Abstract

We develop a silicon photonic crystal nanocavity device capable of performing targeted optical pulse capture and release via distinct ports on demand, based on dynamic Q factor control. The capture of 4 ps pulses and their release up to 332 ps later is directly observed by time-resolved measurements of the energy behaviour in both the nanocavity and emitted from the release port. We also discuss how the behaviour of excited free carriers dictates the performance of such dynamic devices.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater.6(11), 862–865 (2007).
    [CrossRef] [PubMed]
  2. E. J. Reed, M. Soljacić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett.90(20), 203904 (2003).
    [CrossRef] [PubMed]
  3. Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys.3(6), 406–410 (2007).
    [CrossRef]
  4. S. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Phys.1, 293–296 (2007).
  5. J. Upham, Y. Tanaka, T. Asano, and S. Noda, “On-the-fly wavelength conversion of photons by dynamic control of photonic waveguides,” Appl. Phys. Express3(6), 062001 (2010).
    [CrossRef]
  6. T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett.102(4), 043907 (2009).
    [CrossRef] [PubMed]
  7. D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett.108(21), 213901 (2012).
    [CrossRef] [PubMed]
  8. J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control,” Opt. Express16(26), 21721–21730 (2008).
    [CrossRef] [PubMed]
  9. J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B. S. Song, T. Asano, and S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express19(23), 23377–23385 (2011).
    [CrossRef] [PubMed]
  10. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature407(6804), 608–610 (2000).
    [CrossRef] [PubMed]
  11. T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008).
    [CrossRef]
  12. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett.92(8), 083901 (2004).
    [CrossRef] [PubMed]
  13. P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005).
    [CrossRef] [PubMed]
  14. T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B84(24), 245309 (2011).
    [CrossRef]
  15. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
    [CrossRef] [PubMed]
  16. Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics6(1), 56–61 (2011).
    [CrossRef]
  17. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  18. T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic Crystal nanocavities,” Opt. Express14(5), 1996–2002 (2006).
    [CrossRef] [PubMed]
  19. B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett.85(20), 4591–4593 (2004).
    [CrossRef]
  20. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
    [CrossRef]
  21. H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett.84(13), 2226–2228 (2004).
    [CrossRef]
  22. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005).
    [CrossRef] [PubMed]
  23. J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic Q factor control of 2D photonic crystal nanocavities (10) –Increasing functionality-,” Proc. Fall Meet. of JSAP 3p-V-2 (2008).
  24. Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, and S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express19(12), 11916–11921 (2011).
    [CrossRef] [PubMed]
  25. A. W. Elshaari, A. Aboketaf, and S. F. Preble, “Controlled storage of light in silicon cavities,” Opt. Express18(3), 3014–3022 (2010).
    [CrossRef] [PubMed]
  26. Y. Tanaka, J. Upham, T. Asano, and S. Noda, “Dynamic Q factor control of 2D photonic crystal nanocavities (6) – Discussion of Trapping Lifetime-,” Proc. Fall Meet. of JSAP 8a-ZS-10 (2007).
  27. Y. Kawamoto, Y. Tanaka, Y. Sato, T. Asano, and S. Noda “Dynamic Q factor control and stop light of 2D photonic crystal nanocavity –Catch and hold of photons using nanocavity for phase control,” Proc. Spring Meet. Of JSAP 15p-E5–9 (2012).
  28. T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol.26(11), 1396–1403 (2008).
    [CrossRef]
  29. H. Inoue, J. Upham, Y. Tanaka, W. Stumpf, K. Kojima, T. Asano, and S. Noda “Proposal for a new method of optical pulse trapping using two-dimensional photonic crystal,” Proc. Spring Meet. of JSAP 30p-ZN-11 (2009).

