Abstract

Virtually imaged phased arrays (VIPAs) offer a high potential for wafer-level integration and superior optical properties compared to conventional gratings. We introduce an elastomer-based tunable VIPA enabling fine tuning of the dispersion characteristics. It consists of a poly-dimethylsiloxane (PDMS) layer sandwiched between silver bottom and top coatings, which form the VIPA’s high reflective and semi-transparent mirror, respectively. The latter also acts as an electrode for Joule heating, such that the optical PDMS resonator cavity tuning is carried out via a combination of thermal expansion and the thermo-optic effect. Analogous to the free spectral range (FSR), based on a VIPA specific dispersion law, we introduce a new characteristic VIPA performance measure, namely the free angular range (FAR). We report a tuning span of one FAR achieved by a 7.2K temperature increase of a 170μm PDMS VIPA. Both resonance quality and tunability are analyzed in numerical simulations and experiments.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. F. McMillan, N. L. Parker, and D. R. Goosman, “Efficiency enhancements for Fabry-Perots used in velocimetry”, Appl. Opt.28(5), 826–827 (1989).
    [CrossRef] [PubMed]
  2. M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett.21(5), 366–368 (1996).
    [CrossRef] [PubMed]
  3. S. Xiao and A. Weiner, “An eight-channel hyperfine wavelength demultiplexer using a virtually imaged phased-array (VIPA),” IEEE Photon. Technol. Lett.17(2), 372–374 (2005).
    [CrossRef]
  4. M. Shirasaki, “Chromatic-dispersion compensator using virtually imaged phased array,” IEEE Photon. Technol. Lett.9(12), 1598–1600 (1997).
    [CrossRef]
  5. L. Garrett, A. Gnauck, M. Eiselt, R. Tkach, C. Yang, C. Mao, and S. Cao, “Demonstration of virtually-imaged phased-array device for tunable dispersion compensation in 16 times;10 Gb/s WDM transmission over 480 km standard fiber,” in Optical Fiber Communication Conference, 20004, 187–189 (2000).
  6. S. Cao, C. Lin, G. Barbarossa, and C. Yang, “Dynamically tunable dispersion slope compensation using a virtually imaged phased array (VIPA),” in Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Components. Digest of the LEOS Summer Topica15–16 (2001).
  7. H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, T. Terahara, Y. Kawahata, H. Isono, and G. Ishikawa, “40-Gb/s WDM transmission with virtually imaged phased array (VIPA) variable dispersion compensators,” J. Lightwave Technol.20(12) 2196–2203 (2002).
    [CrossRef]
  8. G.-H. Lee, S. Xiao, and A. Weiner, “Optical Dispersion Compensator With 4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photon. Technol. Lett.18(17), 1819–1821 (2006).
    [CrossRef]
  9. J. D. McKinney, D. E. Leaird, and A. M. Weiner, “Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper,” Opt. Lett.27(15) 1345–1347 (2002).
    [CrossRef]
  10. S. Xiao, J. McKinney, and A. Weiner, “Photonic microwave arbitrary waveform generation using a virtually imaged phased-array (VIPA) direct space-to-time pulse shaper,” IEEE Photon. Technol. Lett.16(8), 1936–1938 (2004).
    [CrossRef]
  11. V. R. Supradeepa, E. Hamidi, D. E. Leaird, and A. M. Weiner, “New aspects of temporal dispersion in high-resolution Fourier pulse shaping: a quantitative description with virtually imaged phased array pulse shapers,” J. Opt. Soc. Am. B27(9) 1833–1844 (2010).
    [CrossRef]
  12. H. Miao, A. Weiner, L. Mirkin, and P. Miller, “All-Order Polarization-Mode Dispersion (PMD) Compensation via Virtually Imaged Phased Array (VIPA)-Based Pulse Shaper,” IEEE Photon. Technol. Lett.20(8), 545–547 (2008).
    [CrossRef]
  13. S. Xiao and A. Weiner, “2-D wavelength demultiplexer with potential for ≥ 1000 channels in the C-band,” Opt. Express12(13), 2895–2902 (2004).
  14. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature445, 627–630 (2006).
    [CrossRef]
  15. V. Supradeepa, D. Leaird, and A. Weiner, “A 2-D VIPA-grating pulse shaper with a liquid crystal on silicon (LCOS) spatial light modulator for broadband, high resolution, programmable amplitude and phase control,” in 23rd Annual Meeting of the IEEE Photonics Society494–495 (2010).
  16. V. Supradeepa, C.-B. Huang, D. Leaird, and A. Weiner, “Femtosecond pulse shaping in two dimensions: Towards higher complexity optical waveforms,” Opt. Express16(16), 11878–11887 (2008).
    [CrossRef] [PubMed]
  17. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242) 1145–1149 (2009).
    [CrossRef] [PubMed]
  18. T. Shioda, T. Morisaki, T. Q. Banh, and K. Suzuki, “Two-dimensional single-shot tomography using a virtually imaged phased array and a spatial phase modulator,” Appl. Opt.51(21) 5224–5230 (2012).
    [CrossRef] [PubMed]
  19. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett.34(14), 2099–2101 (2009).
    [CrossRef] [PubMed]
  20. T. A. Johnson and S. A. Diddams, “Mid-infrared upconversion spectroscopy based on a Yb:fiber femtosecond laser,” Appl. Phys. B.107(1), 31–39 (2012).
    [CrossRef]
  21. C. Kluge, N. Galler, H. Ditlbacher, and M. Gerken, “Modeling of electrically actuated elastomer structures for electro-optical modulation,” Appl. Phys. A102 (2010).
  22. P. Metz, M. Krantz, S. Suhr, and M. Gerken, “Wavefront and polarization effects in actively tunable thin-film resonators for beam alignment in optical interconnects,” in 14th International Conference Transparent Optical Networks (ICTON), Warwick / UK (2012).
  23. A. Vega, A. M. Weiner, and C. Lin, “Generalized Grating Equation for Virtually-Imaged Phased-Array Spectral Dispersers,” Appl. Opt.42(20), 4152–4155 (2003).
    [CrossRef] [PubMed]
  24. S. Xiao, A. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron.40(4), 420–426 (2004).
    [CrossRef]
  25. D. J. Gauthier, “Comment on Generalized grating equation for virtually imaged phased-array spectral dispersers,” Appl. Opt.51(34), 8184–8186 (2012).
    [CrossRef] [PubMed]
  26. B. Grzybowski, S. Brittain, and G. Whitesides, “Thermally actuated interferometric sensors based on the thermal expansion of transparent elastomeric media,” Rev. Sci. Instrum.70(4), 2031–2037 (1999).
    [CrossRef]
  27. M. Gerken and D. A. B. Miller, “Multilayer Thin-Film Structures with High Spatial Dispersion,” Appl. Opt.42(7), 1330–1345 (2003).
    [CrossRef] [PubMed]
  28. M. Gerken and D. Miller, “Wavelength demultiplexer using the spatial dispersion of multilayer thin-film structures,” IEEE Photon. Technol. Lett.15(8), 1097–1099 (2003).
    [CrossRef]
  29. V. Zaporojtchenko, T. Strunskus, K. Behnke, C. Bechtolsheim, A. Thran, and F. Faupel, “Formation of metal-polymer interfaces by metal evaporation: influence of deposition parameters and defects,” Microelectron. Eng.50, 465–471 (2000).
    [CrossRef]

