Abstract

We suggest a principle for isolation of circularly polarized waves in magnetically active extreme-parameter metamaterials. Using theoretical analysis and numerical simulations, we show that metamaterials with extreme parameters, such as epsilon-near-zero materials (ENZ), when merged with magneto-optical materials, become transparent for forward circularly polarized waves of a given handedness and opaque for backward propagating waves of the same handedness. We theoretically study two possible implementations of such hybrid materials: (1) the case of metal-dielectric stacks; and (2) rectangular waveguide near its cut-off frequency. We prove that these structures can be utilized as compact isolators for circularly polarized waves.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” PNAS106, 7816–7821 (2009).
    [CrossRef] [PubMed]
  2. V. S. Degtjarev and L. O. Kolokolova, “Possible application of circular polarisation for remote sensing of cosmic bodies,” Earth, Moon and Planets57, 213–223 (1992).
    [CrossRef]
  3. L. Kolokolova, W. Sparksm, and D. Mackowski, “Astrobiological remote sensing with circular polarization” in Polarimetric Detection, Characterisation and Remote Sensing, M. I. Mishchenko, Y. S. Yatskiv, V. K. Rosenbush, and G. Videen, eds. (Springer, Netherlands, 2011) pp. 277–294.
    [CrossRef]
  4. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32, 856–858 (2007).
    [CrossRef] [PubMed]
  5. E. Plum, V. A. Fedotov, and N. I Zheludev, “Optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett.93, 191911–3 (2008).
    [CrossRef]
  6. C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” NanoLett.11, 4400–4404 (2011).
    [CrossRef]
  7. Y. Zhao, M. A. Belkin, and A. Alu, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nature Commun.3, 1–7 (2012).
    [CrossRef]
  8. M. Schferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X2, 031010 (2012).
    [CrossRef]
  9. L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media, Second Edition: Volume 8 (Course of Theoretical Physics) (Butterworth-Heinemann, 1984).
  10. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97, 167401 (2006).
    [CrossRef] [PubMed]
  11. A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” NanoLett8, 2940–2943 (2008).
    [CrossRef]
  12. C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104, 253902 (2010).
    [CrossRef] [PubMed]
  13. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100, 013904 (2008).
    [CrossRef] [PubMed]
  14. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature461, 772 (2009).
    [CrossRef] [PubMed]
  15. R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys.67, 717754 (2004).
    [CrossRef]
  16. Z. Yu, Z. Wang, and S. Fan, “One-way total reflection with one-dimensional magneto-optical photonic crystals,” Appl. Phys. Lett.90, 121133–3 (2007).
    [CrossRef]
  17. A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett.105, 126804 (2010).
    [CrossRef] [PubMed]
  18. M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett.66, 23246 (1995).
    [CrossRef]
  19. A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “Reversible optical nonreciprocity in periodic structures with liquid crystals,” Appl. Phys. Lett.96, 063302–3 (2010).
    [CrossRef]
  20. I. V. Shadrivov, V. A. Fedotov, D. A. Powell, Y. S. Kivshar, and N. I. Zheludev, “Electromagnetic wave analogue of an electronic diode,” New J. Phys.13, 033025–8 (2011).
    [CrossRef]
  21. K. Fang, Z. Yu, V. Liu, and S. Fan, “Ultracompact non-reciprocal optical isolator based on guided resonance in a magneto-optical photonic crystal slab,” Opt. Lett.36, 4254–4256 (2011).
    [CrossRef] [PubMed]
  22. D. J. Bergman and Y. M. Strelniker, “Anisotropic ac electrical permittivity of a periodic metal-dielectric composite film in a strong magnetic field,” Phys. Rev. Lett.80, 857–860 (1998).
    [CrossRef]
  23. F. J Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett.99, 057202–4 (2007).
    [CrossRef] [PubMed]
  24. W. Li, Z. Liu, X. Zhang, and X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett.100, 161108–4 (2012).
    [CrossRef]
  25. P. K. Jain, Y. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” NanoLett.9, 1644–1650 (2009).
    [CrossRef]
  26. A. B. Khanikaev, A. V. Baryshev, A. A. Fedyanin, A. B. Granovsky, and M. Inoue, “Anomalous Faraday effect of a system with extraordinary optical transmittance,” Opt. Express15, 6612–6622 (2007).
    [CrossRef] [PubMed]
  27. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotech.6, 370–376 (2011).
    [CrossRef]
  28. J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal nanoplasmonics: Giant enhancement of thin film Faraday rotation,” (to be published).
  29. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004).
    [CrossRef] [PubMed]
  30. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon.5, 523–530 (2011).
  31. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).
    [CrossRef] [PubMed]
  32. V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett.30, 3356–3358 (2005).
    [CrossRef]
  33. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–U32 (2008).
    [CrossRef] [PubMed]
  34. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett.97, 157403–4 (2006).
    [CrossRef] [PubMed]
  35. A. Alu, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B75, 155410–13 (2007).
    [CrossRef]
  36. B. Edwards, A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev, Lett.100, 033903–4 (2008).
    [CrossRef]
  37. B. Edwards and N. Engheta, “Experimental verification of displacement-current conduits in metamaterials-inspired optical circuitry,” Phys. Rev. Lett.108, 193902–5 (2012).
    [CrossRef] [PubMed]
  38. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B74, 075103–5 (2006).
    [CrossRef]
  39. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 43704379 (1972).
    [CrossRef]
  40. CST Microwave Studio at www.cst.com

