Abstract

Abstract: We experimentally demonstrate the simultaneous detection of 10-Gbit/s quadrature phase shift keying (QPSK) × 2-channel Fourier-encoded synchronous optical code division multiplexing (FE-SOCDM) signals using a digital coherent receiver, for the first time. First, we analytically verify that simultaneous detection can be achieved with an N-point discrete Fourier transform (DFT) using digital signal processing (DSP) because the N-channel Fourier encoding corresponds to an N × N inverse DFT, then the operation is experimentally confirmed. Simultaneous detection of 10-Gbit/s QPSK × 2-channel FE-SOCDM signals is evaluated. The proposed scheme dramatically expands the capability of OCDM systems.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Design of arrayed-waveguide grating routers for use as optical OFDM demultiplexers

Arthur James Lowery
Opt. Express 18(13) 14129-14143 (2010)

Novel MDM-PON scheme utilizing self-homodyne detection for high-speed/capacity access networks

Yuanxiang Chen, Juhao Li, Paikun Zhu, Zhongying Wu, Peng Zhou, Yu Tian, Fang Ren, Jinyi Yu, Dawei Ge, Jingbiao Chen, Yongqi He, and Zhangyuan Chen
Opt. Express 23(25) 32054-32062 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Zhang, C. Chen, Y. Feng, and K. Qiu, “Experimental demonstration of novel source-free ONUs in bidirectional RF up-converted optical OFDM-PON utilizing polarization multiplexing,” Opt. Express 20(6), 6230–6235 (2012).
    [PubMed]
  2. N. Cvijetic, M. F. Huang, E. Ip, Y. Shao, Y. K. Huang, M. Cvijetic, and T. Wang, “1.92 Tb/s coherent DWDM-OFDMA-PON with no high-speed ONU-side electronics over 100 km SSMF and 1:64 passive split,” Opt. Express 19(24), 24540–24545 (2011).
    [PubMed]
  3. N. Cvijetic, M. F. Huang, E. Ip, Y. Shao, Y. K. Huang, M. Cvijetic, and T. Wang, “1.92 Tb/s coherent DWDM-OFDMA-PON with no high-speed ONU-side electronics over 100 km SSMF and 1:64 passive split,” Opt. Express 19(24), 24540–24545 (2011).
    [Crossref] [PubMed]
  4. M. Hanawa, Y. Okamura, S. Nozaki, and K. Hosoya, “Experimental demonstration of optical concatenated coding enabling channel grouping on OCDM networks,” in International Conference on Optical Internet 2010 (COIN 2010), Korea, 383–385 (2010).
  5. M. Hanawa, S. Nozaki, K. Hosoya, Y. Okamura, and K. Nonaka, “BER characteristics of 2ch OOK-OCDM using 16-chip concatenated Fourier code,” in Opto-Electronics and Communications Conference (OECC 2011), Taiwan, 24–25 (2011).
  6. Y. K. Choi, K. Hosoya, C. G. Lee, M. Hanawa, and C. S. Park, “A hybrid WDM/OCDMA ring with a dynamic add/drop function based on Fourier code for local area networks,” Opt. Express 19(7), 6243–6252 (2011).
    [Crossref] [PubMed]
  7. N. Kataoka, N. Wada, X. Wang, G. Cincotti, A. Sakamoto, Y. Terada, T. Miyazaki, and K. Kitayama, “Field trial of duplex, 10 Gbps × 8-user DPSK-OCDMA system using a single 16 × 16 multi-port encoder/decoder and 16-level phase-shifted SSFBG encoder/decoders,” J. Lightwave Technol. 27(3), 299–305 (2009).
    [Crossref]
  8. T. Kodama, N. Kataoka, N. Wada, G. Cincotti, X. Wang, T. Miyazaki, and K. Kitayama, “High-security 2.5 Gbps, polarization multiplexed 256-ary OCDM using a single multi-port encoder/decoder,” Opt. Express 18(20), 21376–21385 (2010).
    [Crossref] [PubMed]
  9. N. Kataoka, G. Cincotti, N. Wada, and K. Kitayama, “Demonstration of asynchronous, 40 Gbps x 4-user DPSK-OCDMA transmission using a multi-port encoder/decoder,” Opt. Express 19(26), B965–B970 (2011).
    [Crossref] [PubMed]
  10. M. Hanawa, “Fourier code: A novel orthogonal code for OCDM systems,” in Opto-Electronics and Communications Conference and Australian Conference on Optical Fibre Technology (OECC/ACOFT’ 2008), Sydney, 1–2 (2008).
  11. M. Hanawa, K. Nakamura, and K. Osada, “Structure identification of superstructure fiber Bragg gratings by the least mean square algorithm,” in Opto-Electronics and Communications Conference (OECC 2005), Korea, 820–821 (2005).
  12. D.-S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightwave Technol. 24(1), 12–21 (2006).
    [Crossref]

2012 (1)

2011 (4)

2010 (1)

2009 (1)

2006 (1)

Chen, C.