2012

2010

V. R. Supradeepa, E. Hamidi, D. E. Leaird, and A. M. Weiner, “New aspects of temporal dispersion in high-resolution Fourier pulse shaping: a quantitative description with virtually imaged phased array pulse shapers,” J. Opt. Soc. Am. B27(9) 1833–1844 (2010).
[CrossRef]

C. Kluge, N. Galler, H. Ditlbacher, and M. Gerken, “Modeling of electrically actuated elastomer structures for electro-optical modulation,” Appl. Phys. A102 (2010).

V. Supradeepa, D. Leaird, and A. Weiner, “A 2-D VIPA-grating pulse shaper with a liquid crystal on silicon (LCOS) spatial light modulator for broadband, high resolution, programmable amplitude and phase control,” in 23rd Annual Meeting of the IEEE Photonics Society494–495 (2010).

2009

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242) 1145–1149 (2009).
[CrossRef] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett.34(14), 2099–2101 (2009).
[CrossRef] [PubMed]

2008

V. Supradeepa, C.-B. Huang, D. Leaird, and A. Weiner, “Femtosecond pulse shaping in two dimensions: Towards higher complexity optical waveforms,” Opt. Express16(16), 11878–11887 (2008).
[CrossRef] [PubMed]

H. Miao, A. Weiner, L. Mirkin, and P. Miller, “All-Order Polarization-Mode Dispersion (PMD) Compensation via Virtually Imaged Phased Array (VIPA)-Based Pulse Shaper,” IEEE Photon. Technol. Lett.20(8), 545–547 (2008).
[CrossRef]

2006

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature445, 627–630 (2006).
[CrossRef]

G.-H. Lee, S. Xiao, and A. Weiner, “Optical Dispersion Compensator With 4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photon. Technol. Lett.18(17), 1819–1821 (2006).
[CrossRef]