2012 (4)

Y. Zhao, M. A. Belkin, and A. Alu, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nature Commun.3, 1–7 (2012).
[CrossRef]

M. Schferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X2, 031010 (2012).
[CrossRef]

W. Li, Z. Liu, X. Zhang, and X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett.100, 161108–4 (2012).
[CrossRef]

B. Edwards and N. Engheta, “Experimental verification of displacement-current conduits in metamaterials-inspired optical circuitry,” Phys. Rev. Lett.108, 193902–5 (2012).
[CrossRef] [PubMed]

2011 (5)

I. V. Shadrivov, V. A. Fedotov, D. A. Powell, Y. S. Kivshar, and N. I. Zheludev, “Electromagnetic wave analogue of an electronic diode,” New J. Phys.13, 033025–8 (2011).
[CrossRef]

K. Fang, Z. Yu, V. Liu, and S. Fan, “Ultracompact non-reciprocal optical isolator based on guided resonance in a magneto-optical photonic crystal slab,” Opt. Lett.36, 4254–4256 (2011).
[CrossRef] [PubMed]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotech.6, 370–376 (2011).
[CrossRef]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon.5, 523–530 (2011).

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” NanoLett.11, 4400–4404 (2011).
[CrossRef]

2010 (3)

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104, 253902 (2010).
[CrossRef] [PubMed]

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett.105, 126804 (2010).
[CrossRef] [PubMed]

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “Reversible optical nonreciprocity in periodic structures with liquid crystals,” Appl. Phys. Lett.96, 063302–3 (2010).
[CrossRef]

2009 (3)

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature461, 772 (2009).
[CrossRef] [PubMed]

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” PNAS106, 7816–7821 (2009).
[CrossRef] [PubMed]

P. K. Jain, Y. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” NanoLett.9, 1644–1650 (2009).
[CrossRef]

2008 (5)

B. Edwards, A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev, Lett.100, 033903–4 (2008).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–U32 (2008).
[CrossRef] [PubMed]

E. Plum, V. A. Fedotov, and N. I Zheludev, “Optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett.93, 191911–3 (2008).
[CrossRef]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” NanoLett8, 2940–2943 (2008).
[CrossRef]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100, 013904 (2008).
[CrossRef] [PubMed]

2007 (5)

Z. Yu, Z. Wang, and S. Fan, “One-way total reflection with one-dimensional magneto-optical photonic crystals,” Appl. Phys. Lett.90, 121133–3 (2007).
[CrossRef]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32, 856–858 (2007).
[CrossRef] [PubMed]

F. J Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett.99, 057202–4 (2007).
[CrossRef] [PubMed]

A. Alu, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B75, 155410–13 (2007).
[CrossRef]

A. B. Khanikaev, A. V. Baryshev, A. A. Fedyanin, A. B. Granovsky, and M. Inoue, “Anomalous Faraday effect of a system with extraordinary optical transmittance,” Opt. Express15, 6612–6622 (2007).
[CrossRef] [PubMed]

2006 (3)

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B74, 075103–5 (2006).
[CrossRef]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett.97, 157403–4 (2006).
[CrossRef] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97, 167401 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (2)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004).
[CrossRef] [PubMed]

R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys.67, 717754 (2004).
[CrossRef]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).
[CrossRef] [PubMed]

1998 (1)

D. J. Bergman and Y. M. Strelniker, “Anisotropic ac electrical permittivity of a periodic metal-dielectric composite film in a strong magnetic field,” Phys. Rev. Lett.80, 857–860 (1998).
[CrossRef]

1995 (1)

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett.66, 23246 (1995).
[CrossRef]

1992 (1)

V. S. Degtjarev and L. O. Kolokolova, “Possible application of circular polarisation for remote sensing of cosmic bodies,” Earth, Moon and Planets57, 213–223 (1992).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 43704379 (1972).
[CrossRef]

Akimov, I. A.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotech.6, 370–376 (2011).
[CrossRef]

Alu, A.

