Abstract

We report on multi-wavelength arrays of master-oscillator power-amplifier quantum cascade lasers operating at wavelengths between 9.2 and 9.8 μm. All elements of the high-performance array feature longitudinal (spectral) as well as transverse single-mode emission at peak powers between 2.7 and 10 W at room temperature. The performance of two arrays that are based on different seed-section designs is thoroughly studied and compared. High output power and excellent beam quality render the arrays highly suitable for stand-off spectroscopy applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
    [CrossRef] [PubMed]
  2. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys.64(11), 1533–1601 (2001).
    [CrossRef]
  3. A. K. Goyal, M. Spencer, M. Kelly, J. Costa, M. DiLiberto, E. Meyer, and T. Jeys, “Active infrared multispectral imaging of chemicals on surfaces,” Proc. SPIE8018, 80180N, 80180N-11 (2011).
    [CrossRef]
  4. C. A. Kendziora, R. M. Jones, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, “Infrared photothermal imaging for standoff detection applications,” Proc. SPIE8373, 83732H, 83732H-10 (2012).
    [CrossRef]
  5. K. Degreif, S. Rademacher, P. Dasheva, F. Fuchs, S. Hugger, F. Schnürer, and W. Schweikert, “Stand-off explosive detection on surfaces using multispectral MIR-imaging,” Proc. SPIE7945, 79450P, 79450P-8 (2011).
    [CrossRef]
  6. For a review on external cavity QCLs see:A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol.25(8), 083001 (2010).
    [CrossRef]
  7. B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Höfler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron.45(5), 554–565 (2009).
    [CrossRef]
  8. E. Mujagic, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett.98(14), 141101 (2011).
    [CrossRef]
  9. Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98(18), 181106 (2011).
    [CrossRef]
  10. H. Zhang, A. Seetharaman, P. Johnson, G. Luo, and H. Q. Le, “High-gain low-noise mid-infrared quantum cascade optical preamplifier for receiver,” IEEE Photon. Technol. Lett.17(1), 13–15 (2005).
    [CrossRef]
  11. D. F. Welch, D. Mehuys, R. Parke, R. Waarts, D. Scifres, and W. Streifer, “Coherent operation of monolithically integrated master oscillator amplifiers,” Electron. Lett.26(17), 1327–1329 (1990).
    [CrossRef]
  12. H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett.43(3), 160–161 (2007).
    [CrossRef]
  13. M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ~7.4µm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80(22), 4103–4105 (2002).
    [CrossRef]
  14. S. Menzel, L. Diehl, C. Pflügl, A. Goyal, C. Wang, A. Sanchez, G. Turner, and F. Capasso, “Quantum cascade laser master-oscillator power-amplifier with 1.5 W output power at 300 K,” Opt. Express19(17), 16229–16235 (2011).
    [CrossRef] [PubMed]
  15. P. Rauter, S. Menzel, A. K. Goyal, B. Gökden, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett.101(26), 261117 (2012).
    [CrossRef]
  16. A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade laser for broad-gain applications,” IEEE J. Quantum Electron.44(1), 36–40 (2008).
    [CrossRef]
  17. C. Pflügl, W. Schrenk, S. Anders, and G. Strasser, “Spectral dynamics of distributed feedback quantum cascade lasers,” Semicond. Sci. Technol.19(4), S336–S338 (2004).
    [CrossRef]
  18. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, 2006), Chap. 16.
  19. A. K. Goyal, M. Spencer, O. Shatrovoy, B. G. Lee, L. Diehl, C. Pfluegl, A. Sanchez, and F. Capasso, “Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays,” Opt. Express19(27), 26725–26732 (2011).
    [CrossRef] [PubMed]
  20. K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, “λ/4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron.22(7), 1042–1051 (1986).
    [CrossRef]
  21. M. Usami, S. Akiba, and K. Utaka, “Asymmetric λ/4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron.23(6), 815–821 (1987).
    [CrossRef]
  22. G. Morthier and P. Vankenwinkelberge, “Handbook of distributed feedback laser diodes” (Artech House, 1997).