2005

S. Xiao and A. Weiner, “An eight-channel hyperfine wavelength demultiplexer using a virtually imaged phased-array (VIPA),” IEEE Photon. Technol. Lett.17(2), 372–374 (2005).
[CrossRef]

2004

S. Xiao, J. McKinney, and A. Weiner, “Photonic microwave arbitrary waveform generation using a virtually imaged phased-array (VIPA) direct space-to-time pulse shaper,” IEEE Photon. Technol. Lett.16(8), 1936–1938 (2004).
[CrossRef]

S. Xiao, A. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron.40(4), 420–426 (2004).
[CrossRef]

S. Xiao and A. Weiner, “2-D wavelength demultiplexer with potential for ≥ 1000 channels in the C-band,” Opt. Express12(13), 2895–2902 (2004).

2003

2002

2001

S. Cao, C. Lin, G. Barbarossa, and C. Yang, “Dynamically tunable dispersion slope compensation using a virtually imaged phased array (VIPA),” in Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Components. Digest of the LEOS Summer Topica15–16 (2001).

2000

L. Garrett, A. Gnauck, M. Eiselt, R. Tkach, C. Yang, C. Mao, and S. Cao, “Demonstration of virtually-imaged phased-array device for tunable dispersion compensation in 16 times;10 Gb/s WDM transmission over 480 km standard fiber,” in Optical Fiber Communication Conference, 20004, 187–189 (2000).

V. Zaporojtchenko, T. Strunskus, K. Behnke, C. Bechtolsheim, A. Thran, and F. Faupel, “Formation of metal-polymer interfaces by metal evaporation: influence of deposition parameters and defects,” Microelectron. Eng.50, 465–471 (2000).
[CrossRef]

1999

B. Grzybowski, S. Brittain, and G. Whitesides, “Thermally actuated interferometric sensors based on the thermal expansion of transparent elastomeric media,” Rev. Sci. Instrum.70(4), 2031–2037 (1999).
[CrossRef]

1997

M. Shirasaki, “Chromatic-dispersion compensator using virtually imaged phased array,” IEEE Photon. Technol. Lett.9(12), 1598–1600 (1997).
[CrossRef]

1996

1989

Akiyama, Y.

Banh, T. Q.

Barbarossa, G.

S. Cao, C. Lin, G. Barbarossa, and C. Yang, “Dynamically tunable dispersion slope compensation using a virtually imaged phased array (VIPA),” in Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Components. Digest of the LEOS Summer Topica15–16 (2001).

Bechtolsheim, C.

V. Zaporojtchenko, T. Strunskus, K. Behnke, C. Bechtolsheim, A. Thran, and F. Faupel, “Formation of metal-polymer interfaces by metal evaporation: influence of deposition parameters and defects,” Microelectron. Eng.50, 465–471 (2000).
[CrossRef]

Behnke, K.

V. Zaporojtchenko, T. Strunskus, K. Behnke, C. Bechtolsheim, A. Thran, and F. Faupel, “Formation of metal-polymer interfaces by metal evaporation: influence of deposition parameters and defects,” Microelectron. Eng.50, 465–471 (2000).
[CrossRef]

Brittain, S.

B. Grzybowski, S. Brittain, and G. Whitesides, “Thermally actuated interferometric sensors based on the thermal expansion of transparent elastomeric media,” Rev. Sci. Instrum.70(4), 2031–2037 (1999).
[CrossRef]

Cao, S.

S. Cao, C. Lin, G. Barbarossa, and C. Yang, “Dynamically tunable dispersion slope compensation using a virtually imaged phased array (VIPA),” in Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Components. Digest of the LEOS Summer Topica15–16 (2001).

L. Garrett, A. Gnauck, M. Eiselt, R. Tkach, C. Yang, C. Mao, and S. Cao, “Demonstration of virtually-imaged phased-array device for tunable dispersion compensation in 16 times;10 Gb/s WDM transmission over 480 km standard fiber,” in Optical Fiber Communication Conference, 20004, 187–189 (2000).

Capewell, D.

Diddams, S. A.

T. A. Johnson and S. A. Diddams, “Mid-infrared upconversion spectroscopy based on a Yb:fiber femtosecond laser,” Appl. Phys. B.107(1), 31–39 (2012).
[CrossRef]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature445, 627–630 (2006).
[CrossRef]

Ditlbacher, H.

C. Kluge, N. Galler, H. Ditlbacher, and M. Gerken, “Modeling of electrically actuated elastomer structures for electro-optical modulation,” Appl. Phys. A102 (2010).

Eiselt, M.