Y. Zhao, M. A. Belkin, and A. Alu, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nature Commun.3, 1–7 (2012).
[CrossRef]

B. Edwards, A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev, Lett.100, 033903–4 (2008).
[CrossRef]

A. Alu, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B75, 155410–13 (2007).
[CrossRef]

Armstead, D. N.

F. J Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett.99, 057202–4 (2007).
[CrossRef] [PubMed]

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–U32 (2008).
[CrossRef] [PubMed]

Baryshev, A. V.

Bayer, M.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotech.6, 370–376 (2011).
[CrossRef]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alu, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nature Commun.3, 1–7 (2012).
[CrossRef]

Belotelov, V. I.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotech.6, 370–376 (2011).
[CrossRef]

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal nanoplasmonics: Giant enhancement of thin film Faraday rotation,” (to be published).

Bergman, D. J.

D. J. Bergman and Y. M. Strelniker, “Anisotropic ac electrical permittivity of a periodic metal-dielectric composite film in a strong magnetic field,” Phys. Rev. Lett.80, 857–860 (1998).
[CrossRef]

Bloemer, M. J.

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett.66, 23246 (1995).
[CrossRef]

Bowden, C. M.

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett.66, 23246 (1995).
[CrossRef]

Brasselet, E.

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “Reversible optical nonreciprocity in periodic structures with liquid crystals,” Appl. Phys. Lett.96, 063302–3 (2010).
[CrossRef]

Cai, W. S.

Chen, F.

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” PNAS106, 7816–7821 (2009).
[CrossRef] [PubMed]

Chen, Y.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” NanoLett8, 2940–2943 (2008).
[CrossRef]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97, 167401 (2006).
[CrossRef] [PubMed]

Chettiar, U. K.

Chin, J. Y.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal nanoplasmonics: Giant enhancement of thin film Faraday rotation,” (to be published).

Chong, Y.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature461, 772 (2009).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 43704379 (1972).
[CrossRef]

Cohen, A. E.

P. K. Jain, Y. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” NanoLett.9, 1644–1650 (2009).
[CrossRef]

DasSarma, P.

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” PNAS106, 7816–7821 (2009).
[CrossRef] [PubMed]

DasSarma, S.

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” PNAS106, 7816–7821 (2009).
[CrossRef] [PubMed]

Decker, M.

Degtjarev, V. S.

V. S. Degtjarev and L. O. Kolokolova, “Possible application of circular polarisation for remote sensing of cosmic bodies,” Earth, Moon and Planets57, 213–223 (1992).
[CrossRef]

Dowling, J. P.

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett.66, 23246 (1995).
[CrossRef]

Drachev, V. P.

Dregely, D.

M. Schferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X2, 031010 (2012).
[CrossRef]

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal nanoplasmonics: Giant enhancement of thin film Faraday rotation,” (to be published).

Edwards, B.

B. Edwards and N. Engheta, “Experimental verification of displacement-current conduits in metamaterials-inspired optical circuitry,” Phys. Rev. Lett.108, 193902–5 (2012).
[CrossRef] [PubMed]

B. Edwards, A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev, Lett.100, 033903–4 (2008).
[CrossRef]

Engheta, N.

B. Edwards and N. Engheta, “Experimental verification of displacement-current conduits in metamaterials-inspired optical circuitry,” Phys. Rev. Lett.108, 193902–5 (2012).
[CrossRef] [PubMed]

B. Edwards, A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev, Lett.100, 033903–4 (2008).
[CrossRef]

A. Alu, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B75, 155410–13 (2007).
[CrossRef]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett.97, 157403–4 (2006).
[CrossRef] [PubMed]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B74, 075103–5 (2006).
[CrossRef]

Falkner, M.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” NanoLett.11, 4400–4404 (2011).
[CrossRef]

Fan, S.

