Abstract

In order to achieve high optical transparency and Ka-band bandpass filtering simultaneously, a resonance mesh coating sample is fabricated using a UV-lithography technique. Optical transmission is measured using an Ocean Optics QE65000 spectrometer. And Ka-band bandpass filtering is measured using an Agilent E8363B PNA series network analyzer. Experimental results indicate that the optical transmission of the resonance mesh coating is 63.4% higher than that of non-meshed Frequency Selective Surfaces (FSS) with equivalent aperture parameters, and the transmittance loss of the coating is lower than 0.21 dB while the coating has a Ka-band resonance frequency of 32 GHz. It can therefore be concluded that the resonance mesh coating can be used as a dual-mode spatial filter to achieve high optical transparency and Ka-band bandpass filtering.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Kirsch, W. R. Lindberg, D. C. Harris, M. J. Adcock, T. P. Li, E. A. Welsh, and R. D. Adkins, “Tri-mode seeker dome considerations,” Proc. SPIE5786, 33–40 (2005).
    [CrossRef]
  2. M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng.32(5), 911–925 (1993).
    [CrossRef]
  3. C. I. Bright, “Electromagnetic shielding for electro-optical windows and domes,” Proc. SPIE2286, 388–396 (1994).
    [CrossRef]
  4. J. B. Tan and Z. G. Lu, “Contiguous metallic rings: an inductive mesh with high transmissivity, strong electromagnetic shielding, and uniformly distributed stray light,” Opt. Express15(3), 790–796 (2007).
    [CrossRef] [PubMed]
  5. J. I. Halman, K. A. Ramsey, M. Thomas, and A. Griffin, “Predicted and measured transmission and diffraction by a metallic mesh coating,” Proc. SPIE 7302, 73020Y1 (2009).
  6. S. A. Kuznetsov, M. Navarro-Cía, V. V. Kubarev, A. V. Gelfand, M. Beruete, I. Campillo, and M. Sorolla, “Regular and anomalous extraordinary optical transmission at the THz-gap,” Opt. Express17(14), 11730–11738 (2009).
    [CrossRef] [PubMed]
  7. B. A. Munk, Frequency Selective Surfaces: Theory and Design (John Wiley and Sons, 2000).
  8. H. X. Zhu, X. G. Feng, J. L. Zhao, F. C. Liang, Y. S. Wang, X. Chen, and J. S. Gao “Design of antireflection and bandpass frequency selective surface combining coatings for ZnS optical window,” Acta Opt. Sin.30(9), 2766–2770 (2010).
    [CrossRef]
  9. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill Companies Inc., 1996).
  10. R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys.7(1), 37–55 (1967).
    [CrossRef]
  11. L. B. Whitbourn and R. C. Compton, “Equivalent-circuit formulas for metal grid reflectors at a dielectric boundary,” Appl. Opt.24(2), 217–220 (1985).
    [CrossRef] [PubMed]
  12. K. T. Jacoby, M. W. Pieratt, J. I. Halman, and K. A. Ramsey, “Predicted and measured EMI shielding effectiveness of a metallic mesh coating on a sapphire window over a broad frequency range,” Proc. SPIE 7302,73020X1 (2009).
  13. J. F. Zhang, J. Y. Ou, N. Papasimakis, Y. F. Chen, K. F. Macdonald, and N. I. Zheludev, “Continuous metal plasmonic frequency selective surfaces,” Opt. Express19(23), 23279–23285 (2011).
    [CrossRef] [PubMed]
  14. L. K. Sun, H. F. Cheng, Y. J. Zhou, and J. Wang, “Broadband metamaterial absorber based on coupling resistive frequency selective surface,” Opt. Express20(4), 4675–4680 (2012).
    [CrossRef] [PubMed]
  15. P. E. Ciddor and L. B. Whitbourn, “Equivalent thin film of a periodic metal grid,” Appl. Opt.28(6), 1228–1230 (1989).
    [CrossRef] [PubMed]
  16. H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett.77(18), 2789–2791 (2000).
    [CrossRef]
  17. J. B. Tan and Y. M. Liu, “Optimization of optical communication window mesh through full wave analysis of periodic mesh,” Opt. Commun.281(19), 4835–4839 (2008).
    [CrossRef]
  18. C. S. R. Kaipa, A. B. Yakovlev, F. Medina, F. Mesa, C. A. M. Butler, and A. P. Hibbins, “Circuit modeling of the transmissivity of stacked two-dimensional metallic meshes,” Opt. Express18(13), 13309–13320 (2010).
    [CrossRef] [PubMed]