2012 (1)

D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett.108(21), 213901 (2012).
[CrossRef] [PubMed]

2011 (4)

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B84(24), 245309 (2011).
[CrossRef]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics6(1), 56–61 (2011).
[CrossRef]

Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, and S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express19(12), 11916–11921 (2011).
[CrossRef] [PubMed]

J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B. S. Song, T. Asano, and S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express19(23), 23377–23385 (2011).
[CrossRef] [PubMed]

2010 (2)

A. W. Elshaari, A. Aboketaf, and S. F. Preble, “Controlled storage of light in silicon cavities,” Opt. Express18(3), 3014–3022 (2010).
[CrossRef] [PubMed]

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “On-the-fly wavelength conversion of photons by dynamic control of photonic waveguides,” Appl. Phys. Express3(6), 062001 (2010).
[CrossRef]

2009 (1)

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett.102(4), 043907 (2009).
[CrossRef] [PubMed]

2008 (3)

2007 (4)

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater.6(11), 862–865 (2007).
[CrossRef] [PubMed]

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys.3(6), 406–410 (2007).
[CrossRef]

S. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Phys.1, 293–296 (2007).

2006 (1)

2005 (2)

2004 (3)

H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett.84(13), 2226–2228 (2004).
[CrossRef]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett.92(8), 083901 (2004).
[CrossRef] [PubMed]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett.85(20), 4591–4593 (2004).
[CrossRef]

2003 (2)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

E. J. Reed, M. Soljacić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett.90(20), 203904 (2003).
[CrossRef] [PubMed]

2000 (1)

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature407(6804), 608–610 (2000).
[CrossRef] [PubMed]

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Aboketaf, A.

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett.85(20), 4591–4593 (2004).
[CrossRef]

H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett.84(13), 2226–2228 (2004).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Asano, T.

Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, and S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express19(12), 11916–11921 (2011).
[CrossRef] [PubMed]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics6(1), 56–61 (2011).
[CrossRef]

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B84(24), 245309 (2011).
[CrossRef]

J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B. S. Song, T. Asano, and S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express19(23), 23377–23385 (2011).
[CrossRef] [PubMed]

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “On-the-fly wavelength conversion of photons by dynamic control of photonic waveguides,” Appl. Phys. Express3(6), 062001 (2010).
[CrossRef]

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control,” Opt. Express16(26), 21721–21730 (2008).
[CrossRef] [PubMed]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater.6(11), 862–865 (2007).
[CrossRef] [PubMed]

T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic Crystal nanocavities,” Opt. Express14(5), 1996–2002 (2006).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett.85(20), 4591–4593 (2004).
[CrossRef]

H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett.84(13), 2226–2228 (2004).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008).
[CrossRef]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Barclay, P. E.

Beggs, D. M.

D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett.108(21), 213901 (2012).
[CrossRef] [PubMed]

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Chutinan, A.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Dong, P.

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys.3(6), 406–410 (2007).
[CrossRef]

Elshaari, A. W.

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Fan, S.

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett.92(8), 083901 (2004).
[CrossRef] [PubMed]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Imada, M.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Joannopoulos, J. D.

E. J. Reed, M. Soljacić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett.90(20), 203904 (2003).
[CrossRef] [PubMed]

Kampfrath, T.

D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett.108(21), 213901 (2012).
[CrossRef] [PubMed]

Kawamoto, Y.

Kojima, K.

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B84(24), 245309 (2011).
[CrossRef]

Kojima, T.

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B84(24), 245309 (2011).
[CrossRef]

Krauss, T. F.

D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett.108(21), 213901 (2012).
[CrossRef] [PubMed]

Kuipers, L.

D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett.108(21), 213901 (2012).
[CrossRef] [PubMed]

Kuramochi, E.

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett.102(4), 043907 (2009).
[CrossRef] [PubMed]

Lipson, M.

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys.3(6), 406–410 (2007).
[CrossRef]

S. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Phys.1, 293–296 (2007).

Nagashima, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater.6(11), 862–865 (2007).
[CrossRef] [PubMed]

Nakamura, T.

J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B. S. Song, T. Asano, and S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express19(23), 23377–23385 (2011).
[CrossRef] [PubMed]

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B84(24), 245309 (2011).
[CrossRef]

Noda, S.

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B84(24), 245309 (2011).
[CrossRef]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics6(1), 56–61 (2011).
[CrossRef]

Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, and S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express19(12), 11916–11921 (2011).
[CrossRef] [PubMed]

J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B. S. Song, T. Asano, and S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express19(23), 23377–23385 (2011).
[CrossRef] [PubMed]

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “On-the-fly wavelength conversion of photons by dynamic control of photonic waveguides,” Appl. Phys. Express3(6), 062001 (2010).
[CrossRef]

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control,” Opt. Express16(26), 21721–21730 (2008).
[CrossRef] [PubMed]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater.6(11), 862–865 (2007).
[CrossRef] [PubMed]

T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic Crystal nanocavities,” Opt. Express14(5), 1996–2002 (2006).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett.85(20), 4591–4593 (2004).
[CrossRef]

H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett.84(13), 2226–2228 (2004).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature407(6804), 608–610 (2000).
[CrossRef] [PubMed]

Notomi, M.

