Abstract

The Cr3+-Yb3+ codoped YAG crystals were synthesized by the solid state reaction method, in which the intense near-infrared emission around 1000 nm originated from Yb3+ 2F5/22F7/2 transition was obtained due to the efficient energy transfer from Cr3+ to Yb3+. The stable and transient spectral measurements revealed that the phonon assistant energy transfer process is responsible for the energy transfer from Cr3+ to Yb3+ upon both the excitations of Cr3+: 4T1 and 4T2 energy levels. Due to the effective absorption of Cr3+ in the visible region in YAG and the efficient energy transfer to Yb3+, this material can be developed as spectral convertors to improve silicon solar cell photovoltaic conversion efficiency.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near–infrared quantum cutting for photovoltaic,” Adv. Mater. (Deerfield Beach Fla.)21(30), 1–5 (2009).
    [CrossRef]
  2. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B71(1), 014119 (2005).
    [CrossRef]
  3. Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative donwnconversion in GdAL3(BO3)3:RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett.91, 051903 1–3 (2007).
  4. W. J. Zhang, D. C. Yu, J. P. Zhang, Q. Qian, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Near-infrared quantum splitting in Ho3+: LaF3 nanocrystals embedded germinate glass ceramic,” Opt. Mater. Express2(5), 636–643 (2012).
    [CrossRef]
  5. S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett.92(14), 141112 (2008).
    [CrossRef]
  6. S. Ye, B. Zhu, J. Luo, J. X. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express16(12), 8989–8994 (2008).
    [CrossRef] [PubMed]
  7. D. Q. Chen, Y. L. Yu, Y. S. Wang, P. Huang, and F. Y. Wen, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C113(16), 6406–6410 (2009).
    [CrossRef]
  8. J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie, and J. R. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses,” Appl. Phys. Lett.95(14), 141101 (2009).
    [CrossRef]
  9. Y. Teng, J. J. Zhou, X. F. Liu, S. Ye, and J. R. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express18(9), 9671–9676 (2010).
    [CrossRef] [PubMed]
  10. D. Q. Chen, Y. S. Wang, Y. L. Yu. P. Huang, and F. Y. Wang, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ toYb3+ in borate glasses,” J. Appl. Phys.104, 116105 1–3 (2008).
  11. J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ co-Doped YAG ceramic,” J. Appl. Phys.106(4), 043101 (2009).
    [CrossRef]
  12. R. Zhou, Y. Kou, X. Wei, Y. Chen, and M. Yin, “Broadband downconversion based near-infrared quantum cutting via cooperative energy transfer in YnbO4:Bi3+, Yb3+ phosphor,” Appl. Phys. B107(2), 483–487 (2012).
    [CrossRef]
  13. S. Ye, N. Jiang, J. J. Zhou, D. P. Wang, and J. R. Qiu, “Optical property and energy transfer in the ZnO-LiYbO2 hybrid phosphors under the indirect near-UV excitation,” J. Electrochem. Soc.159(1), H11–H15 (2012).
    [CrossRef]
  14. S. Ye, N. Jiang, F. He, X. F. Liu, B. Zhu, Y. Teng, and J. R. Qiu, “Intense near-infrared emission from ZnO-LiYbO2 hybrid phosphors through efficient energy transfer from ZnO to Yb3+,” Opt. Express18(2), 639–644 (2010).
    [CrossRef] [PubMed]
  15. S. Ye, B. Zhu, J. Luo, Y. Teng, J. X. Chen, G. Lakshminarayana, G. D. Qian, and J. R. Qiu, “Energy transfer between silicon-oxygen-related defects and Yb3+ in transparent glass ceramics containing Ba2TiSi2O8 nanocrystals,” Appl. Phys. Lett.93(18), 181110 (2008).
    [CrossRef]
  16. T. Saiki, K. Imasaki, S. Motokoshi, C. Yamanaka, H. Fujita, M. Nakatsuka, and Y. Izawa, “Disk-type Nd/Cr: YAG ceramic lasers pumped by arc-metal-halide-lamp,” Opt. Commun.268(1), 155–159 (2006).
    [CrossRef]
  17. S. Heer, M. Wermuth, K. Kramer, and H. U. Gudel, “Sharp 2E upconversion luminescence of Cr3+ in Y3Ga5O12 codoped with Cr3+ and Yb3+,” Phys. Rev. B65(12), 125112 (2002).
    [CrossRef]
  18. S. Heer, M. Wermuth, K. Kramer, D. Ehrentraut, and H. U. Gudel, “Up-conversion excitation of sharp Cr3+ 2E emission in YGG and YAG godoped with Cr3+ and Yb3+,” J. Lumin.94–95, 337–341 (2001).
    [CrossRef]
  19. K. Fujioka, T. Saiki, S. Motokoshi, Y. Fujimoto, H. Fujita, and M. Nakatsuka, “Luminescence properties of highly Cr co-doped Nd:YAG powder produced by sol-gel method,” J. Lumin.130(3), 455–459 (2010).
    [CrossRef]
  20. H. Szymczak, M. Wardzynska, and I. E. Mylnikova, “Optical spectrum of Cr3+ in the spinel LiGa5O8,” J. Phys. C Solid State Phys.8(22), 3937–3943 (1975).
    [CrossRef]
  21. L. M. Shao and X. P. Jing, “Energy transfer and luminescent properties of Ce3+, Cr3+ co-doped Y3Al5O12,” J. Lumin.131(6), 1216–1221 (2011).
    [CrossRef]
  22. J. P. Hehir, M. O. Henry, J. P. Larkin, and G. F. Imbusch, “Nature of the luminescence from YAG:Cr3+,” J. Phys. C Solid State Phys.7(12), 2241–2248 (1974).
    [CrossRef]
  23. L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin.91(3-4), 177–193 (2000).
    [CrossRef]
  24. D. L. Wood, J. Ferguson, K. Knox, and J. F. Dillon, “Crystal-field spectra of d3,7 ions. III. spectrum of Cr3+ in various octahedral crystal fields,” J. Chem. Phys.39(4), 890–898 (1963).
    [CrossRef]
  25. M. N. Sanz-Ortiz, F. Rodriguez, I. Hernandez, R. Valiente, and S. Kuck, “Origin of the 2E←→4T2 Fano resonance in Cr3+-doped LiCaAlF6: Pressure-induced excited-state crossover,” Phys. Rev. B81(4), 045114 (2010).
    [CrossRef]
  26. R. Martín-Rodríguez, R. Valiente, F. Rodríguez, and M. Bettinelli, “Temperature and pressure dependence of the optical properties of Cr3+-doped Gd3Ga5O12 nanoparticles,” Nanotechnology22(26), 265707 (2011).
    [CrossRef] [PubMed]

