Abstract

A transversely chirped volume Bragg grating (TCVBG) is used for flexible wavelength-tuning of a high-power (>100 W) tunable Yb-fiber laser oscillator. Continuous tuning over 2.5 THz of the narrow-band (13 GHz) signal was achieved by transversely translating the TCVBG during high-power operation without cavity realignment. The laser operated in a single polarization with a beam propagation factor (M2) of 1.2. Since the cavity losses remained constant, the high gain fiber laser exhibited excellent power stability (<0.6% relative deviation) over the investigated tuning range. The possibility of considerably increasing the output power and extending the tuning range while maintaining the power stability is discussed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Richardson, J. Nilsson, and W. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B27(11), B63–B92 (2010).
    [CrossRef]
  2. Y. Jeong, A. Boyland, J. Sahu, S. Chung, J. Nilsson, and D. Payne, “Multi-kilowatt Single-mode Ytterbium-doped Large-core Fiber Laser,” J. Opt. Soc. Korea13(4), 416–422 (2009).
    [CrossRef]
  3. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004).
    [CrossRef] [PubMed]
  4. Y. Xiao, F. Brunet, M. Kanskar, M. Faucher, A. Wetter, and N. Holehouse, “1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks,” Opt. Express20(3), 3296–3301 (2012).
    [CrossRef] [PubMed]
  5. C. Goh, S. Set, K. Kikuchi, M. Mokhtar, S. Butler, and M. Ibsen, “Greater than 90 nm continuously wavelength-tunable fibre Bragg gratings,” Optical Fiber Communications Conference,2003. OFC 2003, vol., no., pp. 643- 644 vol.2, 23–28 March 2003 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1248468&isnumber=27940
  6. J. W. Kim, P. Jelger, J. K. Sahu, F. Laurell, and W. A. Clarkson, “High-power and wavelength-tunable operation of an Er,Yb fiber laser using a volume Bragg grating,” Opt. Lett.33(11), 1204–1206 (2008).
    [CrossRef] [PubMed]
  7. P. Jelger, P. Wang, J. K. Sahu, F. Laurell, and W. A. Clarkson, “High-power linearly-polarized operation of a cladding-pumped Yb fibre laser using a volume Bragg grating for wavelength selection,” Opt. Express16(13), 9507–9512 (2008).
    [CrossRef] [PubMed]
  8. T. S. McComb, R. A. Sims, C. C. Willis, P. Kadwani, V. Sudesh, L. Shah, and M. Richardson, “High-power widely tunable thulium fiber lasers,” Appl. Opt.49(32), 6236–6242 (2010).
    [CrossRef] [PubMed]
  9. F. Wang, D. Shen, D. Fan, and Q. Lu, “Spectrum narrowing of high power Tm: fiber laser using a volume Bragg grating,” Opt. Express18(9), 8937–8941 (2010).
    [CrossRef] [PubMed]
  10. P. Zeil and F. Laurell, “On the tunability of a narrow-linewidth Yb-fiber laser from three- to four-level lasing behaviour,” Opt. Express19(15), 13940–13948 (2011).
    [CrossRef] [PubMed]
  11. J. E. Hellstrom, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite Beams in Reflective Volume Bragg Gratings: Theory and Experiments,” IEEE J. Quantum Electron.44(1), 81–89 (2008).
    [CrossRef]
  12. K. Seger, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Tunable Yb:KYW laser using a transversely chirped volume Bragg grating,” Opt. Express17(4), 2341–2347 (2009).
    [CrossRef] [PubMed]
  13. B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett.34(4), 449–451 (2009).
    [CrossRef] [PubMed]
  14. O. M. Efimov, L. B. Glebov, S. Papernov, and A. W. Schmid, “Laser-induced damage of photo-thermo-refractive glasses for optical holographic element writing,” Proc. SPIE 3578, Laser-Induced Damage in Optical Materials1998, 564 (1999).
  15. J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Quasi-two-level Yb:KYW laser with a volume Bragg grating,” Opt. Express15(21), 13930–13935 (2007).
    [CrossRef] [PubMed]
  16. O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron.15(2), 344–353 (2009).
    [CrossRef]
  17. J. Lumeau, L. Glebova, and L. B. Glebov, “Near-IR absorption in high-purity photothermorefractive glass and holographic optical elements: measurement and application for high-energy lasers,” Appl. Opt.50(30), 5905–5911 (2011).
    [CrossRef] [PubMed]
  18. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).
  19. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express19(11), 10180–10192 (2011).
    [CrossRef] [PubMed]

2012 (1)

2011 (3)

2010 (3)

2009 (4)

2008 (3)

2007 (1)

2004 (1)

1999 (1)

O. M. Efimov, L. B. Glebov, S. Papernov, and A. W. Schmid, “Laser-induced damage of photo-thermo-refractive glasses for optical holographic element writing,” Proc. SPIE 3578, Laser-Induced Damage in Optical Materials1998, 564 (1999).

