E. M. Sholokhov, V. B. Tsvetkov, A. V. Marakulin, L. A. Minashina, O. I. Medvedkov, and A. F. Kosolapov, “Holmium fibre laser with record quantum efficiency,” Quantum Electron.41(6), 492–494 (2011).
[CrossRef]

Other (5)

J. W. Kim, A. Boyland, J. K. Sahu, and W. A. Clarkson, “Ho-doped silica fibre laser in-band pumped by a Tm-doped fibre laser,” in CLEO/Europe and EQEC 2009 Conference Digest, (Optical Society of America, 2009), paper CJ6_5.

E. Stiles, “New developments in IPG fiber laser technology,” in Proceedings of the 5th International Workshop on Fiber Lasers (2009).

A. Carter, J. Farroni, B. Sampson, D. Machewirth, N. Jacobson, W. Torruellas, Y. Chen, M.-Y. Cheng, A. Galvanauskas, and A. Sanchez, “Robustly single-mode polarization maintaining Er/Yb co-doped LMA fiber for high power applications,” in Conference on Lasers and Electro-Optics, CLEO, (IEEE, 2007), pp. 1–2.

S. U. Alam, A. T. Harker, R. J. Horley, F. Ghiringhelli, M. P. Varnham, P. W. Turner, M. N. Zervas, and S. R. Norman, “All-fibre, high power, cladding-pumped 1565 nm MOPA pumped by high brightness 1535 nm pump sources,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CWJ4.

M. Meleshkevich, N. Platonov, D. Gapontsev, A. Drozhzhin, V. Sergeev, and V. Gapontsev, “415 W single-mode CW thulium fiber laser in all-fiber format,” in European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference. CLEOE-IQEC 2007, (IEEE, 2007), pp. CP2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Fluorine-doped glass clad holmium-doped silica fibre.

Fig. 2
Fig. 2

Schematic of experimental laser layout.

Fig. 3
Fig. 3

Output power from single (red) and double (blue) end pumped SM holmium fibre lasers.

Fig. 4
Fig. 4

Spectra of double-end pumped SM holmium fibre laser.

Fig. 5
Fig. 5

Output power of the double-end pumped LMA fibre laser.

Fig. 6
Fig. 6

(a) Spectra of the double-end pumped LMA holmium fibre laser. (b) Near field beam profile at 25 W (top) and 140 W (bottom).

Tables (1)

Tables Icon

Table 1 Description of the Fibres under Investigation

Metrics