L. Garrett, A. Gnauck, M. Eiselt, R. Tkach, C. Yang, C. Mao, and S. Cao, “Demonstration of virtually-imaged phased-array device for tunable dispersion compensation in 16 times;10 Gb/s WDM transmission over 480 km standard fiber,” in Optical Fiber Communication Conference, 20004, 187–189 (2000).

Faupel, F.

V. Zaporojtchenko, T. Strunskus, K. Behnke, C. Bechtolsheim, A. Thran, and F. Faupel, “Formation of metal-polymer interfaces by metal evaporation: influence of deposition parameters and defects,” Microelectron. Eng.50, 465–471 (2000).
[CrossRef]

Galler, N.

C. Kluge, N. Galler, H. Ditlbacher, and M. Gerken, “Modeling of electrically actuated elastomer structures for electro-optical modulation,” Appl. Phys. A102 (2010).

Garrett, L.

L. Garrett, A. Gnauck, M. Eiselt, R. Tkach, C. Yang, C. Mao, and S. Cao, “Demonstration of virtually-imaged phased-array device for tunable dispersion compensation in 16 times;10 Gb/s WDM transmission over 480 km standard fiber,” in Optical Fiber Communication Conference, 20004, 187–189 (2000).

Gauthier, D. J.

Gerken, M.

C. Kluge, N. Galler, H. Ditlbacher, and M. Gerken, “Modeling of electrically actuated elastomer structures for electro-optical modulation,” Appl. Phys. A102 (2010).

M. Gerken and D. Miller, “Wavelength demultiplexer using the spatial dispersion of multilayer thin-film structures,” IEEE Photon. Technol. Lett.15(8), 1097–1099 (2003).
[CrossRef]

M. Gerken and D. A. B. Miller, “Multilayer Thin-Film Structures with High Spatial Dispersion,” Appl. Opt.42(7), 1330–1345 (2003).
[CrossRef] [PubMed]

P. Metz, M. Krantz, S. Suhr, and M. Gerken, “Wavefront and polarization effects in actively tunable thin-film resonators for beam alignment in optical interconnects,” in 14th International Conference Transparent Optical Networks (ICTON), Warwick / UK (2012).

Gnauck, A.

L. Garrett, A. Gnauck, M. Eiselt, R. Tkach, C. Yang, C. Mao, and S. Cao, “Demonstration of virtually-imaged phased-array device for tunable dispersion compensation in 16 times;10 Gb/s WDM transmission over 480 km standard fiber,” in Optical Fiber Communication Conference, 20004, 187–189 (2000).

Goda, K.

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett.34(14), 2099–2101 (2009).
[CrossRef] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242) 1145–1149 (2009).
[CrossRef] [PubMed]

Goosman, D. R.

Grzybowski, B.

B. Grzybowski, S. Brittain, and G. Whitesides, “Thermally actuated interferometric sensors based on the thermal expansion of transparent elastomeric media,” Rev. Sci. Instrum.70(4), 2031–2037 (1999).
[CrossRef]

Hamidi, E.

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature445, 627–630 (2006).
[CrossRef]

Huang, C.-B.

Ishikawa, G.

Isono, H.

Jalali, B.

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242) 1145–1149 (2009).
[CrossRef] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett.34(14), 2099–2101 (2009).
[CrossRef] [PubMed]

Johnson, T. A.

T. A. Johnson and S. A. Diddams, “Mid-infrared upconversion spectroscopy based on a Yb:fiber femtosecond laser,” Appl. Phys. B.107(1), 31–39 (2012).
[CrossRef]

Kawahata, Y.

Kluge, C.

C. Kluge, N. Galler, H. Ditlbacher, and M. Gerken, “Modeling of electrically actuated elastomer structures for electro-optical modulation,” Appl. Phys. A102 (2010).

Krantz, M.

P. Metz, M. Krantz, S. Suhr, and M. Gerken, “Wavefront and polarization effects in actively tunable thin-film resonators for beam alignment in optical interconnects,” in 14th International Conference Transparent Optical Networks (ICTON), Warwick / UK (2012).

Leaird, D.

V. Supradeepa, D. Leaird, and A. Weiner, “A 2-D VIPA-grating pulse shaper with a liquid crystal on silicon (LCOS) spatial light modulator for broadband, high resolution, programmable amplitude and phase control,” in 23rd Annual Meeting of the IEEE Photonics Society494–495 (2010).

V. Supradeepa, C.-B. Huang, D. Leaird, and A. Weiner, “Femtosecond pulse shaping in two dimensions: Towards higher complexity optical waveforms,” Opt. Express16(16), 11878–11887 (2008).
[CrossRef] [PubMed]

Leaird, D. E.

Lee, G.-H.