2012 (3)

R. Zhou, Y. Kou, X. Wei, Y. Chen, and M. Yin, “Broadband downconversion based near-infrared quantum cutting via cooperative energy transfer in YnbO4:Bi3+, Yb3+ phosphor,” Appl. Phys. B107(2), 483–487 (2012).
[CrossRef]

S. Ye, N. Jiang, J. J. Zhou, D. P. Wang, and J. R. Qiu, “Optical property and energy transfer in the ZnO-LiYbO2 hybrid phosphors under the indirect near-UV excitation,” J. Electrochem. Soc.159(1), H11–H15 (2012).
[CrossRef]

W. J. Zhang, D. C. Yu, J. P. Zhang, Q. Qian, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Near-infrared quantum splitting in Ho3+: LaF3 nanocrystals embedded germinate glass ceramic,” Opt. Mater. Express2(5), 636–643 (2012).
[CrossRef]

2011 (2)

L. M. Shao and X. P. Jing, “Energy transfer and luminescent properties of Ce3+, Cr3+ co-doped Y3Al5O12,” J. Lumin.131(6), 1216–1221 (2011).
[CrossRef]

R. Martín-Rodríguez, R. Valiente, F. Rodríguez, and M. Bettinelli, “Temperature and pressure dependence of the optical properties of Cr3+-doped Gd3Ga5O12 nanoparticles,” Nanotechnology22(26), 265707 (2011).
[CrossRef] [PubMed]

2010 (4)

K. Fujioka, T. Saiki, S. Motokoshi, Y. Fujimoto, H. Fujita, and M. Nakatsuka, “Luminescence properties of highly Cr co-doped Nd:YAG powder produced by sol-gel method,” J. Lumin.130(3), 455–459 (2010).
[CrossRef]

S. Ye, N. Jiang, F. He, X. F. Liu, B. Zhu, Y. Teng, and J. R. Qiu, “Intense near-infrared emission from ZnO-LiYbO2 hybrid phosphors through efficient energy transfer from ZnO to Yb3+,” Opt. Express18(2), 639–644 (2010).
[CrossRef] [PubMed]

Y. Teng, J. J. Zhou, X. F. Liu, S. Ye, and J. R. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express18(9), 9671–9676 (2010).
[CrossRef] [PubMed]

M. N. Sanz-Ortiz, F. Rodriguez, I. Hernandez, R. Valiente, and S. Kuck, “Origin of the 2E←→4T2 Fano resonance in Cr3+-doped LiCaAlF6: Pressure-induced excited-state crossover,” Phys. Rev. B81(4), 045114 (2010).
[CrossRef]

2009 (4)

J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ co-Doped YAG ceramic,” J. Appl. Phys.106(4), 043101 (2009).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near–infrared quantum cutting for photovoltaic,” Adv. Mater. (Deerfield Beach Fla.)21(30), 1–5 (2009).
[CrossRef]

D. Q. Chen, Y. L. Yu, Y. S. Wang, P. Huang, and F. Y. Wen, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C113(16), 6406–6410 (2009).
[CrossRef]

J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie, and J. R. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses,” Appl. Phys. Lett.95(14), 141101 (2009).
[CrossRef]

2008 (4)

S. Ye, B. Zhu, J. Luo, Y. Teng, J. X. Chen, G. Lakshminarayana, G. D. Qian, and J. R. Qiu, “Energy transfer between silicon-oxygen-related defects and Yb3+ in transparent glass ceramics containing Ba2TiSi2O8 nanocrystals,” Appl. Phys. Lett.93(18), 181110 (2008).
[CrossRef]

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett.92(14), 141112 (2008).
[CrossRef]

D. Q. Chen, Y. S. Wang, Y. L. Yu. P. Huang, and F. Y. Wang, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ toYb3+ in borate glasses,” J. Appl. Phys.104, 116105 1–3 (2008).

S. Ye, B. Zhu, J. Luo, J. X. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

2007 (1)

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative donwnconversion in GdAL3(BO3)3:RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett.91, 051903 1–3 (2007).

2006 (1)

T. Saiki, K. Imasaki, S. Motokoshi, C. Yamanaka, H. Fujita, M. Nakatsuka, and Y. Izawa, “Disk-type Nd/Cr: YAG ceramic lasers pumped by arc-metal-halide-lamp,” Opt. Commun.268(1), 155–159 (2006).
[CrossRef]

2005 (1)

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

2002 (1)

S. Heer, M. Wermuth, K. Kramer, and H. U. Gudel, “Sharp 2E upconversion luminescence of Cr3+ in Y3Ga5O12 codoped with Cr3+ and Yb3+,” Phys. Rev. B65(12), 125112 (2002).
[CrossRef]

2001 (1)

S. Heer, M. Wermuth, K. Kramer, D. Ehrentraut, and H. U. Gudel, “Up-conversion excitation of sharp Cr3+ 2E emission in YGG and YAG godoped with Cr3+ and Yb3+,” J. Lumin.94–95, 337–341 (2001).
[CrossRef]

2000 (1)

L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin.91(3-4), 177–193 (2000).
[CrossRef]

1975 (1)

H. Szymczak, M. Wardzynska, and I. E. Mylnikova, “Optical spectrum of Cr3+ in the spinel LiGa5O8,” J. Phys. C Solid State Phys.8(22), 3937–3943 (1975).
[CrossRef]

1974 (1)

J. P. Hehir, M. O. Henry, J. P. Larkin, and G. F. Imbusch, “Nature of the luminescence from YAG:Cr3+,” J. Phys. C Solid State Phys.7(12), 2241–2248 (1974).
[CrossRef]

1963 (1)

D. L. Wood, J. Ferguson, K. Knox, and J. F. Dillon, “Crystal-field spectra of d3,7 ions. III. spectrum of Cr3+ in various octahedral crystal fields,” J. Chem. Phys.39(4), 890–898 (1963).
[CrossRef]

Aarts, L.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near–infrared quantum cutting for photovoltaic,” Adv. Mater. (Deerfield Beach Fla.)21(30), 1–5 (2009).
[CrossRef]

Bettinelli, M.