K. Fang, Z. Yu, V. Liu, and S. Fan, “Ultracompact non-reciprocal optical isolator based on guided resonance in a magneto-optical photonic crystal slab,” Opt. Lett.36, 4254–4256 (2011).
[CrossRef] [PubMed]

Z. Yu, Z. Wang, and S. Fan, “One-way total reflection with one-dimensional magneto-optical photonic crystals,” Appl. Phys. Lett.90, 121133–3 (2007).
[CrossRef]

Fang, K.

Fedotov, V. A.

I. V. Shadrivov, V. A. Fedotov, D. A. Powell, Y. S. Kivshar, and N. I. Zheludev, “Electromagnetic wave analogue of an electronic diode,” New J. Phys.13, 033025–8 (2011).
[CrossRef]

E. Plum, V. A. Fedotov, and N. I Zheludev, “Optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett.93, 191911–3 (2008).
[CrossRef]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” NanoLett8, 2940–2943 (2008).
[CrossRef]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97, 167401 (2006).
[CrossRef] [PubMed]

Fedyanin, A. A.

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–U32 (2008).
[CrossRef] [PubMed]

Germer, T. A.

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” PNAS106, 7816–7821 (2009).
[CrossRef] [PubMed]

Giessen, H.

M. Schferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X2, 031010 (2012).
[CrossRef]

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal nanoplasmonics: Giant enhancement of thin film Faraday rotation,” (to be published).

Gopal, A. V.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotech.6, 370–376 (2011).
[CrossRef]

Granovsky, A. B.

Haldane, F. D. M.

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100, 013904 (2008).
[CrossRef] [PubMed]

Harris, V. G.

F. J Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett.99, 057202–4 (2007).
[CrossRef] [PubMed]

Helgert, C.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” NanoLett.11, 4400–4404 (2011).
[CrossRef]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104, 253902 (2010).
[CrossRef] [PubMed]

Hentschel, M.

M. Schferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X2, 031010 (2012).
[CrossRef]

Hough, J.

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” PNAS106, 7816–7821 (2009).
[CrossRef] [PubMed]

Inoue, M.

Jain, P. K.

P. K. Jain, Y. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” NanoLett.9, 1644–1650 (2009).
[CrossRef]

Jiang, X.

W. Li, Z. Liu, X. Zhang, and X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett.100, 161108–4 (2012).
[CrossRef]

Joannopoulos, J. D.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature461, 772 (2009).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 43704379 (1972).
[CrossRef]

Kasture, S.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotech.6, 370–376 (2011).
[CrossRef]

Khanikaev, A. B.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett.105, 126804 (2010).
[CrossRef] [PubMed]

A. B. Khanikaev, A. V. Baryshev, A. A. Fedyanin, A. B. Granovsky, and M. Inoue, “Anomalous Faraday effect of a system with extraordinary optical transmittance,” Opt. Express15, 6612–6622 (2007).
[CrossRef] [PubMed]

Khardikov, V. V.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” NanoLett8, 2940–2943 (2008).
[CrossRef]

Kildishev, A. V.

Kivshar, Y. S.

I. V. Shadrivov, V. A. Fedotov, D. A. Powell, Y. S. Kivshar, and N. I. Zheludev, “Electromagnetic wave analogue of an electronic diode,” New J. Phys.13, 033025–8 (2011).
[CrossRef]

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “Reversible optical nonreciprocity in periodic structures with liquid crystals,” Appl. Phys. Lett.96, 063302–3 (2010).
[CrossRef]

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett.105, 126804 (2010).
[CrossRef] [PubMed]

Klein, M. W.

Kley, E.-B.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” NanoLett.11, 4400–4404 (2011).
[CrossRef]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104, 253902 (2010).
[CrossRef] [PubMed]

Kolokolova, L.

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” PNAS106, 7816–7821 (2009).
[CrossRef] [PubMed]

L. Kolokolova, W. Sparksm, and D. Mackowski, “Astrobiological remote sensing with circular polarization” in Polarimetric Detection, Characterisation and Remote Sensing, M. I. Mishchenko, Y. S. Yatskiv, V. K. Rosenbush, and G. Videen, eds. (Springer, Netherlands, 2011) pp. 277–294.
[CrossRef]

Kolokolova, L. O.

V. S. Degtjarev and L. O. Kolokolova, “Possible application of circular polarisation for remote sensing of cosmic bodies,” Earth, Moon and Planets57, 213–223 (1992).
[CrossRef]

Kotov, V. A.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotech.6, 370–376 (2011).
[CrossRef]

Landau, L. D.

