Abstract

The femtosecond laser ablation of silicon surface near the ablation threshold was investigated and the preferential ablation along different directions was observed in different stages. It was found that the ripples formed in the initial stage facilitate the ablation along the direction perpendicular to the ripples, leading to the formation of an elliptical ablation area. With increasing length and depth of the ripples, however, nanohole arrays formed in the ripples will modify the distribution of electric field which benefits the ablation along the direction parallel to the ripples. Consequently, the ablation area is gradually changed to a circular one after irradiating sufficient number of pulses.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, M. Jourlin, and E. Audouard, “Controlled nanostructrures formation by ultra fast laser pulses for color marking,” Opt. Express18(3), 2913–2924 (2010).
    [CrossRef] [PubMed]
  2. A. Y. Vorobyev and C. Guo, “Femtosecond laser nanostructuring of metals,” Opt. Express14(6), 2164–2169 (2006).
    [CrossRef] [PubMed]
  3. A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett.92(4), 041914 (2008).
    [CrossRef]
  4. C. A. Zuhlke, D. R. Alexander, J. C. Bruce, N. J. Ianno, C. A. Kamler, and W. Yang, “Self assembled nanoparticle aggregates from line focused femtosecond laser ablation,” Opt. Express18(5), 4329–4339 (2010).
    [CrossRef] [PubMed]
  5. L. Qi, K. Nishii, and Y. Namba, “Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel,” Opt. Lett.34(12), 1846–1848 (2009).
    [CrossRef] [PubMed]
  6. I. Umezu, Y. Nakayama, and A. Sugimura, “Formation of core-shell structured silicon nanoparticles during pulsed laser ablation,” J. Appl. Phys.107(9), 094318 (2010).
    [CrossRef]
  7. M. Beresna and P. G. Kazansky, “Polarization diffraction grating produced by femtosecond laser nanostructuring in glass,” Opt. Lett.35(10), 1662–1664 (2010).
    [CrossRef] [PubMed]
  8. M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
    [CrossRef] [PubMed]
  9. X. Jia, T. Q. Jia, Y. Zhang, P. X. Xiong, D. H. Feng, Z. R. Sun, J. R. Qiu, and Z. Z. Xu, “Periodic nanoripples in the surface and subsurface layers in ZnO irradiated by femtosecond laser pulses,” Opt. Lett.35(8), 1248–1250 (2010).
    [CrossRef] [PubMed]
  10. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
    [CrossRef] [PubMed]
  11. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
    [CrossRef]
  12. S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B79(3), 033409 (2009).
    [CrossRef]
  13. T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
    [CrossRef]
  14. A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys.101(3), 034903 (2007).
    [CrossRef]
  15. Q. Sun, F. Liang, R. Vallée, and S. L. Chin, “Nanograting formation on the surface of silica glass by scanning focused femtosecond laser pulses,” Opt. Lett.33(22), 2713–2715 (2008).
    [CrossRef] [PubMed]
  16. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
    [CrossRef] [PubMed]
  17. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
    [CrossRef] [PubMed]
  18. F. Liang, R. Vallée, and S. L. Chin, “Mechanism of nanograting formation on the surface of fused silica,” Opt. Express20(4), 4389–4396 (2012).
    [CrossRef] [PubMed]
  19. D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
    [CrossRef]
  20. J. W. Yao, C. Y. Zhang, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, A. V. Gopal, V. A. Trofimov, and T. M. Lysak, “High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses,” Opt. Express20(2), 905–911 (2012).
    [CrossRef] [PubMed]
  21. J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys.97(1), 013538 (2005).
    [CrossRef]
  22. C. Y. Zhang, J. W. Yao, H. Y. Liu, Q. F. Dai, L. J. Wu, S. Lan, V. A. Trofimov, and T. M. Lysak, “Colorizing silicon surface with regular nanohole arrays induced by femtosecond laser pulses,” Opt. Lett.37(6), 1106–1108 (2012).
    [CrossRef] [PubMed]
  23. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys.106(10), 104910 (2009).
    [CrossRef]
  24. J. Bonse, A. Rosenfeld, and J. Krüger, “Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci.257(12), 5420–5423 (2011).
    [CrossRef]
  25. G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express19(20), 19093–19103 (2011).
    [CrossRef] [PubMed]

2012 (3)

2011 (2)

G. Obara, N. Maeda, T. Miyanishi, M. Terakawa, N. N. Nedyalkov, and M. Obara, “Plasmonic and Mie scattering control of far-field interference for regular ripple formation on various material substrates,” Opt. Express19(20), 19093–19103 (2011).
[CrossRef] [PubMed]

J. Bonse, A. Rosenfeld, and J. Krüger, “Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci.257(12), 5420–5423 (2011).
[CrossRef]

2010 (5)

2009 (5)

L. Qi, K. Nishii, and Y. Namba, “Regular subwavelength surface structures induced by femtosecond laser pulses on stainless steel,” Opt. Lett.34(12), 1846–1848 (2009).
[CrossRef] [PubMed]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B79(3), 033409 (2009).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys.106(10), 104910 (2009).
[CrossRef]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