G.-H. Lee, S. Xiao, and A. Weiner, “Optical Dispersion Compensator With 4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photon. Technol. Lett.18(17), 1819–1821 (2006).
[CrossRef]

Lin, C.

S. Xiao, A. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron.40(4), 420–426 (2004).
[CrossRef]

A. Vega, A. M. Weiner, and C. Lin, “Generalized Grating Equation for Virtually-Imaged Phased-Array Spectral Dispersers,” Appl. Opt.42(20), 4152–4155 (2003).
[CrossRef] [PubMed]

S. Cao, C. Lin, G. Barbarossa, and C. Yang, “Dynamically tunable dispersion slope compensation using a virtually imaged phased array (VIPA),” in Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Components. Digest of the LEOS Summer Topica15–16 (2001).

Mao, C.

L. Garrett, A. Gnauck, M. Eiselt, R. Tkach, C. Yang, C. Mao, and S. Cao, “Demonstration of virtually-imaged phased-array device for tunable dispersion compensation in 16 times;10 Gb/s WDM transmission over 480 km standard fiber,” in Optical Fiber Communication Conference, 20004, 187–189 (2000).

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature445, 627–630 (2006).
[CrossRef]

McKinney, J.

S. Xiao, J. McKinney, and A. Weiner, “Photonic microwave arbitrary waveform generation using a virtually imaged phased-array (VIPA) direct space-to-time pulse shaper,” IEEE Photon. Technol. Lett.16(8), 1936–1938 (2004).
[CrossRef]

McKinney, J. D.

McMillan, C. F.

Metz, P.

P. Metz, M. Krantz, S. Suhr, and M. Gerken, “Wavefront and polarization effects in actively tunable thin-film resonators for beam alignment in optical interconnects,” in 14th International Conference Transparent Optical Networks (ICTON), Warwick / UK (2012).

Miao, H.

H. Miao, A. Weiner, L. Mirkin, and P. Miller, “All-Order Polarization-Mode Dispersion (PMD) Compensation via Virtually Imaged Phased Array (VIPA)-Based Pulse Shaper,” IEEE Photon. Technol. Lett.20(8), 545–547 (2008).
[CrossRef]

Miller, D.

M. Gerken and D. Miller, “Wavelength demultiplexer using the spatial dispersion of multilayer thin-film structures,” IEEE Photon. Technol. Lett.15(8), 1097–1099 (2003).
[CrossRef]

Miller, D. A. B.

Miller, P.

H. Miao, A. Weiner, L. Mirkin, and P. Miller, “All-Order Polarization-Mode Dispersion (PMD) Compensation via Virtually Imaged Phased Array (VIPA)-Based Pulse Shaper,” IEEE Photon. Technol. Lett.20(8), 545–547 (2008).
[CrossRef]

Mirkin, L.

H. Miao, A. Weiner, L. Mirkin, and P. Miller, “All-Order Polarization-Mode Dispersion (PMD) Compensation via Virtually Imaged Phased Array (VIPA)-Based Pulse Shaper,” IEEE Photon. Technol. Lett.20(8), 545–547 (2008).
[CrossRef]

Morisaki, T.

Nakamura, K.

Ooi, H.

Parker, N. L.

Shioda, T.

Shirasaki, M.

M. Shirasaki, “Chromatic-dispersion compensator using virtually imaged phased array,” IEEE Photon. Technol. Lett.9(12), 1598–1600 (1997).
[CrossRef]

M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett.21(5), 366–368 (1996).
[CrossRef] [PubMed]

Strunskus, T.

V. Zaporojtchenko, T. Strunskus, K. Behnke, C. Bechtolsheim, A. Thran, and F. Faupel, “Formation of metal-polymer interfaces by metal evaporation: influence of deposition parameters and defects,” Microelectron. Eng.50, 465–471 (2000).
[CrossRef]

Suhr, S.

P. Metz, M. Krantz, S. Suhr, and M. Gerken, “Wavefront and polarization effects in actively tunable thin-film resonators for beam alignment in optical interconnects,” in 14th International Conference Transparent Optical Networks (ICTON), Warwick / UK (2012).

Supradeepa, V.

V. Supradeepa, D. Leaird, and A. Weiner, “A 2-D VIPA-grating pulse shaper with a liquid crystal on silicon (LCOS) spatial light modulator for broadband, high resolution, programmable amplitude and phase control,” in 23rd Annual Meeting of the IEEE Photonics Society494–495 (2010).

V. Supradeepa, C.-B. Huang, D. Leaird, and A. Weiner, “Femtosecond pulse shaping in two dimensions: Towards higher complexity optical waveforms,” Opt. Express16(16), 11878–11887 (2008).
[CrossRef] [PubMed]

Supradeepa, V. R.