R. Martín-Rodríguez, R. Valiente, F. Rodríguez, and M. Bettinelli, “Temperature and pressure dependence of the optical properties of Cr3+-doped Gd3Ga5O12 nanoparticles,” Nanotechnology22(26), 265707 (2011).
[CrossRef] [PubMed]

Chen, D. Q.

D. Q. Chen, Y. L. Yu, Y. S. Wang, P. Huang, and F. Y. Wen, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C113(16), 6406–6410 (2009).
[CrossRef]

D. Q. Chen, Y. S. Wang, Y. L. Yu. P. Huang, and F. Y. Wang, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ toYb3+ in borate glasses,” J. Appl. Phys.104, 116105 1–3 (2008).

Chen, J. X.

S. Ye, B. Zhu, J. Luo, J. X. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

S. Ye, B. Zhu, J. Luo, Y. Teng, J. X. Chen, G. Lakshminarayana, G. D. Qian, and J. R. Qiu, “Energy transfer between silicon-oxygen-related defects and Yb3+ in transparent glass ceramics containing Ba2TiSi2O8 nanocrystals,” Appl. Phys. Lett.93(18), 181110 (2008).
[CrossRef]

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett.92(14), 141112 (2008).
[CrossRef]

Chen, Y.

R. Zhou, Y. Kou, X. Wei, Y. Chen, and M. Yin, “Broadband downconversion based near-infrared quantum cutting via cooperative energy transfer in YnbO4:Bi3+, Yb3+ phosphor,” Appl. Phys. B107(2), 483–487 (2012).
[CrossRef]

de Heer, E.

L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin.91(3-4), 177–193 (2000).
[CrossRef]

Den Hertog, M. I.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Dillon, J. F.

D. L. Wood, J. Ferguson, K. Knox, and J. F. Dillon, “Crystal-field spectra of d3,7 ions. III. spectrum of Cr3+ in various octahedral crystal fields,” J. Chem. Phys.39(4), 890–898 (1963).
[CrossRef]

Ehrentraut, D.

S. Heer, M. Wermuth, K. Kramer, D. Ehrentraut, and H. U. Gudel, “Up-conversion excitation of sharp Cr3+ 2E emission in YGG and YAG godoped with Cr3+ and Yb3+,” J. Lumin.94–95, 337–341 (2001).
[CrossRef]

Ferguson, J.

D. L. Wood, J. Ferguson, K. Knox, and J. F. Dillon, “Crystal-field spectra of d3,7 ions. III. spectrum of Cr3+ in various octahedral crystal fields,” J. Chem. Phys.39(4), 890–898 (1963).
[CrossRef]

Fujimoto, Y.

K. Fujioka, T. Saiki, S. Motokoshi, Y. Fujimoto, H. Fujita, and M. Nakatsuka, “Luminescence properties of highly Cr co-doped Nd:YAG powder produced by sol-gel method,” J. Lumin.130(3), 455–459 (2010).
[CrossRef]

Fujioka, K.

K. Fujioka, T. Saiki, S. Motokoshi, Y. Fujimoto, H. Fujita, and M. Nakatsuka, “Luminescence properties of highly Cr co-doped Nd:YAG powder produced by sol-gel method,” J. Lumin.130(3), 455–459 (2010).
[CrossRef]

Fujita, H.

K. Fujioka, T. Saiki, S. Motokoshi, Y. Fujimoto, H. Fujita, and M. Nakatsuka, “Luminescence properties of highly Cr co-doped Nd:YAG powder produced by sol-gel method,” J. Lumin.130(3), 455–459 (2010).
[CrossRef]

T. Saiki, K. Imasaki, S. Motokoshi, C. Yamanaka, H. Fujita, M. Nakatsuka, and Y. Izawa, “Disk-type Nd/Cr: YAG ceramic lasers pumped by arc-metal-halide-lamp,” Opt. Commun.268(1), 155–159 (2006).
[CrossRef]

Gudel, H. U.

S. Heer, M. Wermuth, K. Kramer, and H. U. Gudel, “Sharp 2E upconversion luminescence of Cr3+ in Y3Ga5O12 codoped with Cr3+ and Yb3+,” Phys. Rev. B65(12), 125112 (2002).
[CrossRef]

S. Heer, M. Wermuth, K. Kramer, D. Ehrentraut, and H. U. Gudel, “Up-conversion excitation of sharp Cr3+ 2E emission in YGG and YAG godoped with Cr3+ and Yb3+,” J. Lumin.94–95, 337–341 (2001).
[CrossRef]

He, F.

Heer, S.

S. Heer, M. Wermuth, K. Kramer, and H. U. Gudel, “Sharp 2E upconversion luminescence of Cr3+ in Y3Ga5O12 codoped with Cr3+ and Yb3+,” Phys. Rev. B65(12), 125112 (2002).
[CrossRef]

S. Heer, M. Wermuth, K. Kramer, D. Ehrentraut, and H. U. Gudel, “Up-conversion excitation of sharp Cr3+ 2E emission in YGG and YAG godoped with Cr3+ and Yb3+,” J. Lumin.94–95, 337–341 (2001).
[CrossRef]

Heeroma, M.

L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin.91(3-4), 177–193 (2000).
[CrossRef]

Hehir, J. P.

J. P. Hehir, M. O. Henry, J. P. Larkin, and G. F. Imbusch, “Nature of the luminescence from YAG:Cr3+,” J. Phys. C Solid State Phys.7(12), 2241–2248 (1974).
[CrossRef]

Henry, M. O.

