Abstract

We demonstrate for the first time the use of digital range-gating in OFDR to allow for orders of magnitude reduction in the required sampling rates. This allows for sensing over long lengths of fiber with fast sweeps of the optical source frequency, without requiring impractical sampling rates. The range-gating is achieved using digitally enhanced interferometry (DI), which isolates individual sections of OFDR signal bandwidth. The reductions in sampling rates permitted by the bandwidth-division are demonstrated both numerically and experimentally.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express13(2), 666–674 (2005).
    [CrossRef] [PubMed]
  2. J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol.15(7), 1131–1141 (1997).
    [CrossRef]
  3. X. Fan, Y. Koshikiya, and F. Ito, “Centimeter-level spatial resolution over 40 km realized by bandwidth-division phase-noise-compensated OFDR,” Opt. Express19(20), 19122–19128 (2011).
    [CrossRef] [PubMed]
  4. Y. Koshikiya, X. Fan, and F. Ito, “Influence of acoustic perturbation of fibers in phase-noise-compensated optical-frequency-domain reflecometry,” J. Lightwave Technol.28, 3323–3328 (2010).
  5. D. A. Shaddock, “Digitally enhanced heterodyne interferometry,” Opt. Lett.32(22), 3355–3357 (2007).
    [CrossRef] [PubMed]
  6. D. M. R. Wuchenich, T. T.-Y. Lam, J. H. Chow, D. E. McClelland, and D. A. Shaddock, “Laser frequency noise immunity in multiplexed displacement sensing,” Opt. Lett.36(5), 672–674 (2011).
    [CrossRef] [PubMed]
  7. L. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of spread-spectrum communications–A tutorial,” IEEE Trans. Commun.30(5), 855–884 (1982).
    [CrossRef]
  8. A. J. Hymans and J. Lait, “Analysis of a frequency-modulated continuous-wave ranging system,” in Proceedings of IEE- Part B: Electronic and Communication Engineering (The Institution of Electrical Engineers, 1960), pp. 365–372.
  9. S. Venkatesh and W. V. Sorin, “Phase noise considerations in coherent optical FMCW reflectometry,” J. Lightwave Technol.11(10), 1694–1700 (1993).
    [CrossRef]
  10. Y. Koshikiya, X. Fan, and F. Ito, “Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulation and narrow linewidth fiber laser,” J. Lightwave Technol.26(18), 3287–3294 (2008).
    [CrossRef]

2011 (2)

2010 (1)

2008 (1)

2007 (1)

2005 (1)

1997 (1)

J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol.15(7), 1131–1141 (1997).
[CrossRef]

1993 (1)

S. Venkatesh and W. V. Sorin, “Phase noise considerations in coherent optical FMCW reflectometry,” J. Lightwave Technol.11(10), 1694–1700 (1993).
[CrossRef]

1982 (1)

L. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of spread-spectrum communications–A tutorial,” IEEE Trans. Commun.30(5), 855–884 (1982).
[CrossRef]

Chow, J. H.

Fan, X.

Froggatt, M. E.

Gifford, D. K.

Gisin, N.

J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol.15(7), 1131–1141 (1997).
[CrossRef]

Ito, F.

Koshikiya, Y.

Lam, T. T.-Y.

McClelland, D. E.

Milstein, L. B.

L. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of spread-spectrum communications–A tutorial,” IEEE Trans. Commun.30(5), 855–884 (1982).
[CrossRef]

Mussi, G.

J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol.15(7), 1131–1141 (1997).
[CrossRef]

Passy, R.

J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol.15(7), 1131–1141 (1997).
[CrossRef]

Pickholtz, L.

L. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of spread-spectrum communications–A tutorial,” IEEE Trans. Commun.30(5), 855–884 (1982).
[CrossRef]

Schilling, D. L.

L. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of spread-spectrum communications–A tutorial,” IEEE Trans. Commun.30(5), 855–884 (1982).
[CrossRef]

Shaddock, D. A.

Soller, B. J.

Sorin, W. V.

S. Venkatesh and W. V. Sorin, “Phase noise considerations in coherent optical FMCW reflectometry,” J. Lightwave Technol.11(10), 1694–1700 (1993).
[CrossRef]

Venkatesh, S.

S. Venkatesh and W. V. Sorin, “Phase noise considerations in coherent optical FMCW reflectometry,” J. Lightwave Technol.11(10), 1694–1700 (1993).
[CrossRef]

von der Weid, J. P.

J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol.15(7), 1131–1141 (1997).
[CrossRef]

Wolfe, M. S.