Andrusyak, O.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron.15(2), 344–353 (2009).
[CrossRef]

Boyland, A.

Brunet, F.

Chung, S.

Clarkson, W.

Clarkson, W. A.

Efimov, O. M.

O. M. Efimov, L. B. Glebov, S. Papernov, and A. W. Schmid, “Laser-induced damage of photo-thermo-refractive glasses for optical holographic element writing,” Proc. SPIE 3578, Laser-Induced Damage in Optical Materials1998, 564 (1999).

Fan, D.

Faucher, M.

Glebov, L.

B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett.34(4), 449–451 (2009).
[CrossRef] [PubMed]

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron.15(2), 344–353 (2009).
[CrossRef]

Glebov, L. B.

J. Lumeau, L. Glebova, and L. B. Glebov, “Near-IR absorption in high-purity photothermorefractive glass and holographic optical elements: measurement and application for high-energy lasers,” Appl. Opt.50(30), 5905–5911 (2011).
[CrossRef] [PubMed]

O. M. Efimov, L. B. Glebov, S. Papernov, and A. W. Schmid, “Laser-induced damage of photo-thermo-refractive glasses for optical holographic element writing,” Proc. SPIE 3578, Laser-Induced Damage in Optical Materials1998, 564 (1999).

Glebova, L.

Hellstrom, J. E.

J. E. Hellstrom, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite Beams in Reflective Volume Bragg Gratings: Theory and Experiments,” IEEE J. Quantum Electron.44(1), 81–89 (2008).
[CrossRef]

Hellström, J. E.

Holehouse, N.

Jacobsson, B.

Jelger, P.

Jeong, Y.

Kadwani, P.

Kanskar, M.

Kim, J. W.

Laurell, F.

P. Zeil and F. Laurell, “On the tunability of a narrow-linewidth Yb-fiber laser from three- to four-level lasing behaviour,” Opt. Express19(15), 13940–13948 (2011).
[CrossRef] [PubMed]

K. Seger, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Tunable Yb:KYW laser using a transversely chirped volume Bragg grating,” Opt. Express17(4), 2341–2347 (2009).
[CrossRef] [PubMed]

B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett.34(4), 449–451 (2009).
[CrossRef] [PubMed]

J. E. Hellstrom, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite Beams in Reflective Volume Bragg Gratings: Theory and Experiments,” IEEE J. Quantum Electron.44(1), 81–89 (2008).
[CrossRef]

J. W. Kim, P. Jelger, J. K. Sahu, F. Laurell, and W. A. Clarkson, “High-power and wavelength-tunable operation of an Er,Yb fiber laser using a volume Bragg grating,” Opt. Lett.33(11), 1204–1206 (2008).
[CrossRef] [PubMed]

P. Jelger, P. Wang, J. K. Sahu, F. Laurell, and W. A. Clarkson, “High-power linearly-polarized operation of a cladding-pumped Yb fibre laser using a volume Bragg grating for wavelength selection,” Opt. Express16(13), 9507–9512 (2008).
[CrossRef] [PubMed]

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Quasi-two-level Yb:KYW laser with a volume Bragg grating,” Opt. Express15(21), 13930–13935 (2007).
[CrossRef] [PubMed]

Lu, Q.

Lumeau, J.

McComb, T. S.

Nilsson, J.

Papernov, S.

O. M. Efimov, L. B. Glebov, S. Papernov, and A. W. Schmid, “Laser-induced damage of photo-thermo-refractive glasses for optical holographic element writing,” Proc. SPIE 3578, Laser-Induced Damage in Optical Materials1998, 564 (1999).

Pasiskevicius, V.

Payne, D.

Richardson, D.

Richardson, M.

Rotar, V.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron.15(2), 344–353 (2009).
[CrossRef]

Rotari, E.

Sahu, J.

Sahu, J. K.

Schmid, A. W.

O. M. Efimov, L. B. Glebov, S. Papernov, and A. W. Schmid, “Laser-induced damage of photo-thermo-refractive glasses for optical holographic element writing,” Proc. SPIE 3578, Laser-Induced Damage in Optical Materials1998, 564 (1999).

Seger, K.

Shah, L.

Shen, D.

Sims, R. A.

Smirnov, V.

B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, “Tunable narrowband optical parametric oscillator using a transversely chirped Bragg grating,” Opt. Lett.34(4), 449–451 (2009).
[CrossRef] [PubMed]

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron.15(2), 344–353 (2009).
[CrossRef]

Smith, A. V.

Smith, J. J.

Sudesh, V.

Venus, G.

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron.15(2), 344–353 (2009).
[CrossRef]

Wang, F.

Wang, P.

Wetter, A.

