Abstract

Efficient room-temperature laser operation was obtained in the wavelength range from 2117 nm to 2134 nm with Ho:Lu2O3 and Ho:Y2O3 as the active materials. With an FBG-stabilized Tm-doped fiber laser as the pump source, the maximum slope efficiency and output power of the Ho:Y2O3 laser were 63% and 18.8 W, respectively. With Ho:Lu2O3 the respective values were 76% and 25.2 W. With Ho:Sc2O3 as the active material the accessible wavelength range could be expanded to 2158 nm in a diode-pumped setup.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications” in Frontiers in Guided Wave Optics and OptoelectronicsB. Pal, ed. (Intech, 2010), pp. 471–500.
  2. J. H. Taylor and H. W. Yates, “Atmospheric transmission in the infrared,” J. Opt. Soc. Am.47, 223–225 (1957).
    [CrossRef]
  3. K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth310, 1891–1896 (2008).
    [CrossRef]
  4. B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys.83, 2772–2787 (1998).
    [CrossRef]
  5. S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Directly diode-pumped high-energy Ho:YAG oscillator,” Opt. Lett.37, 515–517 (2012).
    [CrossRef] [PubMed]
  6. R. Peters, C. Kraenkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Suedmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
    [CrossRef]
  7. P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36, 948–950 (2011).
    [CrossRef] [PubMed]
  8. P. Koopmann, “Thulium- and Holmium-Doped Sesquioxides for 2 μm Lasers,” PhD thesis, University of Hamburg (2012).
  9. C. Brandt, N. A. Tolstik, N. V. Kuleshov, K. Petermann, and G. Huber, “Inband pumped Er:Lu2O3 and (Er,Yb):YVO4 Lasers near 1.6 μm for CO2 LIDAR,” in Advanced Solid-State Photonics (Optical Society of America, 2010), p. AMB15.
  10. T. Li, K. Beil, C. Kränkel, and G. Huber, “Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 μm,” Opt. Lett.37, 2568–2570 (2012).
    [CrossRef] [PubMed]
  11. F. Reichert, M. Fechner, P. Koopmann, C. Brandt, K. Petermann, and G. Huber, “Spectroscopy and laser operation of Nd-doped mixed sesquioxides (Lu1−xScx)2O3,” Appl. Phys. B108, 475–478 (2012).
    [CrossRef]
  12. G. A. Newburgh, A. Word-Daniels, A. Michael, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Resonantly diode-pumped Ho3+:Y2O3 ceramic 2.1 μm laser,” Opt. Express19, 3604–3611 (2011).
    [CrossRef] [PubMed]
  13. P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and G. Huber, “Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12 μm,” Opt. Mater. Express1, 1447–1456 (2011).
    [CrossRef]
  14. M. Becker, S. Brückner, M. Leich, E. Lindner, M. Rothhardt, S. Unger, S. Jetschke, and H. Bartelt, “Towards a monolithic fiber laser with deep UV femtosecond-induced fiber Bragg gratings,” Opt. Commun.284, 5770–5773 (2011).
    [CrossRef]
  15. S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B106, 315–319 (2012).
    [CrossRef]
  16. J. A. Caird, S. A. Payne, P. Randall Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24, 1077–1099 (1988).
    [CrossRef]

2012 (4)

F. Reichert, M. Fechner, P. Koopmann, C. Brandt, K. Petermann, and G. Huber, “Spectroscopy and laser operation of Nd-doped mixed sesquioxides (Lu1−xScx)2O3,” Appl. Phys. B108, 475–478 (2012).
[CrossRef]

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B106, 315–319 (2012).
[CrossRef]

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Directly diode-pumped high-energy Ho:YAG oscillator,” Opt. Lett.37, 515–517 (2012).
[CrossRef] [PubMed]

T. Li, K. Beil, C. Kränkel, and G. Huber, “Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 μm,” Opt. Lett.37, 2568–2570 (2012).
[CrossRef] [PubMed]