2012 (1)

2011 (1)

2010 (2)

C. S. R. Kaipa, A. B. Yakovlev, F. Medina, F. Mesa, C. A. M. Butler, and A. P. Hibbins, “Circuit modeling of the transmissivity of stacked two-dimensional metallic meshes,” Opt. Express18(13), 13309–13320 (2010).
[CrossRef] [PubMed]

H. X. Zhu, X. G. Feng, J. L. Zhao, F. C. Liang, Y. S. Wang, X. Chen, and J. S. Gao “Design of antireflection and bandpass frequency selective surface combining coatings for ZnS optical window,” Acta Opt. Sin.30(9), 2766–2770 (2010).
[CrossRef]

2009 (1)

2008 (1)

J. B. Tan and Y. M. Liu, “Optimization of optical communication window mesh through full wave analysis of periodic mesh,” Opt. Commun.281(19), 4835–4839 (2008).
[CrossRef]

2007 (1)

2005 (1)

J. C. Kirsch, W. R. Lindberg, D. C. Harris, M. J. Adcock, T. P. Li, E. A. Welsh, and R. D. Adkins, “Tri-mode seeker dome considerations,” Proc. SPIE5786, 33–40 (2005).
[CrossRef]

2000 (1)

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett.77(18), 2789–2791 (2000).
[CrossRef]

1994 (1)

C. I. Bright, “Electromagnetic shielding for electro-optical windows and domes,” Proc. SPIE2286, 388–396 (1994).
[CrossRef]

1993 (1)

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng.32(5), 911–925 (1993).
[CrossRef]

1989 (1)

1985 (1)

1967 (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys.7(1), 37–55 (1967).
[CrossRef]

Adcock, M. J.

J. C. Kirsch, W. R. Lindberg, D. C. Harris, M. J. Adcock, T. P. Li, E. A. Welsh, and R. D. Adkins, “Tri-mode seeker dome considerations,” Proc. SPIE5786, 33–40 (2005).
[CrossRef]

Adkins, R. D.

J. C. Kirsch, W. R. Lindberg, D. C. Harris, M. J. Adcock, T. P. Li, E. A. Welsh, and R. D. Adkins, “Tri-mode seeker dome considerations,” Proc. SPIE5786, 33–40 (2005).
[CrossRef]

Beruete, M.

Bright, C. I.

C. I. Bright, “Electromagnetic shielding for electro-optical windows and domes,” Proc. SPIE2286, 388–396 (1994).
[CrossRef]

Butler, C. A. M.

Campillo, I.

Chapman, J. E.

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng.32(5), 911–925 (1993).
[CrossRef]

Chase, R. C.

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng.32(5), 911–925 (1993).
[CrossRef]

Chen, X.

H. X. Zhu, X. G. Feng, J. L. Zhao, F. C. Liang, Y. S. Wang, X. Chen, and J. S. Gao “Design of antireflection and bandpass frequency selective surface combining coatings for ZnS optical window,” Acta Opt. Sin.30(9), 2766–2770 (2010).
[CrossRef]

Chen, Y. F.

Cheng, H. F.

Ciddor, P. E.

Compton, R. C.

Crick, A. P.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett.77(18), 2789–2791 (2000).
[CrossRef]

Feng, X. G.

H. X. Zhu, X. G. Feng, J. L. Zhao, F. C. Liang, Y. S. Wang, X. Chen, and J. S. Gao “Design of antireflection and bandpass frequency selective surface combining coatings for ZnS optical window,” Acta Opt. Sin.30(9), 2766–2770 (2010).
[CrossRef]

Gao, J. S.

H. X. Zhu, X. G. Feng, J. L. Zhao, F. C. Liang, Y. S. Wang, X. Chen, and J. S. Gao “Design of antireflection and bandpass frequency selective surface combining coatings for ZnS optical window,” Acta Opt. Sin.30(9), 2766–2770 (2010).
[CrossRef]

Gelfand, A. V.

Harris, D. C.

J. C. Kirsch, W. R. Lindberg, D. C. Harris, M. J. Adcock, T. P. Li, E. A. Welsh, and R. D. Adkins, “Tri-mode seeker dome considerations,” Proc. SPIE5786, 33–40 (2005).
[CrossRef]

Hibbins, A. P.

C. S. R. Kaipa, A. B. Yakovlev, F. Medina, F. Mesa, C. A. M. Butler, and A. P. Hibbins, “Circuit modeling of the transmissivity of stacked two-dimensional metallic meshes,” Opt. Express18(13), 13309–13320 (2010).
[CrossRef] [PubMed]

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett.77(18), 2789–2791 (2000).
[CrossRef]

Kaipa, C. S. R.