Suzuki, K.

Takahara, T.

Terahara, T.

Thran, A.

V. Zaporojtchenko, T. Strunskus, K. Behnke, C. Bechtolsheim, A. Thran, and F. Faupel, “Formation of metal-polymer interfaces by metal evaporation: influence of deposition parameters and defects,” Microelectron. Eng.50, 465–471 (2000).
[CrossRef]

Tkach, R.

L. Garrett, A. Gnauck, M. Eiselt, R. Tkach, C. Yang, C. Mao, and S. Cao, “Demonstration of virtually-imaged phased-array device for tunable dispersion compensation in 16 times;10 Gb/s WDM transmission over 480 km standard fiber,” in Optical Fiber Communication Conference, 20004, 187–189 (2000).

Tsia, K. K.

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242) 1145–1149 (2009).
[CrossRef] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett.34(14), 2099–2101 (2009).
[CrossRef] [PubMed]

Vega, A.

Weiner, A.

V. Supradeepa, D. Leaird, and A. Weiner, “A 2-D VIPA-grating pulse shaper with a liquid crystal on silicon (LCOS) spatial light modulator for broadband, high resolution, programmable amplitude and phase control,” in 23rd Annual Meeting of the IEEE Photonics Society494–495 (2010).

H. Miao, A. Weiner, L. Mirkin, and P. Miller, “All-Order Polarization-Mode Dispersion (PMD) Compensation via Virtually Imaged Phased Array (VIPA)-Based Pulse Shaper,” IEEE Photon. Technol. Lett.20(8), 545–547 (2008).
[CrossRef]

V. Supradeepa, C.-B. Huang, D. Leaird, and A. Weiner, “Femtosecond pulse shaping in two dimensions: Towards higher complexity optical waveforms,” Opt. Express16(16), 11878–11887 (2008).
[CrossRef] [PubMed]

G.-H. Lee, S. Xiao, and A. Weiner, “Optical Dispersion Compensator With 4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photon. Technol. Lett.18(17), 1819–1821 (2006).
[CrossRef]

S. Xiao and A. Weiner, “An eight-channel hyperfine wavelength demultiplexer using a virtually imaged phased-array (VIPA),” IEEE Photon. Technol. Lett.17(2), 372–374 (2005).
[CrossRef]

S. Xiao, J. McKinney, and A. Weiner, “Photonic microwave arbitrary waveform generation using a virtually imaged phased-array (VIPA) direct space-to-time pulse shaper,” IEEE Photon. Technol. Lett.16(8), 1936–1938 (2004).
[CrossRef]

S. Xiao, A. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron.40(4), 420–426 (2004).
[CrossRef]

S. Xiao and A. Weiner, “2-D wavelength demultiplexer with potential for ≥ 1000 channels in the C-band,” Opt. Express12(13), 2895–2902 (2004).

Weiner, A. M.

Whitesides, G.

B. Grzybowski, S. Brittain, and G. Whitesides, “Thermally actuated interferometric sensors based on the thermal expansion of transparent elastomeric media,” Rev. Sci. Instrum.70(4), 2031–2037 (1999).
[CrossRef]

Xiao, S.

G.-H. Lee, S. Xiao, and A. Weiner, “Optical Dispersion Compensator With 4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photon. Technol. Lett.18(17), 1819–1821 (2006).
[CrossRef]

S. Xiao and A. Weiner, “An eight-channel hyperfine wavelength demultiplexer using a virtually imaged phased-array (VIPA),” IEEE Photon. Technol. Lett.17(2), 372–374 (2005).
[CrossRef]

S. Xiao, J. McKinney, and A. Weiner, “Photonic microwave arbitrary waveform generation using a virtually imaged phased-array (VIPA) direct space-to-time pulse shaper,” IEEE Photon. Technol. Lett.16(8), 1936–1938 (2004).
[CrossRef]

S. Xiao, A. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron.40(4), 420–426 (2004).
[CrossRef]

S. Xiao and A. Weiner, “2-D wavelength demultiplexer with potential for ≥ 1000 channels in the C-band,” Opt. Express12(13), 2895–2902 (2004).

Yang, C.

S. Cao, C. Lin, G. Barbarossa, and C. Yang, “Dynamically tunable dispersion slope compensation using a virtually imaged phased array (VIPA),” in Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Components. Digest of the LEOS Summer Topica15–16 (2001).

L. Garrett, A. Gnauck, M. Eiselt, R. Tkach, C. Yang, C. Mao, and S. Cao, “Demonstration of virtually-imaged phased-array device for tunable dispersion compensation in 16 times;10 Gb/s WDM transmission over 480 km standard fiber,” in Optical Fiber Communication Conference, 20004, 187–189 (2000).