Choi, Y. K.

Cincotti, G.

Cvijetic, M.

Cvijetic, N.

Feng, Y.

Hanawa, M.

Hosoya, K.

Huang, M. F.

Huang, Y. K.

Ip, E.

Kataoka, N.

Katoh, K.

Kikuchi, K.

Kitayama, K.

Kodama, T.

Lee, C. G.

Ly-Gagnon, D.-S.

Miyazaki, T.

Park, C. S.

Qiu, K.

Sakamoto, A.

Shao, Y.

Terada, Y.

Tsukamoto, S.

Wada, N.

Wang, T.

Wang, X.

Zhang, C.

J. Lightwave Technol. (2)

Opt. Express (6)

Other (4)

M. Hanawa, Y. Okamura, S. Nozaki, and K. Hosoya, “Experimental demonstration of optical concatenated coding enabling channel grouping on OCDM networks,” in International Conference on Optical Internet 2010 (COIN 2010), Korea, 383–385 (2010).

M. Hanawa, S. Nozaki, K. Hosoya, Y. Okamura, and K. Nonaka, “BER characteristics of 2ch OOK-OCDM using 16-chip concatenated Fourier code,” in Opto-Electronics and Communications Conference (OECC 2011), Taiwan, 24–25 (2011).

M. Hanawa, “Fourier code: A novel orthogonal code for OCDM systems,” in Opto-Electronics and Communications Conference and Australian Conference on Optical Fibre Technology (OECC/ACOFT’ 2008), Sydney, 1–2 (2008).

M. Hanawa, K. Nakamura, and K. Osada, “Structure identification of superstructure fiber Bragg gratings by the least mean square algorithm,” in Opto-Electronics and Communications Conference (OECC 2005), Korea, 820–821 (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Simultaneous detection of the FE-SOCDM signals with a digital coherent receiver.

Fig. 2
Fig. 2

Numerical simulation model.

Fig. 3
Fig. 3

Constellation maps of received signals. (a) Original QPSK signal. (b) Fourier-encoded signal with codeword c1. (c) 4-ch. FE-SOCDM signal.

Fig. 4
Fig. 4

Configuration for simultaneous detection of the Fourier-encoded/FE-SOCDM signals.

Fig. 5
Fig. 5

Structure and reflection spectra of FBG-OCs. (a) Configuration of the FBG-OC. (b) Reflection spectra of FBG-OCs used for the experiments. Solid and dashed lines show the measured and theoretical reflection spectra, respectively.

Fig. 6
Fig. 6

Waveforms of the Fourier-encoded signals. (a) Encoded with codeword c1. (b) Encoded with codeword c2. (c) Encoded with codeword c3. (d) Encoded with codeword c4.

Fig. 7
Fig. 7

Constellation maps of detected signals. (a) Simulation results. (b) Experimental results.

Fig. 8
Fig. 8

Constellation maps of detected signals of the 10-Gbit/s QPSK × 2-channel FE-SOCDM signals. (a) Simulation results. (b) Experimental results.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

s n = E n e j θ n n=1,2,3,,N
F N =[ exp( j 2π( n1 )( k1 ) N ) ]n,k=1,2,...,N.
F 4 =[ e j0 e j0 e j0 e j0 e j0 e j π 2 e jπ e j 3π 2 e j0 e jπ e j2π e j3π e j0 e j 3π 2 e j3π e j 9π 2 ]=[ +1 +1 +1 +1 +1 +j 1 j +1 1 +1 1 +1 j 1 +j ]=[ c 1 c 2 c 3 c 4 ]
g n = s n [ e j0 e j π( n1 ) 2 e jπ( n1 ) e j 3π( n1 ) 2 ] n=1,2,3,4.
x= g 1 + g 2 + g 3 + g 4 = s T F 4 wheres=[ s 1 s 2 s 3 s 4 ].
y=D s T F 4 .
y T = F 4 s D T .
r= F 4 1 F 4 s D T =s D T .

Metrics