J. P. Hehir, M. O. Henry, J. P. Larkin, and G. F. Imbusch, “Nature of the luminescence from YAG:Cr3+,” J. Phys. C Solid State Phys.7(12), 2241–2248 (1974).
[CrossRef]

Hernandez, I.

M. N. Sanz-Ortiz, F. Rodriguez, I. Hernandez, R. Valiente, and S. Kuck, “Origin of the 2E←→4T2 Fano resonance in Cr3+-doped LiCaAlF6: Pressure-induced excited-state crossover,” Phys. Rev. B81(4), 045114 (2010).
[CrossRef]

Huang, P.

D. Q. Chen, Y. L. Yu, Y. S. Wang, P. Huang, and F. Y. Wen, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C113(16), 6406–6410 (2009).
[CrossRef]

Huang, Y. L. Yu. P.

D. Q. Chen, Y. S. Wang, Y. L. Yu. P. Huang, and F. Y. Wang, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ toYb3+ in borate glasses,” J. Appl. Phys.104, 116105 1–3 (2008).

Imasaki, K.

T. Saiki, K. Imasaki, S. Motokoshi, C. Yamanaka, H. Fujita, M. Nakatsuka, and Y. Izawa, “Disk-type Nd/Cr: YAG ceramic lasers pumped by arc-metal-halide-lamp,” Opt. Commun.268(1), 155–159 (2006).
[CrossRef]

Imbusch, G. F.

J. P. Hehir, M. O. Henry, J. P. Larkin, and G. F. Imbusch, “Nature of the luminescence from YAG:Cr3+,” J. Phys. C Solid State Phys.7(12), 2241–2248 (1974).
[CrossRef]

Izawa, Y.

T. Saiki, K. Imasaki, S. Motokoshi, C. Yamanaka, H. Fujita, M. Nakatsuka, and Y. Izawa, “Disk-type Nd/Cr: YAG ceramic lasers pumped by arc-metal-halide-lamp,” Opt. Commun.268(1), 155–159 (2006).
[CrossRef]

Jiang, N.

S. Ye, N. Jiang, J. J. Zhou, D. P. Wang, and J. R. Qiu, “Optical property and energy transfer in the ZnO-LiYbO2 hybrid phosphors under the indirect near-UV excitation,” J. Electrochem. Soc.159(1), H11–H15 (2012).
[CrossRef]

S. Ye, N. Jiang, F. He, X. F. Liu, B. Zhu, Y. Teng, and J. R. Qiu, “Intense near-infrared emission from ZnO-LiYbO2 hybrid phosphors through efficient energy transfer from ZnO to Yb3+,” Opt. Express18(2), 639–644 (2010).
[CrossRef] [PubMed]

Jiang, Z. H.

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative donwnconversion in GdAL3(BO3)3:RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett.91, 051903 1–3 (2007).

Jing, X. P.

L. M. Shao and X. P. Jing, “Energy transfer and luminescent properties of Ce3+, Cr3+ co-doped Y3Al5O12,” J. Lumin.131(6), 1216–1221 (2011).
[CrossRef]

Knox, K.

D. L. Wood, J. Ferguson, K. Knox, and J. F. Dillon, “Crystal-field spectra of d3,7 ions. III. spectrum of Cr3+ in various octahedral crystal fields,” J. Chem. Phys.39(4), 890–898 (1963).
[CrossRef]

Kou, Y.

R. Zhou, Y. Kou, X. Wei, Y. Chen, and M. Yin, “Broadband downconversion based near-infrared quantum cutting via cooperative energy transfer in YnbO4:Bi3+, Yb3+ phosphor,” Appl. Phys. B107(2), 483–487 (2012).
[CrossRef]

Kox, M. H. F.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Kramer, K.

S. Heer, M. Wermuth, K. Kramer, and H. U. Gudel, “Sharp 2E upconversion luminescence of Cr3+ in Y3Ga5O12 codoped with Cr3+ and Yb3+,” Phys. Rev. B65(12), 125112 (2002).
[CrossRef]

S. Heer, M. Wermuth, K. Kramer, D. Ehrentraut, and H. U. Gudel, “Up-conversion excitation of sharp Cr3+ 2E emission in YGG and YAG godoped with Cr3+ and Yb3+,” J. Lumin.94–95, 337–341 (2001).
[CrossRef]

Kuck, S.

M. N. Sanz-Ortiz, F. Rodriguez, I. Hernandez, R. Valiente, and S. Kuck, “Origin of the 2E←→4T2 Fano resonance in Cr3+-doped LiCaAlF6: Pressure-induced excited-state crossover,” Phys. Rev. B81(4), 045114 (2010).
[CrossRef]

Lakshminarayana, G.

S. Ye, B. Zhu, J. Luo, J. X. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

S. Ye, B. Zhu, J. Luo, Y. Teng, J. X. Chen, G. Lakshminarayana, G. D. Qian, and J. R. Qiu, “Energy transfer between silicon-oxygen-related defects and Yb3+ in transparent glass ceramics containing Ba2TiSi2O8 nanocrystals,” Appl. Phys. Lett.93(18), 181110 (2008).
[CrossRef]

Larkin, J. P.

J. P. Hehir, M. O. Henry, J. P. Larkin, and G. F. Imbusch, “Nature of the luminescence from YAG:Cr3+,” J. Phys. C Solid State Phys.7(12), 2241–2248 (1974).
[CrossRef]

Lin, G.

J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie, and J. R. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses,” Appl. Phys. Lett.95(14), 141101 (2009).
[CrossRef]

Liu, X. F.

Luo, J.

S. Ye, B. Zhu, J. Luo, Y. Teng, J. X. Chen, G. Lakshminarayana, G. D. Qian, and J. R. Qiu, “Energy transfer between silicon-oxygen-related defects and Yb3+ in transparent glass ceramics containing Ba2TiSi2O8 nanocrystals,” Appl. Phys. Lett.93(18), 181110 (2008).
[CrossRef]

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett.92(14), 141112 (2008).
[CrossRef]

S. Ye, B. Zhu, J. Luo, J. X. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

Martín-Rodríguez, R.

