Abstract

Laser frequency combs are normally based on mode-locked oscillators emitting ultrashort pulses of ~100-fs or shorter. In this paper, we present a self-referenced frequency comb based on a narrowband (5-nm bandwidth corresponding to 415-fs transform-limited pulses) Yb-fiber oscillator with a repetition rate of 280 MHz. We employ a nonlinear Yb-fiber amplifier to both amplify the narrowband pulses and broaden their optical spectrum. To optimize the carrier envelope offset frequency (fCEO), we optimize the nonlinear pulse amplification by pre-chirping the pulses at the amplifier input. An optimum negative pre-chirp exists, which produces a signal-to-noise ratio of 35 dB (100 kHz resolution bandwidth) for the detected fCEO. We phase stabilize the fCEO using a feed-forward method, resulting in 0.64-rad (integrated from 1 Hz to 10 MHz) phase noise for the in-loop error signal. This work demonstrates the feasibility of implementing frequency combs from a narrowband oscillator, which is of particular importance for realizing large line-spacing frequency combs based on multi-GHz oscillators usually emitting long (>200 fs) pulses.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Diddams, “The evolving optical frequency comb [Invited],” J. Opt. Soc. Am. B27(11), B51–B62 (2010).
    [CrossRef]
  2. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681–681 (2009).
    [CrossRef] [PubMed]
  3. S. Pekarek, T. Südmeyer, S. Lecomte, S. Kundermann, J. M. Dudley, and U. Keller, “Self-referenceable frequency comb from a gigahertz diode-pumped solid-state laser,” Opt. Express19(17), 16491–16497 (2011).
    [CrossRef] [PubMed]
  4. I. Hartl, H. A. Mckay, R. Thapa, B. K. Thomas, A. Rühl, L. Dong, and M. E. Fermann, “GHz Yb-fiber laser frequency comb for spectroscopy applications,” in Fourier Transform Spectroscopy, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB3.
  5. T. C. Schratwieser, C. G. Leburn, and D. T. Reid, “Highly efficient 1 GHz repetition-frequency femtosecond Yb3+:KY(WO4)2 laser,” Opt. Lett.37(6), 1133–1135 (2012).
    [CrossRef] [PubMed]
  6. S. Yamazoe, M. Katou, T. Adachi, and T. Kasamatsu, “Palm-top-size, 1.5 kW peak-power, and femtosecond (160 fs) diode-pumped mode-locked Yb+3:KY(WO4)2 solid-state laser with a semiconductor saturable absorber mirror,” Opt. Lett.35(5), 748–750 (2010).
    [CrossRef] [PubMed]
  7. H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett.37(17), 3522–3524 (2012).
    [CrossRef] [PubMed]
  8. M. Endo, A. Ozawa, and Y. Kobayashi, “Kerr-lens mode-locked Yb:KYW laser at 4.6-GHz repetition rate,” Opt. Express20(11), 12191–12197 (2012).
    [CrossRef] [PubMed]
  9. S. Pekarek, A. Klenner, T. Südmeyer, C. Fiebig, K. Paschke, G. Erbert, and U. Keller, “Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8 GHz,” Opt. Express20(4), 4248–4253 (2012).
    [CrossRef] [PubMed]
  10. A. Choudhary, A. A. Lagatsky, P. Kannan, W. Sibbett, C. T. A. Brown, and D. P. Shepherd, “Diode-pumped femtosecond solid-state waveguide laser with a 4.9 GHz pulse repetition rate,” Opt. Lett.37(21), 4416–4418 (2012).
    [CrossRef] [PubMed]
  11. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
  12. S. Pekarek, M. C. Stumpf, S. Lecomte, S. Kundermann, A. Klenner, T. Südmeyer, J. M. Dudley, and U. Keller, “Compact gigahertz frequency comb generation: how short do the pulses need to be?” in Advanced Solid-State Photonics, p. AT5A. 2, San Diego, California, USA (2012).
  13. S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics4(7), 462–465 (2010).
    [CrossRef]
  14. H.-W. Chen, T. Sosnowski, C.-H. Liu, L.-J. Chen, J. R. Birge, A. Galvanauskas, F. X. Kärtner, and G. Chang, “Chirally-coupled-core Yb-fiber laser delivering 80-fs pulses with diffraction-limited beam quality warranted by a high-dispersion mirror based compressor,” Opt. Express18(24), 24699–24705 (2010).
    [CrossRef] [PubMed]
  15. J. Lim, H.-W. Chen, A.-L. Calendron, G. Chang, and F. X. Kärtner, “Optimization of ultrafast Yb-doped fiber amplifiers to achieve high-quality compressed-pulses,” XVIIIth International Conference on Ultrafast Phenomena (2012), Tue.PII.2.
  16. H.-W. Chen, J. Lim, S.-W. Huang, D. N. Schimpf, F. X. Kärtner, and G. Chang, “Optimization of femtosecond Yb-doped fiber amplifiers for high-quality pulse compression,” Opt. Express20(27), 28672–28682 (2012).
    [CrossRef] [PubMed]
  17. A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett.27(11), 924–926 (2002).
    [CrossRef] [PubMed]
  18. G. Q. Chang, T. B. Norris, and H. G. Winful, “Optimization of supercontinuum generation in photonic crystal fibers for pulse compression,” Opt. Lett.28(7), 546–548 (2003).
    [CrossRef] [PubMed]
  19. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett.90(11), 113904 (2003).
    [CrossRef] [PubMed]
  20. R. Paschotta, “Timing jitter and phase noiseof mode-locked fiber lasers,” Opt. Express18(5), 5041–5054 (2010).
    [CrossRef] [PubMed]
  21. C. Benko, A. Ruehl, M. J. Martin, K. S. E. Eikema, M. E. Fermann, I. Hartl, and J. Ye, “Full phase stabilization of a Yb:fiber femtosecond frequency comb via high-bandwidth transducers,” Opt. Lett.37(12), 2196–2198 (2012).
    [CrossRef] [PubMed]