2012 (2)

C. A. Kendziora, R. M. Jones, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, “Infrared photothermal imaging for standoff detection applications,” Proc. SPIE8373, 83732H, 83732H-10 (2012).
[CrossRef]

P. Rauter, S. Menzel, A. K. Goyal, B. Gökden, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett.101(26), 261117 (2012).
[CrossRef]

2011 (6)

K. Degreif, S. Rademacher, P. Dasheva, F. Fuchs, S. Hugger, F. Schnürer, and W. Schweikert, “Stand-off explosive detection on surfaces using multispectral MIR-imaging,” Proc. SPIE7945, 79450P, 79450P-8 (2011).
[CrossRef]

E. Mujagic, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett.98(14), 141101 (2011).
[CrossRef]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98(18), 181106 (2011).
[CrossRef]

A. K. Goyal, M. Spencer, M. Kelly, J. Costa, M. DiLiberto, E. Meyer, and T. Jeys, “Active infrared multispectral imaging of chemicals on surfaces,” Proc. SPIE8018, 80180N, 80180N-11 (2011).
[CrossRef]

S. Menzel, L. Diehl, C. Pflügl, A. Goyal, C. Wang, A. Sanchez, G. Turner, and F. Capasso, “Quantum cascade laser master-oscillator power-amplifier with 1.5 W output power at 300 K,” Opt. Express19(17), 16229–16235 (2011).
[CrossRef] [PubMed]

A. K. Goyal, M. Spencer, O. Shatrovoy, B. G. Lee, L. Diehl, C. Pfluegl, A. Sanchez, and F. Capasso, “Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays,” Opt. Express19(27), 26725–26732 (2011).
[CrossRef] [PubMed]

2010 (1)

For a review on external cavity QCLs see:A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol.25(8), 083001 (2010).
[CrossRef]

2009 (1)

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Höfler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron.45(5), 554–565 (2009).
[CrossRef]

2008 (1)

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade laser for broad-gain applications,” IEEE J. Quantum Electron.44(1), 36–40 (2008).
[CrossRef]

2007 (1)

H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett.43(3), 160–161 (2007).
[CrossRef]

2005 (1)

H. Zhang, A. Seetharaman, P. Johnson, G. Luo, and H. Q. Le, “High-gain low-noise mid-infrared quantum cascade optical preamplifier for receiver,” IEEE Photon. Technol. Lett.17(1), 13–15 (2005).
[CrossRef]

2004 (1)

C. Pflügl, W. Schrenk, S. Anders, and G. Strasser, “Spectral dynamics of distributed feedback quantum cascade lasers,” Semicond. Sci. Technol.19(4), S336–S338 (2004).
[CrossRef]

2002 (1)

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ~7.4µm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80(22), 4103–4105 (2002).
[CrossRef]

2001 (1)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys.64(11), 1533–1601 (2001).
[CrossRef]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

1990 (1)

D. F. Welch, D. Mehuys, R. Parke, R. Waarts, D. Scifres, and W. Streifer, “Coherent operation of monolithically integrated master oscillator amplifiers,” Electron. Lett.26(17), 1327–1329 (1990).
[CrossRef]

1987 (1)

M. Usami, S. Akiba, and K. Utaka, “Asymmetric λ/4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron.23(6), 815–821 (1987).
[CrossRef]

1986 (1)

K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, “λ/4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron.22(7), 1042–1051 (1986).
[CrossRef]

Akiba, S.

M. Usami, S. Akiba, and K. Utaka, “Asymmetric λ/4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron.23(6), 815–821 (1987).
[CrossRef]

K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, “λ/4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron.22(7), 1042–1051 (1986).
[CrossRef]

Anders, S.

C. Pflügl, W. Schrenk, S. Anders, and G. Strasser, “Spectral dynamics of distributed feedback quantum cascade lasers,” Semicond. Sci. Technol.19(4), S336–S338 (2004).
[CrossRef]

Audet, R. M.

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Höfler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron.45(5), 554–565 (2009).
[CrossRef]

Bai, Y.

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98(18), 181106 (2011).
[CrossRef]

Bandyopadhyay, N.

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98(18), 181106 (2011).
[CrossRef]

Belkin, M. A.

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Höfler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron.45(5), 554–565 (2009).
[CrossRef]

Bour, D. P.

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Höfler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron.45(5), 554–565 (2009).
[CrossRef]

Brox, O.

H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett.43(3), 160–161 (2007).
[CrossRef]

Bugge, F.

H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett.43(3), 160–161 (2007).
[CrossRef]

Capasso, F.