2008 (3)

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett.92(4), 041914 (2008).
[CrossRef]

Q. Sun, F. Liang, R. Vallée, and S. L. Chin, “Nanograting formation on the surface of silica glass by scanning focused femtosecond laser pulses,” Opt. Lett.33(22), 2713–2715 (2008).
[CrossRef] [PubMed]

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

2007 (1)

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys.101(3), 034903 (2007).
[CrossRef]

2006 (2)

A. Y. Vorobyev and C. Guo, “Femtosecond laser nanostructuring of metals,” Opt. Express14(6), 2164–2169 (2006).
[CrossRef] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

2005 (2)

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys.97(1), 013538 (2005).
[CrossRef]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

2003 (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

1983 (1)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

Alexander, D. R.

Audouard, E.

Beresna, M.

Bhardwaj, V. R.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

Bonse, J.

J. Bonse, A. Rosenfeld, and J. Krüger, “Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci.257(12), 5420–5423 (2011).
[CrossRef]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys.106(10), 104910 (2009).
[CrossRef]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys.97(1), 013538 (2005).
[CrossRef]

Bruce, J. C.

Carey, J. E.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

Chen, H. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Chin, S. L.

Colombier, J. P.

Corkum, P. B.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

Crouch, C. H.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

Dai, Q. F.

Das, S. K.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

Dufft, D.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

Dusser, B.

Faure, N.

Feng, D. H.

Gopal, A. V.

Grunwald, R.

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

Guo, C.

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett.92(4), 041914 (2008).
[CrossRef]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys.101(3), 034903 (2007).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Femtosecond laser nanostructuring of metals,” Opt. Express14(6), 2164–2169 (2006).
[CrossRef] [PubMed]

Hashida, M.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B79(3), 033409 (2009).
[CrossRef]

He, X. K.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Hnatovsky, C.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Ianno, N. J.

Jia, T. Q.

X. Jia, T. Q. Jia, Y. Zhang, P. X. Xiong, D. H. Feng, Z. R. Sun, J. R. Qiu, and Z. Z. Xu, “Periodic nanoripples in the surface and subsurface layers in ZnO irradiated by femtosecond laser pulses,” Opt. Lett.35(8), 1248–1250 (2010).
[CrossRef] [PubMed]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Jia, X.

Jourlin, M.

Kamler, C. A.

Kandyla, M.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

Kazansky, P. G.

M. Beresna and P. G. Kazansky, “Polarization diffraction grating produced by femtosecond laser nanostructuring in glass,” Opt. Lett.35(10), 1662–1664 (2010).
[CrossRef] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Krüger, J.

J. Bonse, A. Rosenfeld, and J. Krüger, “Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci.257(12), 5420–5423 (2011).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys.106(10), 104910 (2009).
[CrossRef]

Kuroda, H.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Lan, S.

Li, R. X.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Liang, F.

Liu, H. Y.

Lysak, T. M.

Maeda, N.

Makin, V. S.

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys.101(3), 034903 (2007).
[CrossRef]

Mazur, E.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

Miyanishi, T.

Munz, M.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys.97(1), 013538 (2005).
[CrossRef]

Nakayama, Y.

I. Umezu, Y. Nakayama, and A. Sugimura, “Formation of core-shell structured silicon nanoparticles during pulsed laser ablation,” J. Appl. Phys.107(9), 094318 (2010).
[CrossRef]

Namba, S.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B79(3), 033409 (2009).
[CrossRef]

Namba, Y.

Nedyalkov, N. N.

Nishii, K.

Obara, G.

Obara, M.

Okamuro, K.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B79(3), 033409 (2009).
[CrossRef]

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

Qi, L.

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Qiu, J. R.

X. Jia, T. Q. Jia, Y. Zhang, P. X. Xiong, D. H. Feng, Z. R. Sun, J. R. Qiu, and Z. Z. Xu, “Periodic nanoripples in the surface and subsurface layers in ZnO irradiated by femtosecond laser pulses,” Opt. Lett.35(8), 1248–1250 (2010).
[CrossRef] [PubMed]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Rajeev, P. P.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

Rayner, D. M.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

Rosenfeld, A.

J. Bonse, A. Rosenfeld, and J. Krüger, “Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci.257(12), 5420–5423 (2011).
[CrossRef]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys.106(10), 104910 (2009).
[CrossRef]

Sagan, Z.

Sakabe, S.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B79(3), 033409 (2009).
[CrossRef]

Shen, M.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

Simova, E.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

Sipe, J. E.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

Soder, H.

Stone, H. A.

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

Sturm, H.

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys.97(1), 013538 (2005).
[CrossRef]

Sugimura, A.

I. Umezu, Y. Nakayama, and A. Sugimura, “Formation of core-shell structured silicon nanoparticles during pulsed laser ablation,” J. Appl. Phys.107(9), 094318 (2010).
[CrossRef]

Sun, Q.