R. Martín-Rodríguez, R. Valiente, F. Rodríguez, and M. Bettinelli, “Temperature and pressure dependence of the optical properties of Cr3+-doped Gd3Ga5O12 nanoparticles,” Nanotechnology22(26), 265707 (2011).
[CrossRef] [PubMed]

Meijerink, A.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near–infrared quantum cutting for photovoltaic,” Adv. Mater. (Deerfield Beach Fla.)21(30), 1–5 (2009).
[CrossRef]

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin.91(3-4), 177–193 (2000).
[CrossRef]

Motokoshi, S.

K. Fujioka, T. Saiki, S. Motokoshi, Y. Fujimoto, H. Fujita, and M. Nakatsuka, “Luminescence properties of highly Cr co-doped Nd:YAG powder produced by sol-gel method,” J. Lumin.130(3), 455–459 (2010).
[CrossRef]

T. Saiki, K. Imasaki, S. Motokoshi, C. Yamanaka, H. Fujita, M. Nakatsuka, and Y. Izawa, “Disk-type Nd/Cr: YAG ceramic lasers pumped by arc-metal-halide-lamp,” Opt. Commun.268(1), 155–159 (2006).
[CrossRef]

Mylnikova, I. E.

H. Szymczak, M. Wardzynska, and I. E. Mylnikova, “Optical spectrum of Cr3+ in the spinel LiGa5O8,” J. Phys. C Solid State Phys.8(22), 3937–3943 (1975).
[CrossRef]

Nakatsuka, M.

K. Fujioka, T. Saiki, S. Motokoshi, Y. Fujimoto, H. Fujita, and M. Nakatsuka, “Luminescence properties of highly Cr co-doped Nd:YAG powder produced by sol-gel method,” J. Lumin.130(3), 455–459 (2010).
[CrossRef]

T. Saiki, K. Imasaki, S. Motokoshi, C. Yamanaka, H. Fujita, M. Nakatsuka, and Y. Izawa, “Disk-type Nd/Cr: YAG ceramic lasers pumped by arc-metal-halide-lamp,” Opt. Commun.268(1), 155–159 (2006).
[CrossRef]

Qian, G. D.

S. Ye, B. Zhu, J. Luo, Y. Teng, J. X. Chen, G. Lakshminarayana, G. D. Qian, and J. R. Qiu, “Energy transfer between silicon-oxygen-related defects and Yb3+ in transparent glass ceramics containing Ba2TiSi2O8 nanocrystals,” Appl. Phys. Lett.93(18), 181110 (2008).
[CrossRef]

Qian, Q.

Qiu, J. R.

S. Ye, N. Jiang, J. J. Zhou, D. P. Wang, and J. R. Qiu, “Optical property and energy transfer in the ZnO-LiYbO2 hybrid phosphors under the indirect near-UV excitation,” J. Electrochem. Soc.159(1), H11–H15 (2012).
[CrossRef]

Y. Teng, J. J. Zhou, X. F. Liu, S. Ye, and J. R. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express18(9), 9671–9676 (2010).
[CrossRef] [PubMed]

S. Ye, N. Jiang, F. He, X. F. Liu, B. Zhu, Y. Teng, and J. R. Qiu, “Intense near-infrared emission from ZnO-LiYbO2 hybrid phosphors through efficient energy transfer from ZnO to Yb3+,” Opt. Express18(2), 639–644 (2010).
[CrossRef] [PubMed]

J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie, and J. R. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses,” Appl. Phys. Lett.95(14), 141101 (2009).
[CrossRef]

S. Ye, B. Zhu, J. Luo, J. X. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

S. Ye, B. Zhu, J. Luo, Y. Teng, J. X. Chen, G. Lakshminarayana, G. D. Qian, and J. R. Qiu, “Energy transfer between silicon-oxygen-related defects and Yb3+ in transparent glass ceramics containing Ba2TiSi2O8 nanocrystals,” Appl. Phys. Lett.93(18), 181110 (2008).
[CrossRef]

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett.92(14), 141112 (2008).
[CrossRef]

Rodriguez, F.

M. N. Sanz-Ortiz, F. Rodriguez, I. Hernandez, R. Valiente, and S. Kuck, “Origin of the 2E←→4T2 Fano resonance in Cr3+-doped LiCaAlF6: Pressure-induced excited-state crossover,” Phys. Rev. B81(4), 045114 (2010).
[CrossRef]

Rodríguez, F.

R. Martín-Rodríguez, R. Valiente, F. Rodríguez, and M. Bettinelli, “Temperature and pressure dependence of the optical properties of Cr3+-doped Gd3Ga5O12 nanoparticles,” Nanotechnology22(26), 265707 (2011).
[CrossRef] [PubMed]

Saiki, T.

K. Fujioka, T. Saiki, S. Motokoshi, Y. Fujimoto, H. Fujita, and M. Nakatsuka, “Luminescence properties of highly Cr co-doped Nd:YAG powder produced by sol-gel method,” J. Lumin.130(3), 455–459 (2010).
[CrossRef]

T. Saiki, K. Imasaki, S. Motokoshi, C. Yamanaka, H. Fujita, M. Nakatsuka, and Y. Izawa, “Disk-type Nd/Cr: YAG ceramic lasers pumped by arc-metal-halide-lamp,” Opt. Commun.268(1), 155–159 (2006).
[CrossRef]

Sanz-Ortiz, M. N.

M. N. Sanz-Ortiz, F. Rodriguez, I. Hernandez, R. Valiente, and S. Kuck, “Origin of the 2E←→4T2 Fano resonance in Cr3+-doped LiCaAlF6: Pressure-induced excited-state crossover,” Phys. Rev. B81(4), 045114 (2010).
[CrossRef]

Shao, L. M.

L. M. Shao and X. P. Jing, “Energy transfer and luminescent properties of Ce3+, Cr3+ co-doped Y3Al5O12,” J. Lumin.131(6), 1216–1221 (2011).
[CrossRef]

Szymczak, H.