P. Rauter, S. Menzel, A. K. Goyal, B. Gökden, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett.101(26), 261117 (2012).
[CrossRef]

A. K. Goyal, M. Spencer, O. Shatrovoy, B. G. Lee, L. Diehl, C. Pfluegl, A. Sanchez, and F. Capasso, “Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays,” Opt. Express19(27), 26725–26732 (2011).
[CrossRef] [PubMed]

S. Menzel, L. Diehl, C. Pflügl, A. Goyal, C. Wang, A. Sanchez, G. Turner, and F. Capasso, “Quantum cascade laser master-oscillator power-amplifier with 1.5 W output power at 300 K,” Opt. Express19(17), 16229–16235 (2011).
[CrossRef] [PubMed]

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Höfler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron.45(5), 554–565 (2009).
[CrossRef]

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ~7.4µm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80(22), 4103–4105 (2002).
[CrossRef]

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys.64(11), 1533–1601 (2001).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Chen, J.

E. Mujagic, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett.98(14), 141101 (2011).
[CrossRef]

Cho, A. Y.

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ~7.4µm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80(22), 4103–4105 (2002).
[CrossRef]

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys.64(11), 1533–1601 (2001).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Corzine, S. W.

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Höfler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron.45(5), 554–565 (2009).
[CrossRef]

Costa, J.

A. K. Goyal, M. Spencer, M. Kelly, J. Costa, M. DiLiberto, E. Meyer, and T. Jeys, “Active infrared multispectral imaging of chemicals on surfaces,” Proc. SPIE8018, 80180N, 80180N-11 (2011).
[CrossRef]

Dasheva, P.

K. Degreif, S. Rademacher, P. Dasheva, F. Fuchs, S. Hugger, F. Schnürer, and W. Schweikert, “Stand-off explosive detection on surfaces using multispectral MIR-imaging,” Proc. SPIE7945, 79450P, 79450P-8 (2011).
[CrossRef]

Degreif, K.

K. Degreif, S. Rademacher, P. Dasheva, F. Fuchs, S. Hugger, F. Schnürer, and W. Schweikert, “Stand-off explosive detection on surfaces using multispectral MIR-imaging,” Proc. SPIE7945, 79450P, 79450P-8 (2011).
[CrossRef]

Diehl, L.

DiLiberto, M.

A. K. Goyal, M. Spencer, M. Kelly, J. Costa, M. DiLiberto, E. Meyer, and T. Jeys, “Active infrared multispectral imaging of chemicals on surfaces,” Proc. SPIE8018, 80180N, 80180N-11 (2011).
[CrossRef]

Erbert, G.

H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett.43(3), 160–161 (2007).
[CrossRef]

Faist, J.

For a review on external cavity QCLs see:A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol.25(8), 083001 (2010).
[CrossRef]

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade laser for broad-gain applications,” IEEE J. Quantum Electron.44(1), 36–40 (2008).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Fricke, J.

H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett.43(3), 160–161 (2007).
[CrossRef]

Fuchs, F.

K. Degreif, S. Rademacher, P. Dasheva, F. Fuchs, S. Hugger, F. Schnürer, and W. Schweikert, “Stand-off explosive detection on surfaces using multispectral MIR-imaging,” Proc. SPIE7945, 79450P, 79450P-8 (2011).
[CrossRef]

Furstenberg, R.

C. A. Kendziora, R. M. Jones, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, “Infrared photothermal imaging for standoff detection applications,” Proc. SPIE8373, 83732H, 83732H-10 (2012).
[CrossRef]

Gini, E.

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade laser for broad-gain applications,” IEEE J. Quantum Electron.44(1), 36–40 (2008).
[CrossRef]

Ginolas, A.

H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett.43(3), 160–161 (2007).
[CrossRef]

Giovannini, M.

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade laser for broad-gain applications,” IEEE J. Quantum Electron.44(1), 36–40 (2008).
[CrossRef]

Gmachl, C.

E. Mujagic, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett.98(14), 141101 (2011).
[CrossRef]

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ~7.4µm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80(22), 4103–4105 (2002).
[CrossRef]

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys.64(11), 1533–1601 (2001).
[CrossRef]

Gökden, B.

P. Rauter, S. Menzel, A. K. Goyal, B. Gökden, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett.101(26), 261117 (2012).
[CrossRef]

Goyal, A.

Goyal, A. K.

P. Rauter, S. Menzel, A. K. Goyal, B. Gökden, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett.101(26), 261117 (2012).
[CrossRef]

A. K. Goyal, M. Spencer, O. Shatrovoy, B. G. Lee, L. Diehl, C. Pfluegl, A. Sanchez, and F. Capasso, “Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays,” Opt. Express19(27), 26725–26732 (2011).
[CrossRef] [PubMed]

A. K. Goyal, M. Spencer, M. Kelly, J. Costa, M. DiLiberto, E. Meyer, and T. Jeys, “Active infrared multispectral imaging of chemicals on surfaces,” Proc. SPIE8018, 80180N, 80180N-11 (2011).
[CrossRef]

Gresch, T.