Sun, Z. R.

Taylor, R. S.

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

Terakawa, M.

Tokita, S.

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B79(3), 033409 (2009).
[CrossRef]

Trofimov, V. A.

Umezu, I.

I. Umezu, Y. Nakayama, and A. Sugimura, “Formation of core-shell structured silicon nanoparticles during pulsed laser ablation,” J. Appl. Phys.107(9), 094318 (2010).
[CrossRef]

Vallée, R.

van Driel, H. M.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

Vorobyev, A. Y.

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett.92(4), 041914 (2008).
[CrossRef]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys.101(3), 034903 (2007).
[CrossRef]

A. Y. Vorobyev and C. Guo, “Femtosecond laser nanostructuring of metals,” Opt. Express14(6), 2164–2169 (2006).
[CrossRef] [PubMed]

Wu, L. J.

Xiong, P. X.

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Xu, Z. Z.

X. Jia, T. Q. Jia, Y. Zhang, P. X. Xiong, D. H. Feng, Z. R. Sun, J. R. Qiu, and Z. Z. Xu, “Periodic nanoripples in the surface and subsurface layers in ZnO irradiated by femtosecond laser pulses,” Opt. Lett.35(8), 1248–1250 (2010).
[CrossRef] [PubMed]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Yang, W.

Yao, J. W.

Young, J. F.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

Zhang, C. Y.

Zhang, J.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Zhang, Y.

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Zhao, F. L.

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Zuhlke, C. A.

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

A. Y. Vorobyev and C. Guo, “Colorizing metals with femtosecond laser pulses,” Appl. Phys. Lett.92(4), 041914 (2008).
[CrossRef]

Appl. Surf. Sci. (1)

J. Bonse, A. Rosenfeld, and J. Krüger, “Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures,” Appl. Surf. Sci.257(12), 5420–5423 (2011).
[CrossRef]

J. Appl. Phys. (5)

I. Umezu, Y. Nakayama, and A. Sugimura, “Formation of core-shell structured silicon nanoparticles during pulsed laser ablation,” J. Appl. Phys.107(9), 094318 (2010).
[CrossRef]

A. Y. Vorobyev, V. S. Makin, and C. Guo, “Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals,” J. Appl. Phys.101(3), 034903 (2007).
[CrossRef]

D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald, and J. Bonse, “Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO,” J. Appl. Phys.105(3), 034908 (2009).
[CrossRef]

J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys.97(1), 013538 (2005).
[CrossRef]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys.106(10), 104910 (2009).
[CrossRef]

Nano Lett. (1)

M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett.8(7), 2087–2091 (2008).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (5)

Phys. Rev. B (3)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

S. Sakabe, M. Hashida, S. Tokita, S. Namba, and K. Okamuro, “Mechanism for self-formation of periodic grating structures on a metal surface by a femtosecond laser pulse,” Phys. Rev. B79(3), 033409 (2009).
[CrossRef]

T. Q. Jia, H. X. Chen, M. Huang, F. L. Zhao, J. R. Qiu, R. X. Li, Z. Z. Xu, X. K. He, J. Zhang, and H. Kuroda, “Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses,” Phys. Rev. B72(12), 125429 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett.91(24), 247405 (2003).
[CrossRef] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett.96(5), 057404 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Evolution of the nanostructures induced on the surface of the silicon wafer with increasing pulse number showing asymmetric ablation. (a) N = 5, (b) N = 25, (c) N = 35, and (d) N = 55. The laser light is horizontally polarized. The rectangle in (a) shows the ablation area where ripples are formed.

Fig. 2
Fig. 2

(a) Schematic showing the geometry of the initially formed grooves decorated with two rows of nanoholes employed in the numerical simulation. (b) The calculated electric field distribution on the surface of the grooves whose structural parameters are chosen to be l = 4.0 μm and h = 0.12 μm. (c) The modified electric field distribution on the surface of the grooves decorated with two rows of nanoholes whose structural parameters are: d = 0.8 μm, a = 2.0 μm, c = 0.3 μm, t = 0.2 μm, and b = 0.2 μm. The fs laser light is horizontally polarized.

Fig. 3
Fig. 3

Evolution of the nanostructures induced on the surface of the silicon wafer with increasing pulse number (N = 20, 40, and 160) observed in the (110), (010), and (−110) directions. The arrows indicate the polarization of the laser light.

Fig. 4
Fig. 4

Evolution of the nanostructures induced on the surface of the nickel foil with increasing pulse number showing preferential ablation only in the horizontal direction. (a) N = 20, (b) N = 40, (c) N = 180, and (d) N = 300. The laser light is horizontally polarized.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)= ε r (ω)+i ε i (ω)= ε c ω p 2 ω(ω+iΓ)
ε r (ω)= ε c ω p 2 ( ω 2 + Γ 2 ) ε i (ω)= ω p 2 Γ ω( ω 2 + Γ 2 )

Metrics