2011 (5)

R. Peters, C. Kraenkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Suedmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

G. A. Newburgh, A. Word-Daniels, A. Michael, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Resonantly diode-pumped Ho3+:Y2O3 ceramic 2.1 μm laser,” Opt. Express19, 3604–3611 (2011).
[CrossRef] [PubMed]

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36, 948–950 (2011).
[CrossRef] [PubMed]

P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and G. Huber, “Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12 μm,” Opt. Mater. Express1, 1447–1456 (2011).
[CrossRef]

M. Becker, S. Brückner, M. Leich, E. Lindner, M. Rothhardt, S. Unger, S. Jetschke, and H. Bartelt, “Towards a monolithic fiber laser with deep UV femtosecond-induced fiber Bragg gratings,” Opt. Commun.284, 5770–5773 (2011).
[CrossRef]

2008 (1)

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth310, 1891–1896 (2008).
[CrossRef]

1998 (1)

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys.83, 2772–2787 (1998).
[CrossRef]

1988 (1)

J. A. Caird, S. A. Payne, P. Randall Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24, 1077–1099 (1988).
[CrossRef]

1957 (1)

Baer, C.

R. Peters, C. Kraenkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Suedmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

Barnes, N. P.

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys.83, 2772–2787 (1998).
[CrossRef]

Bartelt, H.

M. Becker, S. Brückner, M. Leich, E. Lindner, M. Rothhardt, S. Unger, S. Jetschke, and H. Bartelt, “Towards a monolithic fiber laser with deep UV femtosecond-induced fiber Bragg gratings,” Opt. Commun.284, 5770–5773 (2011).
[CrossRef]

Bartolo, B. D.

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys.83, 2772–2787 (1998).
[CrossRef]

Becker, M.

M. Becker, S. Brückner, M. Leich, E. Lindner, M. Rothhardt, S. Unger, S. Jetschke, and H. Bartelt, “Towards a monolithic fiber laser with deep UV femtosecond-induced fiber Bragg gratings,” Opt. Commun.284, 5770–5773 (2011).
[CrossRef]

Beil, K.

T. Li, K. Beil, C. Kränkel, and G. Huber, “Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 μm,” Opt. Lett.37, 2568–2570 (2012).
[CrossRef] [PubMed]

R. Peters, C. Kraenkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Suedmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

Brandt, C.

F. Reichert, M. Fechner, P. Koopmann, C. Brandt, K. Petermann, and G. Huber, “Spectroscopy and laser operation of Nd-doped mixed sesquioxides (Lu1−xScx)2O3,” Appl. Phys. B108, 475–478 (2012).
[CrossRef]

C. Brandt, N. A. Tolstik, N. V. Kuleshov, K. Petermann, and G. Huber, “Inband pumped Er:Lu2O3 and (Er,Yb):YVO4 Lasers near 1.6 μm for CO2 LIDAR,” in Advanced Solid-State Photonics (Optical Society of America, 2010), p. AMB15.

Brückner, S.

M. Becker, S. Brückner, M. Leich, E. Lindner, M. Rothhardt, S. Unger, S. Jetschke, and H. Bartelt, “Towards a monolithic fiber laser with deep UV femtosecond-induced fiber Bragg gratings,” Opt. Commun.284, 5770–5773 (2011).
[CrossRef]

Caird, J. A.

J. A. Caird, S. A. Payne, P. Randall Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24, 1077–1099 (1988).
[CrossRef]

Chase, L. L.

J. A. Caird, S. A. Payne, P. Randall Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24, 1077–1099 (1988).
[CrossRef]

Dubinskii, M.

Fechner, M.

F. Reichert, M. Fechner, P. Koopmann, C. Brandt, K. Petermann, and G. Huber, “Spectroscopy and laser operation of Nd-doped mixed sesquioxides (Lu1−xScx)2O3,” Appl. Phys. B108, 475–478 (2012).
[CrossRef]

Fredrich-Thornton, S.