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade laser for broad-gain applications,” IEEE J. Quantum Electron.44(1), 36–40 (2008).
[CrossRef]

Höfler, G. E.

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Höfler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron.45(5), 554–565 (2009).
[CrossRef]

Hoyler, N.

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade laser for broad-gain applications,” IEEE J. Quantum Electron.44(1), 36–40 (2008).
[CrossRef]

Hugger, S.

K. Degreif, S. Rademacher, P. Dasheva, F. Fuchs, S. Hugger, F. Schnürer, and W. Schweikert, “Stand-off explosive detection on surfaces using multispectral MIR-imaging,” Proc. SPIE7945, 79450P, 79450P-8 (2011).
[CrossRef]

Hugi, A.

For a review on external cavity QCLs see:A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol.25(8), 083001 (2010).
[CrossRef]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Hvozdara, L.

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade laser for broad-gain applications,” IEEE J. Quantum Electron.44(1), 36–40 (2008).
[CrossRef]

Jeys, T.

A. K. Goyal, M. Spencer, M. Kelly, J. Costa, M. DiLiberto, E. Meyer, and T. Jeys, “Active infrared multispectral imaging of chemicals on surfaces,” Proc. SPIE8018, 80180N, 80180N-11 (2011).
[CrossRef]

Johnson, P.

H. Zhang, A. Seetharaman, P. Johnson, G. Luo, and H. Q. Le, “High-gain low-noise mid-infrared quantum cascade optical preamplifier for receiver,” IEEE Photon. Technol. Lett.17(1), 13–15 (2005).
[CrossRef]

Jones, R. M.

C. A. Kendziora, R. M. Jones, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, “Infrared photothermal imaging for standoff detection applications,” Proc. SPIE8373, 83732H, 83732H-10 (2012).
[CrossRef]

Kelly, M.

A. K. Goyal, M. Spencer, M. Kelly, J. Costa, M. DiLiberto, E. Meyer, and T. Jeys, “Active infrared multispectral imaging of chemicals on surfaces,” Proc. SPIE8018, 80180N, 80180N-11 (2011).
[CrossRef]

Kendziora, C. A.

C. A. Kendziora, R. M. Jones, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, “Infrared photothermal imaging for standoff detection applications,” Proc. SPIE8373, 83732H, 83732H-10 (2012).
[CrossRef]

Knauer, A.

H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett.43(3), 160–161 (2007).
[CrossRef]

Le, H. Q.

H. Zhang, A. Seetharaman, P. Johnson, G. Luo, and H. Q. Le, “High-gain low-noise mid-infrared quantum cascade optical preamplifier for receiver,” IEEE Photon. Technol. Lett.17(1), 13–15 (2005).
[CrossRef]

Lee, B. G.

A. K. Goyal, M. Spencer, O. Shatrovoy, B. G. Lee, L. Diehl, C. Pfluegl, A. Sanchez, and F. Capasso, “Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays,” Opt. Express19(27), 26725–26732 (2011).
[CrossRef] [PubMed]

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Höfler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron.45(5), 554–565 (2009).
[CrossRef]

Lu, Q. Y.

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98(18), 181106 (2011).
[CrossRef]

Luo, G.

H. Zhang, A. Seetharaman, P. Johnson, G. Luo, and H. Q. Le, “High-gain low-noise mid-infrared quantum cascade optical preamplifier for receiver,” IEEE Photon. Technol. Lett.17(1), 13–15 (2005).
[CrossRef]

MacArthur, J.

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Höfler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron.45(5), 554–565 (2009).
[CrossRef]

Matsushima, Y.

K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, “λ/4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron.22(7), 1042–1051 (1986).
[CrossRef]

Maulini, R.

For a review on external cavity QCLs see:A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol.25(8), 083001 (2010).
[CrossRef]

McGill, R. A.

C. A. Kendziora, R. M. Jones, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, “Infrared photothermal imaging for standoff detection applications,” Proc. SPIE8373, 83732H, 83732H-10 (2012).
[CrossRef]

Mehuys, D.

D. F. Welch, D. Mehuys, R. Parke, R. Waarts, D. Scifres, and W. Streifer, “Coherent operation of monolithically integrated master oscillator amplifiers,” Electron. Lett.26(17), 1327–1329 (1990).
[CrossRef]

Menzel, S.