H. Szymczak, M. Wardzynska, and I. E. Mylnikova, “Optical spectrum of Cr3+ in the spinel LiGa5O8,” J. Phys. C Solid State Phys.8(22), 3937–3943 (1975).
[CrossRef]

Tanabe, S.

J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ co-Doped YAG ceramic,” J. Appl. Phys.106(4), 043101 (2009).
[CrossRef]

Teng, Y.

Y. Teng, J. J. Zhou, X. F. Liu, S. Ye, and J. R. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express18(9), 9671–9676 (2010).
[CrossRef] [PubMed]

S. Ye, N. Jiang, F. He, X. F. Liu, B. Zhu, Y. Teng, and J. R. Qiu, “Intense near-infrared emission from ZnO-LiYbO2 hybrid phosphors through efficient energy transfer from ZnO to Yb3+,” Opt. Express18(2), 639–644 (2010).
[CrossRef] [PubMed]

J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie, and J. R. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses,” Appl. Phys. Lett.95(14), 141101 (2009).
[CrossRef]

S. Ye, B. Zhu, J. Luo, Y. Teng, J. X. Chen, G. Lakshminarayana, G. D. Qian, and J. R. Qiu, “Energy transfer between silicon-oxygen-related defects and Yb3+ in transparent glass ceramics containing Ba2TiSi2O8 nanocrystals,” Appl. Phys. Lett.93(18), 181110 (2008).
[CrossRef]

Ueda, J.

J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ co-Doped YAG ceramic,” J. Appl. Phys.106(4), 043101 (2009).
[CrossRef]

Valiente, R.

R. Martín-Rodríguez, R. Valiente, F. Rodríguez, and M. Bettinelli, “Temperature and pressure dependence of the optical properties of Cr3+-doped Gd3Ga5O12 nanoparticles,” Nanotechnology22(26), 265707 (2011).
[CrossRef] [PubMed]

M. N. Sanz-Ortiz, F. Rodriguez, I. Hernandez, R. Valiente, and S. Kuck, “Origin of the 2E←→4T2 Fano resonance in Cr3+-doped LiCaAlF6: Pressure-induced excited-state crossover,” Phys. Rev. B81(4), 045114 (2010).
[CrossRef]

Van der Eerden, J. P. J. M.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

van der Ende, B. M.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near–infrared quantum cutting for photovoltaic,” Adv. Mater. (Deerfield Beach Fla.)21(30), 1–5 (2009).
[CrossRef]

van Pieterson, L.

L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin.91(3-4), 177–193 (2000).
[CrossRef]

Vergeer, P.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Vlugt, T. J. H.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Wang, D. P.

S. Ye, N. Jiang, J. J. Zhou, D. P. Wang, and J. R. Qiu, “Optical property and energy transfer in the ZnO-LiYbO2 hybrid phosphors under the indirect near-UV excitation,” J. Electrochem. Soc.159(1), H11–H15 (2012).
[CrossRef]

Wang, F. Y.

D. Q. Chen, Y. S. Wang, Y. L. Yu. P. Huang, and F. Y. Wang, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ toYb3+ in borate glasses,” J. Appl. Phys.104, 116105 1–3 (2008).

Wang, Y. S.

D. Q. Chen, Y. L. Yu, Y. S. Wang, P. Huang, and F. Y. Wen, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C113(16), 6406–6410 (2009).
[CrossRef]

D. Q. Chen, Y. S. Wang, Y. L. Yu. P. Huang, and F. Y. Wang, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ toYb3+ in borate glasses,” J. Appl. Phys.104, 116105 1–3 (2008).

Wardzynska, M.

H. Szymczak, M. Wardzynska, and I. E. Mylnikova, “Optical spectrum of Cr3+ in the spinel LiGa5O8,” J. Phys. C Solid State Phys.8(22), 3937–3943 (1975).
[CrossRef]

Wei, X.

R. Zhou, Y. Kou, X. Wei, Y. Chen, and M. Yin, “Broadband downconversion based near-infrared quantum cutting via cooperative energy transfer in YnbO4:Bi3+, Yb3+ phosphor,” Appl. Phys. B107(2), 483–487 (2012).
[CrossRef]

Wen, F. Y.

D. Q. Chen, Y. L. Yu, Y. S. Wang, P. Huang, and F. Y. Wen, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C113(16), 6406–6410 (2009).
[CrossRef]

Wermuth, M.

S. Heer, M. Wermuth, K. Kramer, and H. U. Gudel, “Sharp 2E upconversion luminescence of Cr3+ in Y3Ga5O12 codoped with Cr3+ and Yb3+,” Phys. Rev. B65(12), 125112 (2002).
[CrossRef]

S. Heer, M. Wermuth, K. Kramer, D. Ehrentraut, and H. U. Gudel, “Up-conversion excitation of sharp Cr3+ 2E emission in YGG and YAG godoped with Cr3+ and Yb3+,” J. Lumin.94–95, 337–341 (2001).
[CrossRef]

Wood, D. L.

D. L. Wood, J. Ferguson, K. Knox, and J. F. Dillon, “Crystal-field spectra of d3,7 ions. III. spectrum of Cr3+ in various octahedral crystal fields,” J. Chem. Phys.39(4), 890–898 (1963).
[CrossRef]

Xie, J. H.

J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie, and J. R. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses,” Appl. Phys. Lett.95(14), 141101 (2009).
[CrossRef]

Xu, S. H.

Yamanaka, C.

T. Saiki, K. Imasaki, S. Motokoshi, C. Yamanaka, H. Fujita, M. Nakatsuka, and Y. Izawa, “Disk-type Nd/Cr: YAG ceramic lasers pumped by arc-metal-halide-lamp,” Opt. Commun.268(1), 155–159 (2006).
[CrossRef]

Yang, G. F.

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative donwnconversion in GdAL3(BO3)3:RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett.91, 051903 1–3 (2007).

Yang, Z. M.

Ye, S.