R. Peters, C. Kraenkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Suedmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

Fuhrberg, P.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B106, 315–319 (2012).
[CrossRef]

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Directly diode-pumped high-energy Ho:YAG oscillator,” Opt. Lett.37, 515–517 (2012).
[CrossRef] [PubMed]

P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and G. Huber, “Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12 μm,” Opt. Mater. Express1, 1447–1456 (2011).
[CrossRef]

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36, 948–950 (2011).
[CrossRef] [PubMed]

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications” in Frontiers in Guided Wave Optics and OptoelectronicsB. Pal, ed. (Intech, 2010), pp. 471–500.

Heckl, O.

R. Peters, C. Kraenkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Suedmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

Huber, G.

T. Li, K. Beil, C. Kränkel, and G. Huber, “Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 μm,” Opt. Lett.37, 2568–2570 (2012).
[CrossRef] [PubMed]

F. Reichert, M. Fechner, P. Koopmann, C. Brandt, K. Petermann, and G. Huber, “Spectroscopy and laser operation of Nd-doped mixed sesquioxides (Lu1−xScx)2O3,” Appl. Phys. B108, 475–478 (2012).
[CrossRef]

P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and G. Huber, “Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12 μm,” Opt. Mater. Express1, 1447–1456 (2011).
[CrossRef]

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36, 948–950 (2011).
[CrossRef] [PubMed]

R. Peters, C. Kraenkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Suedmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

C. Brandt, N. A. Tolstik, N. V. Kuleshov, K. Petermann, and G. Huber, “Inband pumped Er:Lu2O3 and (Er,Yb):YVO4 Lasers near 1.6 μm for CO2 LIDAR,” in Advanced Solid-State Photonics (Optical Society of America, 2010), p. AMB15.

Ikesue, A.

Jetschke, S.

M. Becker, S. Brückner, M. Leich, E. Lindner, M. Rothhardt, S. Unger, S. Jetschke, and H. Bartelt, “Towards a monolithic fiber laser with deep UV femtosecond-induced fiber Bragg gratings,” Opt. Commun.284, 5770–5773 (2011).
[CrossRef]

Keller, U.

R. Peters, C. Kraenkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Suedmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

Koopmann, P.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Directly diode-pumped high-energy Ho:YAG oscillator,” Opt. Lett.37, 515–517 (2012).
[CrossRef] [PubMed]

F. Reichert, M. Fechner, P. Koopmann, C. Brandt, K. Petermann, and G. Huber, “Spectroscopy and laser operation of Nd-doped mixed sesquioxides (Lu1−xScx)2O3,” Appl. Phys. B108, 475–478 (2012).
[CrossRef]

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B106, 315–319 (2012).
[CrossRef]

P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and G. Huber, “Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12 μm,” Opt. Mater. Express1, 1447–1456 (2011).
[CrossRef]

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36, 948–950 (2011).
[CrossRef] [PubMed]

P. Koopmann, “Thulium- and Holmium-Doped Sesquioxides for 2 μm Lasers,” PhD thesis, University of Hamburg (2012).

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications” in Frontiers in Guided Wave Optics and OptoelectronicsB. Pal, ed. (Intech, 2010), pp. 471–500.

Kraenkel, C.

R. Peters, C. Kraenkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Suedmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

Kränkel, C.

Krupke, W. F.

J. A. Caird, S. A. Payne, P. Randall Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24, 1077–1099 (1988).
[CrossRef]

Kuleshov, N. V.

C. Brandt, N. A. Tolstik, N. V. Kuleshov, K. Petermann, and G. Huber, “Inband pumped Er:Lu2O3 and (Er,Yb):YVO4 Lasers near 1.6 μm for CO2 LIDAR,” in Advanced Solid-State Photonics (Optical Society of America, 2010), p. AMB15.