2012

T. C. Schratwieser, C. G. Leburn, and D. T. Reid, “Highly efficient 1 GHz repetition-frequency femtosecond Yb3+:KY(WO4)2 laser,” Opt. Lett.37(6), 1133–1135 (2012).
[CrossRef] [PubMed]

H.-W. Chen, G. Chang, S. Xu, Z. Yang, and F. X. Kärtner, “3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser,” Opt. Lett.37(17), 3522–3524 (2012).
[CrossRef] [PubMed]

M. Endo, A. Ozawa, and Y. Kobayashi, “Kerr-lens mode-locked Yb:KYW laser at 4.6-GHz repetition rate,” Opt. Express20(11), 12191–12197 (2012).
[CrossRef] [PubMed]

S. Pekarek, A. Klenner, T. Südmeyer, C. Fiebig, K. Paschke, G. Erbert, and U. Keller, “Femtosecond diode-pumped solid-state laser with a repetition rate of 4.8 GHz,” Opt. Express20(4), 4248–4253 (2012).
[CrossRef] [PubMed]

A. Choudhary, A. A. Lagatsky, P. Kannan, W. Sibbett, C. T. A. Brown, and D. P. Shepherd, “Diode-pumped femtosecond solid-state waveguide laser with a 4.9 GHz pulse repetition rate,” Opt. Lett.37(21), 4416–4418 (2012).
[CrossRef] [PubMed]

H.-W. Chen, J. Lim, S.-W. Huang, D. N. Schimpf, F. X. Kärtner, and G. Chang, “Optimization of femtosecond Yb-doped fiber amplifiers for high-quality pulse compression,” Opt. Express20(27), 28672–28682 (2012).
[CrossRef] [PubMed]

C. Benko, A. Ruehl, M. J. Martin, K. S. E. Eikema, M. E. Fermann, I. Hartl, and J. Ye, “Full phase stabilization of a Yb:fiber femtosecond frequency comb via high-bandwidth transducers,” Opt. Lett.37(12), 2196–2198 (2012).
[CrossRef] [PubMed]

2011

2010

2009

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681–681 (2009).
[CrossRef] [PubMed]

2006

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).

2003

G. Q. Chang, T. B. Norris, and H. G. Winful, “Optimization of supercontinuum generation in photonic crystal fibers for pulse compression,” Opt. Lett.28(7), 546–548 (2003).
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett.90(11), 113904 (2003).
[CrossRef] [PubMed]

2002

Adachi, T.

Anderson, A.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics4(7), 462–465 (2010).
[CrossRef]

Assion, A.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics4(7), 462–465 (2010).
[CrossRef]

Bartels, A.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681–681 (2009).
[CrossRef] [PubMed]

Benko, C.

Birge, J. R.

Brown, C. T. A.

Chang, G.

Chang, G. Q.

Chen, H.-W.

Chen, L.-J.

Choudhary, A.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett.90(11), 113904 (2003).
[CrossRef] [PubMed]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett.90(11), 113904 (2003).
[CrossRef] [PubMed]

Diddams, S. A.

S. A. Diddams, “The evolving optical frequency comb [Invited],” J. Opt. Soc. Am. B27(11), B51–B62 (2010).
[CrossRef]

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681–681 (2009).
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett.90(11), 113904 (2003).
[CrossRef] [PubMed]

Dudley, J. M.

S. Pekarek, T. Südmeyer, S. Lecomte, S. Kundermann, J. M. Dudley, and U. Keller, “Self-referenceable frequency comb from a gigahertz diode-pumped solid-state laser,” Opt. Express19(17), 16491–16497 (2011).
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett.90(11), 113904 (2003).
[CrossRef] [PubMed]

Eikema, K. S. E.

Endo, M.

Erbert, G.

Fermann, M. E.

Fiebig, C.