S. Ye, N. Jiang, J. J. Zhou, D. P. Wang, and J. R. Qiu, “Optical property and energy transfer in the ZnO-LiYbO2 hybrid phosphors under the indirect near-UV excitation,” J. Electrochem. Soc.159(1), H11–H15 (2012).
[CrossRef]

Y. Teng, J. J. Zhou, X. F. Liu, S. Ye, and J. R. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express18(9), 9671–9676 (2010).
[CrossRef] [PubMed]

S. Ye, N. Jiang, F. He, X. F. Liu, B. Zhu, Y. Teng, and J. R. Qiu, “Intense near-infrared emission from ZnO-LiYbO2 hybrid phosphors through efficient energy transfer from ZnO to Yb3+,” Opt. Express18(2), 639–644 (2010).
[CrossRef] [PubMed]

J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie, and J. R. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses,” Appl. Phys. Lett.95(14), 141101 (2009).
[CrossRef]

S. Ye, B. Zhu, J. Luo, J. X. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

S. Ye, B. Zhu, J. Luo, Y. Teng, J. X. Chen, G. Lakshminarayana, G. D. Qian, and J. R. Qiu, “Energy transfer between silicon-oxygen-related defects and Yb3+ in transparent glass ceramics containing Ba2TiSi2O8 nanocrystals,” Appl. Phys. Lett.93(18), 181110 (2008).
[CrossRef]

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett.92(14), 141112 (2008).
[CrossRef]

Yin, M.

R. Zhou, Y. Kou, X. Wei, Y. Chen, and M. Yin, “Broadband downconversion based near-infrared quantum cutting via cooperative energy transfer in YnbO4:Bi3+, Yb3+ phosphor,” Appl. Phys. B107(2), 483–487 (2012).
[CrossRef]

Yu, D. C.

Yu, Y. L.

D. Q. Chen, Y. L. Yu, Y. S. Wang, P. Huang, and F. Y. Wen, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C113(16), 6406–6410 (2009).
[CrossRef]

Zhang, J. P.

Zhang, Q. Y.

W. J. Zhang, D. C. Yu, J. P. Zhang, Q. Qian, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Near-infrared quantum splitting in Ho3+: LaF3 nanocrystals embedded germinate glass ceramic,” Opt. Mater. Express2(5), 636–643 (2012).
[CrossRef]

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative donwnconversion in GdAL3(BO3)3:RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett.91, 051903 1–3 (2007).

Zhang, W. J.

Zhou, J. J.

S. Ye, N. Jiang, J. J. Zhou, D. P. Wang, and J. R. Qiu, “Optical property and energy transfer in the ZnO-LiYbO2 hybrid phosphors under the indirect near-UV excitation,” J. Electrochem. Soc.159(1), H11–H15 (2012).
[CrossRef]

Y. Teng, J. J. Zhou, X. F. Liu, S. Ye, and J. R. Qiu, “Efficient broadband near-infrared quantum cutting for solar cells,” Opt. Express18(9), 9671–9676 (2010).
[CrossRef] [PubMed]

J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie, and J. R. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses,” Appl. Phys. Lett.95(14), 141101 (2009).
[CrossRef]

Zhou, R.

R. Zhou, Y. Kou, X. Wei, Y. Chen, and M. Yin, “Broadband downconversion based near-infrared quantum cutting via cooperative energy transfer in YnbO4:Bi3+, Yb3+ phosphor,” Appl. Phys. B107(2), 483–487 (2012).
[CrossRef]

Zhu, B.

S. Ye, N. Jiang, F. He, X. F. Liu, B. Zhu, Y. Teng, and J. R. Qiu, “Intense near-infrared emission from ZnO-LiYbO2 hybrid phosphors through efficient energy transfer from ZnO to Yb3+,” Opt. Express18(2), 639–644 (2010).
[CrossRef] [PubMed]

J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie, and J. R. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses,” Appl. Phys. Lett.95(14), 141101 (2009).
[CrossRef]

S. Ye, B. Zhu, J. Luo, J. X. Chen, G. Lakshminarayana, and J. R. Qiu, “Enhanced cooperative quantum cutting in Tm3+- Yb3+ codoped glass ceramics containing LaF3 nanocrystals,” Opt. Express16(12), 8989–8994 (2008).
[CrossRef] [PubMed]

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett.92(14), 141112 (2008).
[CrossRef]

S. Ye, B. Zhu, J. Luo, Y. Teng, J. X. Chen, G. Lakshminarayana, G. D. Qian, and J. R. Qiu, “Energy transfer between silicon-oxygen-related defects and Yb3+ in transparent glass ceramics containing Ba2TiSi2O8 nanocrystals,” Appl. Phys. Lett.93(18), 181110 (2008).
[CrossRef]

Zhuang, Y. X.

J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie, and J. R. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses,” Appl. Phys. Lett.95(14), 141101 (2009).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near–infrared quantum cutting for photovoltaic,” Adv. Mater. (Deerfield Beach Fla.)21(30), 1–5 (2009).
[CrossRef]

Appl. Phys. B (1)

R. Zhou, Y. Kou, X. Wei, Y. Chen, and M. Yin, “Broadband downconversion based near-infrared quantum cutting via cooperative energy transfer in YnbO4:Bi3+, Yb3+ phosphor,” Appl. Phys. B107(2), 483–487 (2012).
[CrossRef]

Appl. Phys. Lett. (4)

S. Ye, B. Zhu, J. Luo, Y. Teng, J. X. Chen, G. Lakshminarayana, G. D. Qian, and J. R. Qiu, “Energy transfer between silicon-oxygen-related defects and Yb3+ in transparent glass ceramics containing Ba2TiSi2O8 nanocrystals,” Appl. Phys. Lett.93(18), 181110 (2008).
[CrossRef]

Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, “Cooperative donwnconversion in GdAL3(BO3)3:RE3+, Yb3+ (RE=Pr, Tb, and Tm),” Appl. Phys. Lett.91, 051903 1–3 (2007).