Lamrini, S.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B106, 315–319 (2012).
[CrossRef]

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Directly diode-pumped high-energy Ho:YAG oscillator,” Opt. Lett.37, 515–517 (2012).
[CrossRef] [PubMed]

P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and G. Huber, “Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12 μm,” Opt. Mater. Express1, 1447–1456 (2011).
[CrossRef]

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36, 948–950 (2011).
[CrossRef] [PubMed]

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications” in Frontiers in Guided Wave Optics and OptoelectronicsB. Pal, ed. (Intech, 2010), pp. 471–500.

Leich, M.

M. Becker, S. Brückner, M. Leich, E. Lindner, M. Rothhardt, S. Unger, S. Jetschke, and H. Bartelt, “Towards a monolithic fiber laser with deep UV femtosecond-induced fiber Bragg gratings,” Opt. Commun.284, 5770–5773 (2011).
[CrossRef]

Li, T.

Lindner, E.

M. Becker, S. Brückner, M. Leich, E. Lindner, M. Rothhardt, S. Unger, S. Jetschke, and H. Bartelt, “Towards a monolithic fiber laser with deep UV femtosecond-induced fiber Bragg gratings,” Opt. Commun.284, 5770–5773 (2011).
[CrossRef]

Merkle, L. D.

Michael, A.

Newburgh, G. A.

Payne, S. A.

J. A. Caird, S. A. Payne, P. Randall Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24, 1077–1099 (1988).
[CrossRef]

Petermann, K.

F. Reichert, M. Fechner, P. Koopmann, C. Brandt, K. Petermann, and G. Huber, “Spectroscopy and laser operation of Nd-doped mixed sesquioxides (Lu1−xScx)2O3,” Appl. Phys. B108, 475–478 (2012).
[CrossRef]

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36, 948–950 (2011).
[CrossRef] [PubMed]

R. Peters, C. Kraenkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Suedmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

C. Brandt, N. A. Tolstik, N. V. Kuleshov, K. Petermann, and G. Huber, “Inband pumped Er:Lu2O3 and (Er,Yb):YVO4 Lasers near 1.6 μm for CO2 LIDAR,” in Advanced Solid-State Photonics (Optical Society of America, 2010), p. AMB15.

Peters, R.

R. Peters, C. Kraenkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Suedmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

Pollak, T. M.

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth310, 1891–1896 (2008).
[CrossRef]

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. Randall Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24, 1077–1099 (1988).
[CrossRef]

Randall Staver, P.

J. A. Caird, S. A. Payne, P. Randall Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24, 1077–1099 (1988).
[CrossRef]

Reichert, F.

F. Reichert, M. Fechner, P. Koopmann, C. Brandt, K. Petermann, and G. Huber, “Spectroscopy and laser operation of Nd-doped mixed sesquioxides (Lu1−xScx)2O3,” Appl. Phys. B108, 475–478 (2012).
[CrossRef]

Rothhardt, M.

M. Becker, S. Brückner, M. Leich, E. Lindner, M. Rothhardt, S. Unger, S. Jetschke, and H. Bartelt, “Towards a monolithic fiber laser with deep UV femtosecond-induced fiber Bragg gratings,” Opt. Commun.284, 5770–5773 (2011).
[CrossRef]

Saraceno, C.

R. Peters, C. Kraenkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Suedmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

Schäfer, M.

Scholle, K.

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B106, 315–319 (2012).
[CrossRef]

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Directly diode-pumped high-energy Ho:YAG oscillator,” Opt. Lett.37, 515–517 (2012).
[CrossRef] [PubMed]

P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and G. Huber, “Multi-watt laser operation and laser parameters of Ho-doped Lu2O3 at 2.12 μm,” Opt. Mater. Express1, 1447–1456 (2011).
[CrossRef]

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μm,” Opt. Lett.36, 948–950 (2011).
[CrossRef] [PubMed]

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications” in Frontiers in Guided Wave Optics and OptoelectronicsB. Pal, ed. (Intech, 2010), pp. 471–500.

Schunemann, P. G.

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth310, 1891–1896 (2008).
[CrossRef]

Setzler, S. D.