Zaporojtchenko, V.

V. Zaporojtchenko, T. Strunskus, K. Behnke, C. Bechtolsheim, A. Thran, and F. Faupel, “Formation of metal-polymer interfaces by metal evaporation: influence of deposition parameters and defects,” Microelectron. Eng.50, 465–471 (2000).
[CrossRef]

23rd Annual Meeting of the IEEE Photonics Society

V. Supradeepa, D. Leaird, and A. Weiner, “A 2-D VIPA-grating pulse shaper with a liquid crystal on silicon (LCOS) spatial light modulator for broadband, high resolution, programmable amplitude and phase control,” in 23rd Annual Meeting of the IEEE Photonics Society494–495 (2010).

Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Components. Digest of the LEOS Summer Topica

S. Cao, C. Lin, G. Barbarossa, and C. Yang, “Dynamically tunable dispersion slope compensation using a virtually imaged phased array (VIPA),” in Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Components. Digest of the LEOS Summer Topica15–16 (2001).

Appl. Opt.

Appl. Phys. A

C. Kluge, N. Galler, H. Ditlbacher, and M. Gerken, “Modeling of electrically actuated elastomer structures for electro-optical modulation,” Appl. Phys. A102 (2010).

Appl. Phys. B.

T. A. Johnson and S. A. Diddams, “Mid-infrared upconversion spectroscopy based on a Yb:fiber femtosecond laser,” Appl. Phys. B.107(1), 31–39 (2012).
[CrossRef]

IEEE J. Quantum Electron.

S. Xiao, A. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron.40(4), 420–426 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Gerken and D. Miller, “Wavelength demultiplexer using the spatial dispersion of multilayer thin-film structures,” IEEE Photon. Technol. Lett.15(8), 1097–1099 (2003).
[CrossRef]

G.-H. Lee, S. Xiao, and A. Weiner, “Optical Dispersion Compensator With 4000-ps/nm Tuning Range Using a Virtually Imaged Phased Array (VIPA) and Spatial Light Modulator (SLM),” IEEE Photon. Technol. Lett.18(17), 1819–1821 (2006).
[CrossRef]

S. Xiao, J. McKinney, and A. Weiner, “Photonic microwave arbitrary waveform generation using a virtually imaged phased-array (VIPA) direct space-to-time pulse shaper,” IEEE Photon. Technol. Lett.16(8), 1936–1938 (2004).
[CrossRef]

H. Miao, A. Weiner, L. Mirkin, and P. Miller, “All-Order Polarization-Mode Dispersion (PMD) Compensation via Virtually Imaged Phased Array (VIPA)-Based Pulse Shaper,” IEEE Photon. Technol. Lett.20(8), 545–547 (2008).
[CrossRef]

S. Xiao and A. Weiner, “An eight-channel hyperfine wavelength demultiplexer using a virtually imaged phased-array (VIPA),” IEEE Photon. Technol. Lett.17(2), 372–374 (2005).
[CrossRef]

M. Shirasaki, “Chromatic-dispersion compensator using virtually imaged phased array,” IEEE Photon. Technol. Lett.9(12), 1598–1600 (1997).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Microelectron. Eng.

V. Zaporojtchenko, T. Strunskus, K. Behnke, C. Bechtolsheim, A. Thran, and F. Faupel, “Formation of metal-polymer interfaces by metal evaporation: influence of deposition parameters and defects,” Microelectron. Eng.50, 465–471 (2000).
[CrossRef]

Nature

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242) 1145–1149 (2009).
[CrossRef] [PubMed]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature445, 627–630 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Optical Fiber Communication Conference, 2000

L. Garrett, A. Gnauck, M. Eiselt, R. Tkach, C. Yang, C. Mao, and S. Cao, “Demonstration of virtually-imaged phased-array device for tunable dispersion compensation in 16 times;10 Gb/s WDM transmission over 480 km standard fiber,” in Optical Fiber Communication Conference, 20004, 187–189 (2000).

Rev. Sci. Instrum.

B. Grzybowski, S. Brittain, and G. Whitesides, “Thermally actuated interferometric sensors based on the thermal expansion of transparent elastomeric media,” Rev. Sci. Instrum.70(4), 2031–2037 (1999).
[CrossRef]

Other

P. Metz, M. Krantz, S. Suhr, and M. Gerken, “Wavefront and polarization effects in actively tunable thin-film resonators for beam alignment in optical interconnects,” in 14th International Conference Transparent Optical Networks (ICTON), Warwick / UK (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

VIPA principle. A focussed light beam is coupled into the cavity at the edge of the ideal front mirror, multiply reflected, and coupled out through the semi-transparent rear mirror. Coherent superposition leads to distinct wavelength specific output angles.