P. Rauter, S. Menzel, A. K. Goyal, B. Gökden, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett.101(26), 261117 (2012).
[CrossRef]

S. Menzel, L. Diehl, C. Pflügl, A. Goyal, C. Wang, A. Sanchez, G. Turner, and F. Capasso, “Quantum cascade laser master-oscillator power-amplifier with 1.5 W output power at 300 K,” Opt. Express19(17), 16229–16235 (2011).
[CrossRef] [PubMed]

Meyer, E.

A. K. Goyal, M. Spencer, M. Kelly, J. Costa, M. DiLiberto, E. Meyer, and T. Jeys, “Active infrared multispectral imaging of chemicals on surfaces,” Proc. SPIE8018, 80180N, 80180N-11 (2011).
[CrossRef]

Mujagic, E.

E. Mujagic, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett.98(14), 141101 (2011).
[CrossRef]

Nguyen, V.

C. A. Kendziora, R. M. Jones, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, “Infrared photothermal imaging for standoff detection applications,” Proc. SPIE8373, 83732H, 83732H-10 (2012).
[CrossRef]

Papantonakis, M.

C. A. Kendziora, R. M. Jones, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, “Infrared photothermal imaging for standoff detection applications,” Proc. SPIE8373, 83732H, 83732H-10 (2012).
[CrossRef]

Parke, R.

D. F. Welch, D. Mehuys, R. Parke, R. Waarts, D. Scifres, and W. Streifer, “Coherent operation of monolithically integrated master oscillator amplifiers,” Electron. Lett.26(17), 1327–1329 (1990).
[CrossRef]

Paschke, K.

H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett.43(3), 160–161 (2007).
[CrossRef]

Pfluegl, C.

Pflügl, C.

S. Menzel, L. Diehl, C. Pflügl, A. Goyal, C. Wang, A. Sanchez, G. Turner, and F. Capasso, “Quantum cascade laser master-oscillator power-amplifier with 1.5 W output power at 300 K,” Opt. Express19(17), 16229–16235 (2011).
[CrossRef] [PubMed]

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Höfler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron.45(5), 554–565 (2009).
[CrossRef]

C. Pflügl, W. Schrenk, S. Anders, and G. Strasser, “Spectral dynamics of distributed feedback quantum cascade lasers,” Semicond. Sci. Technol.19(4), S336–S338 (2004).
[CrossRef]

Rademacher, S.

K. Degreif, S. Rademacher, P. Dasheva, F. Fuchs, S. Hugger, F. Schnürer, and W. Schweikert, “Stand-off explosive detection on surfaces using multispectral MIR-imaging,” Proc. SPIE7945, 79450P, 79450P-8 (2011).
[CrossRef]

Rauter, P.

P. Rauter, S. Menzel, A. K. Goyal, B. Gökden, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett.101(26), 261117 (2012).
[CrossRef]

Razeghi, M.

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98(18), 181106 (2011).
[CrossRef]

Ressel, P.

H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett.43(3), 160–161 (2007).
[CrossRef]

Sakai, K.

K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, “λ/4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron.22(7), 1042–1051 (1986).
[CrossRef]

Sanchez, A.

Schnürer, F.

K. Degreif, S. Rademacher, P. Dasheva, F. Fuchs, S. Hugger, F. Schnürer, and W. Schweikert, “Stand-off explosive detection on surfaces using multispectral MIR-imaging,” Proc. SPIE7945, 79450P, 79450P-8 (2011).
[CrossRef]

Schrenk, W.

C. Pflügl, W. Schrenk, S. Anders, and G. Strasser, “Spectral dynamics of distributed feedback quantum cascade lasers,” Semicond. Sci. Technol.19(4), S336–S338 (2004).
[CrossRef]

Schwarzer, C.

E. Mujagic, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett.98(14), 141101 (2011).
[CrossRef]

Schweikert, W.

K. Degreif, S. Rademacher, P. Dasheva, F. Fuchs, S. Hugger, F. Schnürer, and W. Schweikert, “Stand-off explosive detection on surfaces using multispectral MIR-imaging,” Proc. SPIE7945, 79450P, 79450P-8 (2011).
[CrossRef]

Scifres, D.

D. F. Welch, D. Mehuys, R. Parke, R. Waarts, D. Scifres, and W. Streifer, “Coherent operation of monolithically integrated master oscillator amplifiers,” Electron. Lett.26(17), 1327–1329 (1990).
[CrossRef]

Seetharaman, A.