Kirsch, J. C.

J. C. Kirsch, W. R. Lindberg, D. C. Harris, M. J. Adcock, T. P. Li, E. A. Welsh, and R. D. Adkins, “Tri-mode seeker dome considerations,” Proc. SPIE5786, 33–40 (2005).
[CrossRef]

Kohin, M.

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng.32(5), 911–925 (1993).
[CrossRef]

Kubarev, V. V.

Kuznetsov, S. A.

Lawrence, C. R.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett.77(18), 2789–2791 (2000).
[CrossRef]

Li, T. P.

J. C. Kirsch, W. R. Lindberg, D. C. Harris, M. J. Adcock, T. P. Li, E. A. Welsh, and R. D. Adkins, “Tri-mode seeker dome considerations,” Proc. SPIE5786, 33–40 (2005).
[CrossRef]

Liang, F. C.

H. X. Zhu, X. G. Feng, J. L. Zhao, F. C. Liang, Y. S. Wang, X. Chen, and J. S. Gao “Design of antireflection and bandpass frequency selective surface combining coatings for ZnS optical window,” Acta Opt. Sin.30(9), 2766–2770 (2010).
[CrossRef]

Lindberg, W. R.

J. C. Kirsch, W. R. Lindberg, D. C. Harris, M. J. Adcock, T. P. Li, E. A. Welsh, and R. D. Adkins, “Tri-mode seeker dome considerations,” Proc. SPIE5786, 33–40 (2005).
[CrossRef]

Liu, Y. M.

J. B. Tan and Y. M. Liu, “Optimization of optical communication window mesh through full wave analysis of periodic mesh,” Opt. Commun.281(19), 4835–4839 (2008).
[CrossRef]

Lu, Z. G.

Macdonald, K. F.

Medina, F.

Mesa, F.

Navarro-Cía, M.

Ou, J. Y.

Papasimakis, N.

Sambles, J. R.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett.77(18), 2789–2791 (2000).
[CrossRef]

Sorolla, M.

Sun, L. K.

Tan, J. B.

J. B. Tan and Y. M. Liu, “Optimization of optical communication window mesh through full wave analysis of periodic mesh,” Opt. Commun.281(19), 4835–4839 (2008).
[CrossRef]

J. B. Tan and Z. G. Lu, “Contiguous metallic rings: an inductive mesh with high transmissivity, strong electromagnetic shielding, and uniformly distributed stray light,” Opt. Express15(3), 790–796 (2007).
[CrossRef] [PubMed]

Traylor, J. D.

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng.32(5), 911–925 (1993).
[CrossRef]

Ulrich, R.

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys.7(1), 37–55 (1967).
[CrossRef]

Wang, J.

Wang, Y. S.

H. X. Zhu, X. G. Feng, J. L. Zhao, F. C. Liang, Y. S. Wang, X. Chen, and J. S. Gao “Design of antireflection and bandpass frequency selective surface combining coatings for ZnS optical window,” Acta Opt. Sin.30(9), 2766–2770 (2010).
[CrossRef]

Wein, S. J.

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng.32(5), 911–925 (1993).
[CrossRef]

Welsh, E. A.

J. C. Kirsch, W. R. Lindberg, D. C. Harris, M. J. Adcock, T. P. Li, E. A. Welsh, and R. D. Adkins, “Tri-mode seeker dome considerations,” Proc. SPIE5786, 33–40 (2005).
[CrossRef]

Went, H. E.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett.77(18), 2789–2791 (2000).
[CrossRef]

Whitbourn, L. B.

Yakovlev, A. B.

Zhang, J. F.

Zhao, J. L.

H. X. Zhu, X. G. Feng, J. L. Zhao, F. C. Liang, Y. S. Wang, X. Chen, and J. S. Gao “Design of antireflection and bandpass frequency selective surface combining coatings for ZnS optical window,” Acta Opt. Sin.30(9), 2766–2770 (2010).
[CrossRef]

Zheludev, N. I.

Zhou, Y. J.

Zhu, H. X.