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth310, 1891–1896 (2008).
[CrossRef]

Suedmeyer, T.

R. Peters, C. Kraenkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Suedmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

Taylor, J. H.

Tolstik, N. A.

C. Brandt, N. A. Tolstik, N. V. Kuleshov, K. Petermann, and G. Huber, “Inband pumped Er:Lu2O3 and (Er,Yb):YVO4 Lasers near 1.6 μm for CO2 LIDAR,” in Advanced Solid-State Photonics (Optical Society of America, 2010), p. AMB15.

Unger, S.

M. Becker, S. Brückner, M. Leich, E. Lindner, M. Rothhardt, S. Unger, S. Jetschke, and H. Bartelt, “Towards a monolithic fiber laser with deep UV femtosecond-induced fiber Bragg gratings,” Opt. Commun.284, 5770–5773 (2011).
[CrossRef]

Walsh, B. M.

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys.83, 2772–2787 (1998).
[CrossRef]

Word-Daniels, A.

Yates, H. W.

Zawilski, K. T.

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth310, 1891–1896 (2008).
[CrossRef]

Appl. Phys. B (3)

R. Peters, C. Kraenkel, S. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O. Heckl, C. Baer, C. Saraceno, T. Suedmeyer, and U. Keller, “Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides,” Appl. Phys. B102, 509–514 (2011).
[CrossRef]

S. Lamrini, P. Koopmann, M. Schäfer, K. Scholle, and P. Fuhrberg, “Efficient high power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9 μm,” Appl. Phys. B106, 315–319 (2012).
[CrossRef]

F. Reichert, M. Fechner, P. Koopmann, C. Brandt, K. Petermann, and G. Huber, “Spectroscopy and laser operation of Nd-doped mixed sesquioxides (Lu1−xScx)2O3,” Appl. Phys. B108, 475–478 (2012).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. A. Caird, S. A. Payne, P. Randall Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24, 1077–1099 (1988).
[CrossRef]

J. Appl. Phys. (1)

B. M. Walsh, N. P. Barnes, and B. D. Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys.83, 2772–2787 (1998).
[CrossRef]

J. Cryst. Growth (1)

K. T. Zawilski, P. G. Schunemann, S. D. Setzler, and T. M. Pollak, “Large aperture single crystal ZnGeP2 for high-energy applications,” J. Cryst. Growth310, 1891–1896 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

M. Becker, S. Brückner, M. Leich, E. Lindner, M. Rothhardt, S. Unger, S. Jetschke, and H. Bartelt, “Towards a monolithic fiber laser with deep UV femtosecond-induced fiber Bragg gratings,” Opt. Commun.284, 5770–5773 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. Express (1)

Other (3)

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications” in Frontiers in Guided Wave Optics and OptoelectronicsB. Pal, ed. (Intech, 2010), pp. 471–500.

P. Koopmann, “Thulium- and Holmium-Doped Sesquioxides for 2 μm Lasers,” PhD thesis, University of Hamburg (2012).

C. Brandt, N. A. Tolstik, N. V. Kuleshov, K. Petermann, and G. Huber, “Inband pumped Er:Lu2O3 and (Er,Yb):YVO4 Lasers near 1.6 μm for CO2 LIDAR,” in Advanced Solid-State Photonics (Optical Society of America, 2010), p. AMB15.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Setup of the FBG-stabilized fiber laser.

Fig. 2
Fig. 2

Setup of the resonator applied for the laser experiments with holmium-doped laser rods and a fiber laser as the pump source.

Fig. 3
Fig. 3

Laser characteristics of the fiber-laser-pumped lasers with (a) Ho(0.3 at.%):Lu2O3 and (b) Ho(0.4 at.%):Y2O3.

Fig. 4
Fig. 4

Caird analysis of the 20 mm long Ho(0.3 at.%):Lu2O3 and Ho(0.4 at.%):Y2O3 laser rods.

Metrics