H. Zhang, A. Seetharaman, P. Johnson, G. Luo, and H. Q. Le, “High-gain low-noise mid-infrared quantum cascade optical preamplifier for receiver,” IEEE Photon. Technol. Lett.17(1), 13–15 (2005).
[CrossRef]

Shatrovoy, O.

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ~7.4µm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80(22), 4103–4105 (2002).
[CrossRef]

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys.64(11), 1533–1601 (2001).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Slivken, S.

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98(18), 181106 (2011).
[CrossRef]

Spencer, M.

A. K. Goyal, M. Spencer, M. Kelly, J. Costa, M. DiLiberto, E. Meyer, and T. Jeys, “Active infrared multispectral imaging of chemicals on surfaces,” Proc. SPIE8018, 80180N, 80180N-11 (2011).
[CrossRef]

A. K. Goyal, M. Spencer, O. Shatrovoy, B. G. Lee, L. Diehl, C. Pfluegl, A. Sanchez, and F. Capasso, “Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays,” Opt. Express19(27), 26725–26732 (2011).
[CrossRef] [PubMed]

Strasser, G.

E. Mujagic, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett.98(14), 141101 (2011).
[CrossRef]

C. Pflügl, W. Schrenk, S. Anders, and G. Strasser, “Spectral dynamics of distributed feedback quantum cascade lasers,” Semicond. Sci. Technol.19(4), S336–S338 (2004).
[CrossRef]

Streifer, W.

D. F. Welch, D. Mehuys, R. Parke, R. Waarts, D. Scifres, and W. Streifer, “Coherent operation of monolithically integrated master oscillator amplifiers,” Electron. Lett.26(17), 1327–1329 (1990).
[CrossRef]

Troccoli, M.

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ~7.4µm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80(22), 4103–4105 (2002).
[CrossRef]

Turner, G.

P. Rauter, S. Menzel, A. K. Goyal, B. Gökden, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett.101(26), 261117 (2012).
[CrossRef]

S. Menzel, L. Diehl, C. Pflügl, A. Goyal, C. Wang, A. Sanchez, G. Turner, and F. Capasso, “Quantum cascade laser master-oscillator power-amplifier with 1.5 W output power at 300 K,” Opt. Express19(17), 16229–16235 (2011).
[CrossRef] [PubMed]

Usami, M.

M. Usami, S. Akiba, and K. Utaka, “Asymmetric λ/4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron.23(6), 815–821 (1987).
[CrossRef]

Utaka, K.

M. Usami, S. Akiba, and K. Utaka, “Asymmetric λ/4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron.23(6), 815–821 (1987).
[CrossRef]

K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, “λ/4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron.22(7), 1042–1051 (1986).
[CrossRef]

Waarts, R.

D. F. Welch, D. Mehuys, R. Parke, R. Waarts, D. Scifres, and W. Streifer, “Coherent operation of monolithically integrated master oscillator amplifiers,” Electron. Lett.26(17), 1327–1329 (1990).
[CrossRef]

Wang, C.

Wang, C. A.

P. Rauter, S. Menzel, A. K. Goyal, B. Gökden, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett.101(26), 261117 (2012).
[CrossRef]

Welch, D. F.

D. F. Welch, D. Mehuys, R. Parke, R. Waarts, D. Scifres, and W. Streifer, “Coherent operation of monolithically integrated master oscillator amplifiers,” Electron. Lett.26(17), 1327–1329 (1990).
[CrossRef]

Wenzel, H.

H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett.43(3), 160–161 (2007).
[CrossRef]

Wittmann, A.

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade laser for broad-gain applications,” IEEE J. Quantum Electron.44(1), 36–40 (2008).
[CrossRef]

Yao, Y.

E. Mujagic, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett.98(14), 141101 (2011).
[CrossRef]

Zhang, H.

H. Zhang, A. Seetharaman, P. Johnson, G. Luo, and H. Q. Le, “High-gain low-noise mid-infrared quantum cascade optical preamplifier for receiver,” IEEE Photon. Technol. Lett.17(1), 13–15 (2005).
[CrossRef]

Zhang, H. A.