Willis, C. C.

Xiao, Y.

Zeil, P.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

J. E. Hellstrom, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite Beams in Reflective Volume Bragg Gratings: Theory and Experiments,” IEEE J. Quantum Electron.44(1), 81–89 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral Combining and Coherent Coupling of Lasers by Volume Bragg Gratings,” IEEE J. Sel. Top. Quantum Electron.15(2), 344–353 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Korea (1)

Laser-Induced Damage in Optical Materials (1)

O. M. Efimov, L. B. Glebov, S. Papernov, and A. W. Schmid, “Laser-induced damage of photo-thermo-refractive glasses for optical holographic element writing,” Proc. SPIE 3578, Laser-Induced Damage in Optical Materials1998, 564 (1999).

Opt. Express (8)

Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12(25), 6088–6092 (2004).
[CrossRef] [PubMed]

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Quasi-two-level Yb:KYW laser with a volume Bragg grating,” Opt. Express15(21), 13930–13935 (2007).
[CrossRef] [PubMed]

P. Jelger, P. Wang, J. K. Sahu, F. Laurell, and W. A. Clarkson, “High-power linearly-polarized operation of a cladding-pumped Yb fibre laser using a volume Bragg grating for wavelength selection,” Opt. Express16(13), 9507–9512 (2008).
[CrossRef] [PubMed]

K. Seger, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Tunable Yb:KYW laser using a transversely chirped volume Bragg grating,” Opt. Express17(4), 2341–2347 (2009).
[CrossRef] [PubMed]

F. Wang, D. Shen, D. Fan, and Q. Lu, “Spectrum narrowing of high power Tm: fiber laser using a volume Bragg grating,” Opt. Express18(9), 8937–8941 (2010).
[CrossRef] [PubMed]

Y. Xiao, F. Brunet, M. Kanskar, M. Faucher, A. Wetter, and N. Holehouse, “1-kilowatt CW all-fiber laser oscillator pumped with wavelength-beam-combined diode stacks,” Opt. Express20(3), 3296–3301 (2012).
[CrossRef] [PubMed]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express19(11), 10180–10192 (2011).
[CrossRef] [PubMed]

P. Zeil and F. Laurell, “On the tunability of a narrow-linewidth Yb-fiber laser from three- to four-level lasing behaviour,” Opt. Express19(15), 13940–13948 (2011).
[CrossRef] [PubMed]

Opt. Lett. (2)

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).

C. Goh, S. Set, K. Kikuchi, M. Mokhtar, S. Butler, and M. Ibsen, “Greater than 90 nm continuously wavelength-tunable fibre Bragg gratings,” Optical Fiber Communications Conference,2003. OFC 2003, vol., no., pp. 643- 644 vol.2, 23–28 March 2003 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1248468&isnumber=27940

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Calculation of the spectral response of the 3.44 mm long TCVBG with sinusoidal index modulation of 4.3*10−4. a) Comparison of experimental (measured at the gratings center wavelength 1068.5 nm) and calculated data for TCVBGs power reflectivity for two different beam diameters: 1.24 and 1.84 mm. b) Calculated power reflectivity for several other beam diameters.

Fig. 3
Fig. 3

a) Output power variation calculated over the tuning range at constant pump power of 140 W. b) Discussion on the wavelength-dependent power stability. The decrease in quantum efficiency (dotted dark blue) is partially compensated by increased pump absorption (dash-dotted red) due to decreased population inversion (dashed green) resulting in weak laser output variation (solid light blue). The calculations assumed a constant diffraction efficiency of 93% and a pump power of 140 W.

Fig. 4
Fig. 4

Experimental results on power stability with regard to oscillating wavelength at three pump powers: 20 W (blue), 80 W (green), 140W (red). Upper graph: absolute output power; Middle graph: relative power variation, symbols represent experimental data, dashed lines represent numerical data calculated by using wavelength dependent data for diffraction efficiency; Lower graph: measured diffraction efficiency of the TCVBG versus oscillating wavelength.

Fig. 5
Fig. 5

Laser performance: a) Output power versus launched pump power, b) typical output spectrum linear scale(measured with optical spectrum analyzer with 10 pm resolution), c) tuned output spectra at maximum pump power, d) polarization-extinction ratio measurement at different pump levels.

Fig. 6
Fig. 6

Modeled temperature distributions within the grating a) 100 W output power 1.5*10−3 cm−1 absorption, 1.2 mm beam diameter and b) 3000 W output power, 1*10−4 cm−1 absorption, 0.12 mm beam diameter.

Fig. 7
Fig. 7

Output powers calculated over the tuning range at constant pump power of a) 140 W and b) 1400 W.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

π 2 4 n 0 2 w 0 2 λ B 2 Δ λ B λ B >1,
R= M(x,y) R pw (x,y)dxdy.

Metrics