Frei, H.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics4(7), 462–465 (2010).
[CrossRef]

Gaeta, A. L.

Galvanauskas, A.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).

Grebing, C.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics4(7), 462–465 (2010).
[CrossRef]

Hartl, I.

Heinecke, D.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681–681 (2009).
[CrossRef] [PubMed]

Huang, S.-W.

Kannan, P.

Kärtner, F. X.

Kasamatsu, T.

Katou, M.

Keller, U.

Klenner, A.

Kobayashi, Y.

Koke, S.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics4(7), 462–465 (2010).
[CrossRef]

Kundermann, S.

Lagatsky, A. A.

Leburn, C. G.

Lecomte, S.

Lim, J.

Liu, C.-H.

Martin, M. J.

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett.90(11), 113904 (2003).
[CrossRef] [PubMed]

Norris, T. B.

Ozawa, A.

Paschke, K.

Paschotta, R.

Pekarek, S.

Reid, D. T.

Ruehl, A.

Schimpf, D. N.

Schratwieser, T. C.

Shepherd, D. P.

Sibbett, W.

Sosnowski, T.

Steinmeyer, G.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics4(7), 462–465 (2010).
[CrossRef]

Südmeyer, T.

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett.90(11), 113904 (2003).
[CrossRef] [PubMed]

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett.90(11), 113904 (2003).
[CrossRef] [PubMed]

Winful, H. G.

Xu, S.

Yamazoe, S.

Yang, Z.

Ye, J.

J. Opt. Soc. Am. B

Nat. Photonics

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics4(7), 462–465 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett.90(11), 113904 (2003).
[CrossRef] [PubMed]

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).

Science

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681–681 (2009).
[CrossRef] [PubMed]

Other

I. Hartl, H. A. Mckay, R. Thapa, B. K. Thomas, A. Rühl, L. Dong, and M. E. Fermann, “GHz Yb-fiber laser frequency comb for spectroscopy applications,” in Fourier Transform Spectroscopy, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB3.

S. Pekarek, M. C. Stumpf, S. Lecomte, S. Kundermann, A. Klenner, T. Südmeyer, J. M. Dudley, and U. Keller, “Compact gigahertz frequency comb generation: how short do the pulses need to be?” in Advanced Solid-State Photonics, p. AT5A. 2, San Diego, California, USA (2012).

J. Lim, H.-W. Chen, A.-L. Calendron, G. Chang, and F. X. Kärtner, “Optimization of ultrafast Yb-doped fiber amplifiers to achieve high-quality compressed-pulses,” XVIIIth International Conference on Ultrafast Phenomena (2012), Tue.PII.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) schematic setup of the Yb-fiber oscillator. DM: dichroic mirror, LD: laser diode, HW: half wave-plate, QW: quarter wave-plate, DCM: dispersion compensating mirror, PZT: piezo-electric transducer. (b) narrowband (black solid curve) and broadband (red dotted curve) spectra of the Yb-fiber oscillator mode-locked.

Fig. 2
Fig. 2

Fully stabilized frequency comb based on a 280-MHz narrowband Yb-fiber oscillator. OSC: oscillator, AOFS: acousto-optic frequency shifter, PD: photo-detector, CL: collimating lens, PBC: polarization beam combiner, WDM: wavelength division multiplexer, YDF: Yb-doped fiber, ISO: isolator, DM: dichroic mirror, PCF: photonic crystal fiber, PPLN: periodically poled lithium niobate, APD: avalanche photo-detector.

Fig. 3
Fig. 3

(a) Instability (i.e., integrated RIN) for the amplified pulses as a function of pre-chirping GDD. Black-dotted line: oscillator instability. (b) RIN for different pre-chirp GDD: + 0.01 ps2 (green curve) and −0.09 ps2 (blue curve).

Fig. 4
Fig. 4

(a) Oscillator spectrum (black-dashed curve) and spectrum after the amplifier (red curve). (b) Experimentally measured autocorrelation trace for the amplified pulses (red curve). Blue curve shows the autocorrelation trace of the transform-limited pulse calculated from the amplified spectrum in (a).

Fig. 5
Fig. 5

(a) Octave spanning supercontinuum generation using 40 cm PCF. (b) Measured fCEO (x-axis: fCEO −190 MHz) and its linewidth with RBW = 100 kHz.

Fig. 6
Fig. 6

(a) Power spectral density (PSD) and the RMS integrated phase noise; unlocked (black), locked (red), Phase error calculated by integrating noise PSD from 1 Hz to 10 MHz (blue), (b) Measured fCEO linewidth (x-axis: fCEO−190 MHz) with 1 kHz RBW; Inset with 0.2 Hz RBW.

Tables (1)

Tables Icon

Table 1 A survey of diode pumped, mode-locked femtosecond lasers with >1 GHz repetition rate. SBW: spectral bandwidth at FWHM, τp (TL): transform-limited pulse duration (assuming sech2 pulse), SAM: saturable absorber mirror

Metrics