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Höfler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron.45(5), 554–565 (2009).
[CrossRef]

Appl. Phys. Lett. (4)

E. Mujagic, C. Schwarzer, Y. Yao, J. Chen, C. Gmachl, and G. Strasser, “Two-dimensional broadband distributed-feedback quantum cascade laser arrays,” Appl. Phys. Lett.98(14), 141101 (2011).
[CrossRef]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett.98(18), 181106 (2011).
[CrossRef]

M. Troccoli, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Mid-infrared (λ~7.4µm) quantum cascade laser amplifier for high power single-mode emission and improved beam quality,” Appl. Phys. Lett.80(22), 4103–4105 (2002).
[CrossRef]

P. Rauter, S. Menzel, A. K. Goyal, B. Gökden, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Master-oscillator power-amplifier quantum cascade laser array,” Appl. Phys. Lett.101(26), 261117 (2012).
[CrossRef]

Electron. Lett. (2)

D. F. Welch, D. Mehuys, R. Parke, R. Waarts, D. Scifres, and W. Streifer, “Coherent operation of monolithically integrated master oscillator amplifiers,” Electron. Lett.26(17), 1327–1329 (1990).
[CrossRef]

H. Wenzel, K. Paschke, O. Brox, F. Bugge, J. Fricke, A. Ginolas, A. Knauer, P. Ressel, and G. Erbert, “10W continuous-wave monolithically integrated master-oscillator power-amplifier,” Electron. Lett.43(3), 160–161 (2007).
[CrossRef]

IEEE J. Quantum Electron. (4)

K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima, “λ/4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron.22(7), 1042–1051 (1986).
[CrossRef]

M. Usami, S. Akiba, and K. Utaka, “Asymmetric λ/4-shifted InGaAsP/InP DFB lasers,” IEEE J. Quantum Electron.23(6), 815–821 (1987).
[CrossRef]

A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum-cascade laser for broad-gain applications,” IEEE J. Quantum Electron.44(1), 36–40 (2008).
[CrossRef]

B. G. Lee, M. A. Belkin, C. Pflügl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Höfler, and F. Capasso, “DFB quantum cascade laser arrays,” IEEE J. Quantum Electron.45(5), 554–565 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Zhang, A. Seetharaman, P. Johnson, G. Luo, and H. Q. Le, “High-gain low-noise mid-infrared quantum cascade optical preamplifier for receiver,” IEEE Photon. Technol. Lett.17(1), 13–15 (2005).
[CrossRef]

Opt. Express (2)

Proc. SPIE (3)

A. K. Goyal, M. Spencer, M. Kelly, J. Costa, M. DiLiberto, E. Meyer, and T. Jeys, “Active infrared multispectral imaging of chemicals on surfaces,” Proc. SPIE8018, 80180N, 80180N-11 (2011).
[CrossRef]

C. A. Kendziora, R. M. Jones, R. Furstenberg, M. Papantonakis, V. Nguyen, and R. A. McGill, “Infrared photothermal imaging for standoff detection applications,” Proc. SPIE8373, 83732H, 83732H-10 (2012).
[CrossRef]

K. Degreif, S. Rademacher, P. Dasheva, F. Fuchs, S. Hugger, F. Schnürer, and W. Schweikert, “Stand-off explosive detection on surfaces using multispectral MIR-imaging,” Proc. SPIE7945, 79450P, 79450P-8 (2011).
[CrossRef]

Rep. Prog. Phys. (1)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys.64(11), 1533–1601 (2001).
[CrossRef]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (2)

For a review on external cavity QCLs see:A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol.25(8), 083001 (2010).
[CrossRef]

C. Pflügl, W. Schrenk, S. Anders, and G. Strasser, “Spectral dynamics of distributed feedback quantum cascade lasers,” Semicond. Sci. Technol.19(4), S336–S338 (2004).
[CrossRef]

Other (2)

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, 2006), Chap. 16.

G. Morthier and P. Vankenwinkelberge, “Handbook of distributed feedback laser diodes” (Artech House, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Layout and packaging. a) The elements of Array 2 comprise a 2-mm-long DFB section and an equally long tapered power-amplifier with a taper angle of 1.3°. b) Packaged array, allowing individual electronic addressing of both device sections for all of the array elements. c) Top view of three elements of Array 1, for which a quarter-wave shift was included in the DFB grating at the indicated position. Note that 360 μm of the 2-mm-long DFB section are left unpumped.

Fig. 2
Fig. 2

Emission spectra of the array elements. For each device of the MOPA array, a logarithmic plot of the spectrum at maximum single-mode peak power for PA currents below the self-lasing threshold is shown together with the respective power and side-mode suppression ratio. The spectra have been normalized to their maximum, where the leftmost and rightmost curves represent device 2 and 15, respectively. The measurements were performed at room temperature and a duty cycle of 0.025%. Note that for device 9 single-mode operation at peak powers up to 10 W can be achieved for amplifier currents above the self-lasing threshold, as discussed in the text.