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett.102(4), 043907 (2009).
[CrossRef] [PubMed]

T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol.26(11), 1396–1403 (2008).
[CrossRef]

Painter, O.

Preble, S.

S. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Phys.1, 293–296 (2007).

Preble, S. F.

Reed, E. J.

E. J. Reed, M. Soljacić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett.90(20), 203904 (2003).
[CrossRef] [PubMed]

Rey, I. H.

D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett.108(21), 213901 (2012).
[CrossRef] [PubMed]

Rotenberg, N.

D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett.108(21), 213901 (2012).
[CrossRef] [PubMed]

Sato, Y.

Soljacic, M.

E. J. Reed, M. Soljacić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett.90(20), 203904 (2003).
[CrossRef] [PubMed]

Song, B. S.

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

Srinivasan, K.

Sugiya, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater.6(11), 862–865 (2007).
[CrossRef] [PubMed]

Taguchi, Y.

Takahashi, Y.

Y. Taguchi, Y. Takahashi, Y. Sato, T. Asano, and S. Noda, “Statistical studies of photonic heterostructure nanocavities with an average Q factor of three million,” Opt. Express19(12), 11916–11921 (2011).
[CrossRef] [PubMed]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics6(1), 56–61 (2011).
[CrossRef]

Takano, H.

H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett.84(13), 2226–2228 (2004).
[CrossRef]

Tanabe, T.

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett.102(4), 043907 (2009).
[CrossRef] [PubMed]

T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol.26(11), 1396–1403 (2008).
[CrossRef]

Tanaka, Y.

J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B. S. Song, T. Asano, and S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express19(23), 23377–23385 (2011).
[CrossRef] [PubMed]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics6(1), 56–61 (2011).
[CrossRef]

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “On-the-fly wavelength conversion of photons by dynamic control of photonic waveguides,” Appl. Phys. Express3(6), 062001 (2010).
[CrossRef]

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control,” Opt. Express16(26), 21721–21730 (2008).
[CrossRef] [PubMed]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater.6(11), 862–865 (2007).
[CrossRef] [PubMed]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett.85(20), 4591–4593 (2004).
[CrossRef]

Taniyama, H.

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett.102(4), 043907 (2009).
[CrossRef] [PubMed]

T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol.26(11), 1396–1403 (2008).
[CrossRef]

Upham, J.

J. Upham, Y. Tanaka, Y. Kawamoto, Y. Sato, T. Nakamura, B. S. Song, T. Asano, and S. Noda, “Time-resolved catch and release of an optical pulse from a dynamic photonic crystal nanocavity,” Opt. Express19(23), 23377–23385 (2011).
[CrossRef] [PubMed]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics6(1), 56–61 (2011).
[CrossRef]

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “On-the-fly wavelength conversion of photons by dynamic control of photonic waveguides,” Appl. Phys. Express3(6), 062001 (2010).
[CrossRef]

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control,” Opt. Express16(26), 21721–21730 (2008).
[CrossRef] [PubMed]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater.6(11), 862–865 (2007).
[CrossRef] [PubMed]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Xu, Q.

S. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Phys.1, 293–296 (2007).

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys.3(6), 406–410 (2007).
[CrossRef]

Yanik, M. F.