H. X. Zhu, X. G. Feng, J. L. Zhao, F. C. Liang, Y. S. Wang, X. Chen, and J. S. Gao “Design of antireflection and bandpass frequency selective surface combining coatings for ZnS optical window,” Acta Opt. Sin.30(9), 2766–2770 (2010).
[CrossRef]

Acta Opt. Sin. (1)

H. X. Zhu, X. G. Feng, J. L. Zhao, F. C. Liang, Y. S. Wang, X. Chen, and J. S. Gao “Design of antireflection and bandpass frequency selective surface combining coatings for ZnS optical window,” Acta Opt. Sin.30(9), 2766–2770 (2010).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett.77(18), 2789–2791 (2000).
[CrossRef]

Infrared Phys. (1)

R. Ulrich, “Far-infrared properties of metallic mesh and its complementary structure,” Infrared Phys.7(1), 37–55 (1967).
[CrossRef]

Opt. Commun. (1)

J. B. Tan and Y. M. Liu, “Optimization of optical communication window mesh through full wave analysis of periodic mesh,” Opt. Commun.281(19), 4835–4839 (2008).
[CrossRef]

Opt. Eng. (1)

M. Kohin, S. J. Wein, J. D. Traylor, R. C. Chase, and J. E. Chapman, “Analysis and design of transparent conductive coatings and filters,” Opt. Eng.32(5), 911–925 (1993).
[CrossRef]

Opt. Express (5)

Proc. SPIE (2)

J. C. Kirsch, W. R. Lindberg, D. C. Harris, M. J. Adcock, T. P. Li, E. A. Welsh, and R. D. Adkins, “Tri-mode seeker dome considerations,” Proc. SPIE5786, 33–40 (2005).
[CrossRef]

C. I. Bright, “Electromagnetic shielding for electro-optical windows and domes,” Proc. SPIE2286, 388–396 (1994).
[CrossRef]

Other (4)

J. I. Halman, K. A. Ramsey, M. Thomas, and A. Griffin, “Predicted and measured transmission and diffraction by a metallic mesh coating,” Proc. SPIE 7302, 73020Y1 (2009).

B. A. Munk, Frequency Selective Surfaces: Theory and Design (John Wiley and Sons, 2000).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill Companies Inc., 1996).

K. T. Jacoby, M. W. Pieratt, J. I. Halman, and K. A. Ramsey, “Predicted and measured EMI shielding effectiveness of a metallic mesh coating on a sapphire window over a broad frequency range,” Proc. SPIE 7302,73020X1 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Unit cell of transparency conductive resonance mesh coating.

Fig. 2
Fig. 2

Micrograph of transparency conductive resonance mesh sample.

Fig. 3
Fig. 3

Normalized PSF of transparency conductive resonance mesh coating.

Fig. 4
Fig. 4

Comparison of zero-order optical transmission of resonance mesh coating and bandpass FSS with equivalent aperture parameters.

Fig. 5
Fig. 5

Measurement results of optical transmittance of resonance mesh sample.

Fig. 6
Fig. 6

Surface induced current distribution maps at resonance frequency of non-meshed FSS (a) and conductive resonant mesh coating (b) with equivalent aperture parameters.

Fig. 7
Fig. 7

Simulations (a) and measurements (b) of Ka-band transmittance of resonance mesh coating and non-meshed FSS with equivalent aperture parameters.

Fig. 8
Fig. 8

Lumped circuit models of non-meshed bandpass FSS (a) and resonance mesh coating (b).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

t 1 ( x,y )=rect( x m 2 g , y m 2 g )rect( x m 3 g , y m 3 g ),
t 2 ( x,y )=rect( x g2a , y g2a )** m 1 n 1 δ( x m 1 g,y n 1 g ) ,
t 3 ( x,y )= t 1 ( x,y )+ t 2 ( x,y, m 1 ) t 2 ( x,y, m 2 )+ t 2 ( x,y, m 3 ),
I 1 ( θ x , θ y )= ( m 2 m 1 ) 4 sin c 2 ( π m 2 g θ x λ )sin c 2 ( π m 2 g θ y λ ) ( m 3 m 1 ) 4 sin c 2 ( π m 3 g θ x λ )sin c 2 ( π m 3 g θ y λF ),
I 2 ( θ x , θ y )= ( g2a ) 4 g 4 m=1 m 1 n=1 m 1 sin c 2 [ m( g2a ) g ] sin c 2 [ n( g2a ) g ] ×sin c 2 [ m 1 g λ ( θ x mλ g ) ]sin c 2 [ m 1 g λ ( θ y nλ g ) ],
I 3 ( θ x , θ y )= I 1 ( θ x , θ y )+ I 2 ( θ x , θ y , m 1 ) I 2 ( θ x , θ y , m 2 )+ I 2 ( θ x , θ y , m 3 ),

Metrics