Fig. 3
Fig. 3

Optimum driving conditions: The plot presents the values for master-oscillator (blue bars) and power-amplifier peak currents (green bars), at which the spectra in Fig. 2 have been acquired, together with the corresponding peak power values (red bars).

Fig. 4
Fig. 4

Additional modes at high driving currents. The plot shows three different scenarios compromising the single-mode operation of the array elements for driving current values in excess of those in Fig. 3. The spectra are normalized to the maximum intensity of the dominant DFB mode. a) An increase of the master-oscillator current of device 13 beyond 1.4 A results in lasing at both the high- and low-frequency DFB mode. b) For the same array element, an increase in the power-amplifier current beyond 5.2 A enables lasing at Fabry-Perot modes of the cavity formed by the MO and PA sections. Note that the additional modes are located at low frequencies and the DFB mode at 1077.5 cm−1 is not shown in the plot. c) When increasing the PA current of device 5 in excess of 6.2 A, Fabry-Perot modes (labeled 2 and 3) appear within the indicated photonic bandgap in addition to the high-frequency DFB mode (labeled 1).

Fig. 5
Fig. 5

Room-temperature performance of device 9 for high amplifier currents beyond the self-lasing threshold of the amplifier. The inset shows the light/amplifier-current characteristics acquired by driving both the master-oscillator and power-amplifier section of device 9 with 100-ns-long pulses. The red curve shows the normalized spectrum acquired at a MO current of 2.3 A and a PA current of 9.5 A, giving a peak output power of 10 W. The difference in width between the blue curve representing the emission spectrum of device 9 for a lower duty cycle of 0.025% and the spectrum shown in red is due to self-heating and exclusively relates to the difference in driving pulse length of the MO.

Fig. 6
Fig. 6

Light/amplifier-current characteristics of device 9 for different master-oscillator currents. Note the exponential dependence for low MO and amplifier currents, typical of travelling-wave single-pass amplifiers. An exponential fit of the characteristics in this regime (shown by the dotted curves) allows the extraction of the modal gain coefficient of the amplifier. Note the deviation from the exponential behavior due to gain saturation at high MO and amplifier currents.

Fig. 7
Fig. 7

Self-lasing of the power-amplifier at very low seed intensities for device 9. In addition to the high-frequency DFB mode (labeled 1), the red curve shows the appearance of FP modes of the amplifier section (labeled 3) at a low DFB current of 0.85 A and a high amplifier current of 6 A. The mode close to the lower edge of the photonic bandgap (labeled 2) is either the low-frequency DFB mode of the MO, or a self-lasing FP mode of the PA. At low MO currents, the intensity of the seeded mode is too weak to effectively suppress self-lasing of the PA section by gain competition. In contrast, for high DFB currents no PA self-lasing on additional modes is observed up to high amplifier currents, as shown in the inset.

Fig. 8
Fig. 8

Angular in-plane distribution of the far-field intensity for all devices. The leftmost curve represents device 2 and the rightmost device 15. The devices were operated at maximum single-mode power, at the driving parameters given in Fig. 3, and thus correspond to the spectra shown in Fig. 2. The plots have been offset horizontally for clarity.

Fig. 9
Fig. 9

Angular in-plane distribution of the far-field intensity of Array 2 and typical light/DFB-current characteristics for Array 1 and 2 at constant amplifier current. a) The black and yellow curves highlight the minor contributions by higher-order lateral modes for two representative devices (11 and 8, respectively), where such contributions are observed for five of the array elements. The far-field of device 2, shown by the blue curve, is free of contributions by higher-order modes, as are the intensity distributions of nine devices at their maximum single-mode peak power. The red, dotted curve presents a Gaussian fitted to the blue curve. The angular intensity distribution of device 9 is shown by the green curve for a DFB/amplifier current of 2.3/9.5 A and at 10 W peak power, demonstrating the preservation of its excellent beam quality even at high output powers. b) On average, the elements of Array 1 exhibit a slightly lower slope efficiency than those of Array 2. Note that the slope of the presented curves is increased compared to the actual slope efficiency of the DFB section by the amplification factor associated with the power-amplifier.

Fig. 10
Fig. 10

Spectral comparison between Array 1 (with quarter-wave-shift) and Array 2 (without QWS). The plot shows the single-mode spectra for each array element of Array 1 and 2 in blue and red, respectively. The power values given in the same color compare the maximum peak power available for single-mode operation for the individual devices. Lasing on the upper and lower edge of the photonic bandgap is denoted by U (right diagonal red line) and L (left red line), respectively. For Array 1, lasing on the defect state in the center of the photonic bandgap is denoted by C (blue diagonal line).

Metrics