Fig. 2
Fig. 2

(a) Tunable VIPA design. A PDMS layer is sandwiched between a highly reflective silver layer and a semi-transparent silver layer on a glass substrate and forms the VIPA cavity. Light is coupled into the cavity through the glass substrate. Current conduction through the semi-transparent silver layer heats the PDMS causing thermal expansion and a thermo-optic effect. (b) Photograph of a sample in the measurement setup showing six separate VIPAs on one substrate. The VIPA rear silver bar is contacted by filigree gold strands.

Fig. 3
Fig. 3

A wide He-Ne Laser beam is focussed in x-direction onto the VIPA entrance window using a cylindrical lens. The size in y-direction is limited by a slit diaphragm. Using a Fourier lens the angular dispersion is mapped to a spatially resolved dispersion, that is imaged by an image sensor consisting of a rotating diffuser, an objective lens, and a CMOS sensor, which allows for speckle free image capture.

Fig. 4
Fig. 4

(a) Resonance images at discrete points of time during a linearly increasing power actuation up to 2.4mW/mm2. Different resonance orders are separated by dashed lines and show a distinct motion upon actuation. (b) Dispersion angles corresponding to four resonance positions as a function of actuation time show a monotonic change. At about 13s a tuning span of one FAR is achieved. (c) Calculated average PDMS temperature increase shows a non-linear behavior. (d) The finesse as a function of actuation time reveals a decline of resonance quality.

Fig. 5
Fig. 5

Calculated and measured absolute (a,c) and relative (b,d) change of dispersion angle (Eq. (8)) upon tuning as a function of VIPA tilt and actuation time. An excellent agreement between simulation and measurement is achieved. Largest tuning effects occur for small VIPA tilts.

Fig. 6
Fig. 6

Dynamic behavior of a 170μm (a) and a 340μm (b) VIPA. The first 15 seconds both samples were actuated at 20mA. Additionally, fits of a heating and cooling model function are shown.

Fig. 7
Fig. 7

(a) Photograph of a 340μm VIPA at 45° from an off-optical-axis point of view. Multiple reflections are visible, which is an indicator of scattered light from the rear surface. (b) Resulting resonance images of two different in-coupling spots show several secondary peaks. (c) Ray traced resonance profiles VIPA having different wedge angles in the cavity for a rear surface reflectance of 50% and 95%. An increasing wedge angle degrades the resonance profile. Here, a highly reflective rear surface makes the VIPA more sensitive to wedge angles. (d) Ray traced resonance image showing secondary peaks similar to the captured resonance images.

Fig. 8
Fig. 8

Influence of polarization on a 340μm VIPA. (a) Colored overlay of equally scaled resonance images at different VIPA tilts (red S-polarized, green: P-polarized). Color fringes reveal a deviation between both S- and P-polarized resonance profiles. Additionally, resonance images of medial tilt angles yield the smallest FAR. (b) Measured and simulated deviation of P- to S-polarization related to the FAR.

Tables (1)

Tables Icon

Table 1 Heating and cooling process time constants fitted to the measured data

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

λ m = 2 t n cos ( Θ in ) 2 t tan ( Θ in ) cos ( Θ VIPA ) Θ λ t cos ( Θ in ) Θ λ 2 n .
Δ f FSR = c 2 t n cos ( Θ in ) 2 t tan ( Θ in ) cos ( Θ VIPA ) Θ λ t cos ( Θ in ) Θ λ 2 n ,
Θ λ , m Θ λ , m + 1 = C 1 2 + 2 n 2 + C 2 m C 1 2 + 2 n 2 + C 2 ( m + 1 ) ,
C 1 = n tan ( Θ in ) cos ( Θ VIPA ) cos ( Θ in )
C 2 = λ n t cos ( Θ in ) .
m 0 = 2 t n cos ( Θ in ) λ .
Δ Θ λ FAR : = Θ λ , m 0 0.5 Θ λ , m 0 + 0.5 = C 1 2 1 2 C 2 C 1 2 + 1 2 C 2 .
Δ Θ λ rel = Δ Θ λ Δ Θ λ FAR .
= resonance distance full width half maximum
Δ T heating ( t ) = Δ T 1 ( 1 e t / τ 1 ) + Δ T 2 ( 1 e t / τ 2 ) .
Δ T cooling ( t ) = Δ T 0 Δ T 3 ( 1 e t / τ 3 ) ( Δ T 0 Δ T 3 ) ( 1 e t / τ 4 )

Metrics