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett.92(8), 083901 (2004).
[CrossRef] [PubMed]

Appl. Phys. Express (1)

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “On-the-fly wavelength conversion of photons by dynamic control of photonic waveguides,” Appl. Phys. Express3(6), 062001 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

H. Takano, Y. Akahane, T. Asano, and S. Noda, “In-plane-type channel drop filter in a two-dimensional photonic crystal slab,” Appl. Phys. Lett.84(13), 2226–2228 (2004).
[CrossRef]

B. S. Song, T. Asano, Y. Akahane, Y. Tanaka, and S. Noda, “Transmission and reflection characteristics of in-plane hetero-photonic crystals,” Appl. Phys. Lett.85(20), 4591–4593 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.23(1), 123–129 (1987).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Mater. (1)

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater.6(11), 862–865 (2007).
[CrossRef] [PubMed]

Nat. Photonics (2)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008).
[CrossRef]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics6(1), 56–61 (2011).
[CrossRef]

Nat. Phys. (2)

Q. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys.3(6), 406–410 (2007).
[CrossRef]

S. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Phys.1, 293–296 (2007).

Nature (3)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature407(6804), 608–610 (2000).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Opt. Express (7)

Phys. Rev. B (1)

T. Nakamura, T. Asano, K. Kojima, T. Kojima, and S. Noda, “Controlling the emission of quantum dots embedded in photonic crystal nanocavity by manipulating Q-factor and detuning,” Phys. Rev. B84(24), 245309 (2011).
[CrossRef]

Phys. Rev. Lett. (4)

E. J. Reed, M. Soljacić, and J. D. Joannopoulos, “Color of shock waves in photonic crystals,” Phys. Rev. Lett.90(20), 203904 (2003).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett.92(8), 083901 (2004).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett.102(4), 043907 (2009).
[CrossRef] [PubMed]

D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett.108(21), 213901 (2012).
[CrossRef] [PubMed]

Other (4)

J. Upham, Y. Tanaka, T. Asano, and S. Noda, “Dynamic Q factor control of 2D photonic crystal nanocavities (10) –Increasing functionality-,” Proc. Fall Meet. of JSAP 3p-V-2 (2008).

Y. Tanaka, J. Upham, T. Asano, and S. Noda, “Dynamic Q factor control of 2D photonic crystal nanocavities (6) – Discussion of Trapping Lifetime-,” Proc. Fall Meet. of JSAP 8a-ZS-10 (2007).

Y. Kawamoto, Y. Tanaka, Y. Sato, T. Asano, and S. Noda “Dynamic Q factor control and stop light of 2D photonic crystal nanocavity –Catch and hold of photons using nanocavity for phase control,” Proc. Spring Meet. Of JSAP 15p-E5–9 (2012).

H. Inoue, J. Upham, Y. Tanaka, W. Stumpf, K. Kojima, T. Asano, and S. Noda “Proposal for a new method of optical pulse trapping using two-dimensional photonic crystal,” Proc. Spring Meet. of JSAP 30p-ZN-11 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the double waveguide dynamic Q control PC device design. The signal pulse can be captured in the nanocavity with an extended photon lifetime by control pulse 1 striking the lower waveguide and shifting the phase difference between the optical modes from 0 to π. At some later time the held light can be preferentially released along the upper waveguide by control pulse 2 shifting the phase difference of the upper waveguide from π to 2π. Sketch of (b) nanocavity emission and (c) upper waveguide output behaviour during pulse catch and release.

Fig. 2
Fig. 2

(a) Composite SEM image of the PC device. (b) Time-resolved measurements of the nanocavity field behaviour without dynamic capture or release (black), pulse capture then release after 85 ps (blue) or 165 ps (green). (c) Upper waveguide output for each case. Inset: linear scale view of released pulse is well matched to a Gaussian temporal profile (red dashed line).

Fig. 3
Fig. 3

Time-resolved measurement of output from the upper waveguide for on-demand releases from 52 ps up to 332 ps after pulse capture. Coupled mode simulations are fit to the experimental data to determine the device parameters (red curves).

Fig. 4
Fig. 4

Simulations of how the energy in the nanocavity is distributed among the different outputs for hold times in the high Q state ranging from 36 to 450 ps. (a) Energy distribution for parameters fit to the experiment. (b) Energy distribution for an ideal structure with QV = 3.87 million and optimal initial conditions limiting the undesired leakage to other modes.

Fig. 5
Fig. 5

Time-resolved measurement of nanocavity emission showing clear decay of the capture state with a lifetime of ~1.6 ns.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1/ Q= 1/ Q V +(1+cos θ L )/ Q in0 + (1+cos θ U ) / Q in0 ,
( FWHM released 2 ln2 ) 2 = ( 3.4ps ) 2 ( 4ps 2 ln2 ) 2 ,

Metrics