Wuchenich, D. M. R.

IEEE Trans. Commun. (1)

L. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of spread-spectrum communications–A tutorial,” IEEE Trans. Commun.30(5), 855–884 (1982).
[CrossRef]

J. Lightwave Technol. (4)

S. Venkatesh and W. V. Sorin, “Phase noise considerations in coherent optical FMCW reflectometry,” J. Lightwave Technol.11(10), 1694–1700 (1993).
[CrossRef]

Y. Koshikiya, X. Fan, and F. Ito, “Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulation and narrow linewidth fiber laser,” J. Lightwave Technol.26(18), 3287–3294 (2008).
[CrossRef]

J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol.15(7), 1131–1141 (1997).
[CrossRef]

Y. Koshikiya, X. Fan, and F. Ito, “Influence of acoustic perturbation of fibers in phase-noise-compensated optical-frequency-domain reflecometry,” J. Lightwave Technol.28, 3323–3328 (2010).

Opt. Express (2)

Opt. Lett. (2)

Other (1)

A. J. Hymans and J. Lait, “Analysis of a frequency-modulated continuous-wave ranging system,” in Proceedings of IEE- Part B: Electronic and Communication Engineering (The Institution of Electrical Engineers, 1960), pp. 365–372.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The concept of bandwidth-division in DI-OFDR whereby the required sampling rate can be reduced from fs to fs/N.

Fig. 2
Fig. 2

A digitally enhanced homodyne OFDR configuration, showing N = 3 isolated fiber sections each with uniquely offset PRN code sequences at the photodetector. For simplicity a single reflection is assumed to occur in each isolated fiber section.

Fig. 3
Fig. 3

Typical beat note resulting from triangular frequency modulation.

Fig. 4
Fig. 4

The original OFDR beat spectrum sampled at the Nyquist frequency fs = 2.32 GHz (a), and the use of DI for the recovery of the bandwidth sections containing one or more discrete reflections when undersampling the original OFDR signal at fs/N = 1.73 MHz (b)-(d). Note the power (dB) is given relative to the laser power, and the frequency axes are flipped for consecutive PRN chips.

Fig. 5
Fig. 5

The original OFDR beat spectrum of two reflections with the second reflection aliasing down due to undersampling at fs = 2.5 MHz (a) and the decoded DI-OFDR spectra isolating the two reflections (b), (c). Power (dB) is relative to maximum reflected signal. The spectra have been averaged 250 times to avoid intensity fluctuations inherent in DSB-SC modulation [10].

Tables (2)

Tables Icon

Table 1 DI-OFDR Simulation Parameters

Tables Icon

Table 2 DI-OFDR Parameters

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E ˜ P = E R1 e i( ω(t+ η 1 )t+ ϕ R1 ) c(t τ 1 )+ E R2 e i( ω(t+ η 2 )t+ ϕ R2 ) c(t τ 2 )+ E R3 e i( ω(t+ η 3 )t+ ϕ R3 ) c(t τ 3 ).
E ˜ LO = E L e i(ω(t+ η LO )t+ ϕ LO ) .
P(t)= E ˜ S E ˜ S * , E ˜ S = E ˜ LO + E ˜ P .
P(t)2 E L j=1 N=3 E Rj cos(ω(t+ η j )tω(t+ η LO )t+ ϕ Rj ϕ LO )c(t τ j ) .
P R1 (t)2 E L E R1 cos(ω(t+ η 1 )tω(t+ η LO )t+ ϕ R1 ϕ LO )+ ε R2 + ε R3 .
ε Rj =2 E L E Rj cos(ω(t+ η j )tω(t+ η LO )t+ ϕ Rj ϕ LO )c(t τ j )c(t τ 1 ).
FFT{ ε Rj 2 E L E Rj }=FFT{ cos(ω(t+ η j )tω(t+ η LO )t+ ϕ Rj ϕ LO ) }FFT{ c(t τ j )c(t τ 1 ) }.
FFT ¯ { c(t τ j )c(t τ 1 ) }2/ t s f PRN , t s ( 2 n 1)/ f PRN .
FFT ¯ { c(t τ j )c(t τ 1 ) }2/ 2 n 1 .
FFT( P R1 (t) )=2 E L E R1 FFT{ cos( [ ω(t+ η 1 )ω(t+ η LO ) ] t) }.
M=min( 2 v g L f PRN , f bmax f s ); f s f PRN .
N= 2L γ 1/2 v g when , f PRN = f s = γ 1/2 .

Metrics