S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, “Infrared quantum cutting in Tb3+, Yb3+ codoped transparent glass ceramics containing CaF2 nanocrystals,” Appl. Phys. Lett.92(14), 141112 (2008).
[CrossRef]

J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie, and J. R. Qiu, “Broadband downconversion based infrared quantum cutting by cooperative energy transfer from Eu2+ to Yb3+ in glasses,” Appl. Phys. Lett.95(14), 141101 (2009).
[CrossRef]

J. Appl. Phys. (2)

D. Q. Chen, Y. S. Wang, Y. L. Yu. P. Huang, and F. Y. Wang, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ toYb3+ in borate glasses,” J. Appl. Phys.104, 116105 1–3 (2008).

J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ co-Doped YAG ceramic,” J. Appl. Phys.106(4), 043101 (2009).
[CrossRef]

J. Chem. Phys. (1)

D. L. Wood, J. Ferguson, K. Knox, and J. F. Dillon, “Crystal-field spectra of d3,7 ions. III. spectrum of Cr3+ in various octahedral crystal fields,” J. Chem. Phys.39(4), 890–898 (1963).
[CrossRef]

J. Electrochem. Soc. (1)

S. Ye, N. Jiang, J. J. Zhou, D. P. Wang, and J. R. Qiu, “Optical property and energy transfer in the ZnO-LiYbO2 hybrid phosphors under the indirect near-UV excitation,” J. Electrochem. Soc.159(1), H11–H15 (2012).
[CrossRef]

J. Lumin. (4)

S. Heer, M. Wermuth, K. Kramer, D. Ehrentraut, and H. U. Gudel, “Up-conversion excitation of sharp Cr3+ 2E emission in YGG and YAG godoped with Cr3+ and Yb3+,” J. Lumin.94–95, 337–341 (2001).
[CrossRef]

K. Fujioka, T. Saiki, S. Motokoshi, Y. Fujimoto, H. Fujita, and M. Nakatsuka, “Luminescence properties of highly Cr co-doped Nd:YAG powder produced by sol-gel method,” J. Lumin.130(3), 455–459 (2010).
[CrossRef]

L. M. Shao and X. P. Jing, “Energy transfer and luminescent properties of Ce3+, Cr3+ co-doped Y3Al5O12,” J. Lumin.131(6), 1216–1221 (2011).
[CrossRef]

L. van Pieterson, M. Heeroma, E. de Heer, and A. Meijerink, “Charge transfer luminescence of Yb3+,” J. Lumin.91(3-4), 177–193 (2000).
[CrossRef]

J. Phys. C Solid State Phys. (2)

J. P. Hehir, M. O. Henry, J. P. Larkin, and G. F. Imbusch, “Nature of the luminescence from YAG:Cr3+,” J. Phys. C Solid State Phys.7(12), 2241–2248 (1974).
[CrossRef]

H. Szymczak, M. Wardzynska, and I. E. Mylnikova, “Optical spectrum of Cr3+ in the spinel LiGa5O8,” J. Phys. C Solid State Phys.8(22), 3937–3943 (1975).
[CrossRef]

J. Phys. Chem. C (1)

D. Q. Chen, Y. L. Yu, Y. S. Wang, P. Huang, and F. Y. Wen, “Cooperative energy transfer up-conversion and quantum cutting down-conversion in Yb3+: TbF3 nanocrystals embedded glass ceramics,” J. Phys. Chem. C113(16), 6406–6410 (2009).
[CrossRef]

Nanotechnology (1)

R. Martín-Rodríguez, R. Valiente, F. Rodríguez, and M. Bettinelli, “Temperature and pressure dependence of the optical properties of Cr3+-doped Gd3Ga5O12 nanoparticles,” Nanotechnology22(26), 265707 (2011).
[CrossRef] [PubMed]

Opt. Commun. (1)

T. Saiki, K. Imasaki, S. Motokoshi, C. Yamanaka, H. Fujita, M. Nakatsuka, and Y. Izawa, “Disk-type Nd/Cr: YAG ceramic lasers pumped by arc-metal-halide-lamp,” Opt. Commun.268(1), 155–159 (2006).
[CrossRef]

Opt. Express (3)

Opt. Mater. Express (1)

Phys. Rev. B (3)

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. Van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

S. Heer, M. Wermuth, K. Kramer, and H. U. Gudel, “Sharp 2E upconversion luminescence of Cr3+ in Y3Ga5O12 codoped with Cr3+ and Yb3+,” Phys. Rev. B65(12), 125112 (2002).
[CrossRef]

M. N. Sanz-Ortiz, F. Rodriguez, I. Hernandez, R. Valiente, and S. Kuck, “Origin of the 2E←→4T2 Fano resonance in Cr3+-doped LiCaAlF6: Pressure-induced excited-state crossover,” Phys. Rev. B81(4), 045114 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

XRD patterns of the 0.5 mol% Cr3+-x mol% Yb3+ codoped YAG, x = 0, 2, 5, 8 and 10 for (a)-(e), respectively. The left inset is the enlarged XRD patterns, and the right inset is the Yb3+ concentration dependent host lattice parameter.

Fig. 2
Fig. 2

The PLE (a) and PL (b) spectra of Cr3+ in the 0.5 mol% Cr3+ single-doped YAG, and the PLE (c) and PL (d) spectra of Cr3+ and Yb3+ in the 0.5mol% Cr3+-2mol% Yb3+ codoped YAG. The dashed line in (b) is devolved from the measured PL spectra of Cr3+ under the excitations of 451 and 590 nm, respectively, which is due to the spin allowed 4T24A2 transition .

Fig. 3
Fig. 3

Schematic energy level diagram that describes the absorption and energy transfer process.

Fig. 4
Fig. 4

(a) shows Yb3+ luminescence rise and decay curves under the excitations of 451 and 590 nm, respectively, in the 0.5mol% Cr3+-5mol% Yb3+ codoped YAG. (b) and (c) are Cr3+ luminescence decay curves under the excitation of 451 and 590 nm, respectively.

Fig. 5
Fig. 5

Yb3+ concentration dependent energy transfer efficiency.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

a=λ h 2 + k 2 + l 2 /2sinθ
I= I 0 {exp(t/τ ) decay exp(t/ τ rise )}
η ET =1 I x%Yb dt I 0%Yb dt

Metrics