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media, Second Edition: Volume 8 (Course of Theoretical Physics) (Butterworth-Heinemann, 1984).

Lederer, F.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” NanoLett.11, 4400–4404 (2011).
[CrossRef]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104, 253902 (2010).
[CrossRef] [PubMed]

Li, W.

W. Li, Z. Liu, X. Zhang, and X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett.100, 161108–4 (2012).
[CrossRef]

Lifshitz, E. M.

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media, Second Edition: Volume 8 (Course of Theoretical Physics) (Butterworth-Heinemann, 1984).

Linden, S.

Liu, V.

Liu, Z.

W. Li, Z. Liu, X. Zhang, and X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett.100, 161108–4 (2012).
[CrossRef]

Macchetto, F. D.

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” PNAS106, 7816–7821 (2009).
[CrossRef] [PubMed]

Mackowski, D.

L. Kolokolova, W. Sparksm, and D. Mackowski, “Astrobiological remote sensing with circular polarization” in Polarimetric Detection, Characterisation and Remote Sensing, M. I. Mishchenko, Y. S. Yatskiv, V. K. Rosenbush, and G. Videen, eds. (Springer, Netherlands, 2011) pp. 277–294.
[CrossRef]

Manset, N.

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” PNAS106, 7816–7821 (2009).
[CrossRef] [PubMed]

Martin, W.

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” PNAS106, 7816–7821 (2009).
[CrossRef] [PubMed]

Menzel, C.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” NanoLett.11, 4400–4404 (2011).
[CrossRef]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104, 253902 (2010).
[CrossRef] [PubMed]

Miroshnichenko, A. E.

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “Reversible optical nonreciprocity in periodic structures with liquid crystals,” Appl. Phys. Lett.96, 063302–3 (2010).
[CrossRef]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97, 167401 (2006).
[CrossRef] [PubMed]

Mousavi, S. H.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett.105, 126804 (2010).
[CrossRef] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).
[CrossRef] [PubMed]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).
[CrossRef] [PubMed]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004).
[CrossRef] [PubMed]

Pertsch, T.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” NanoLett.11, 4400–4404 (2011).
[CrossRef]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104, 253902 (2010).
[CrossRef] [PubMed]

Pitaevskii, L. P.

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media, Second Edition: Volume 8 (Course of Theoretical Physics) (Butterworth-Heinemann, 1984).

Plum, E.

E. Plum, V. A. Fedotov, and N. I Zheludev, “Optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett.93, 191911–3 (2008).
[CrossRef]

Pohl, M.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotech.6, 370–376 (2011).
[CrossRef]

Potton, R. J.

R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys.67, 717754 (2004).
[CrossRef]

Powell, D. A.

I. V. Shadrivov, V. A. Fedotov, D. A. Powell, Y. S. Kivshar, and N. I. Zheludev, “Electromagnetic wave analogue of an electronic diode,” New J. Phys.13, 033025–8 (2011).
[CrossRef]

Prosvirnin, S. L.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” NanoLett8, 2940–2943 (2008).
[CrossRef]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97, 167401 (2006).
[CrossRef] [PubMed]

Pshenay-Severin, E.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” NanoLett.11, 4400–4404 (2011).
[CrossRef]

Rachford, F. J

F. J Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett.99, 057202–4 (2007).
[CrossRef] [PubMed]

Raghu, S.

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100, 013904 (2008).
[CrossRef] [PubMed]

Reid, N.

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” PNAS106, 7816–7821 (2009).
[CrossRef] [PubMed]

Robb, F. T.

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” PNAS106, 7816–7821 (2009).
[CrossRef] [PubMed]

Rockstuhl, C.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” NanoLett.11, 4400–4404 (2011).
[CrossRef]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104, 253902 (2010).
[CrossRef] [PubMed]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97, 167401 (2006).
[CrossRef] [PubMed]

Salandrino, A.

A. Alu, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B75, 155410–13 (2007).
[CrossRef]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B74, 075103–5 (2006).
[CrossRef]

Sarychev, A. K.

Scalora, M.

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett.66, 23246 (1995).
[CrossRef]

Schferling, M.

M. Schferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X2, 031010 (2012).
[CrossRef]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).
[CrossRef] [PubMed]

Schwanecke, A. S.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” NanoLett8, 2940–2943 (2008).
[CrossRef]

Shadrivov, I. V.

I. V. Shadrivov, V. A. Fedotov, D. A. Powell, Y. S. Kivshar, and N. I. Zheludev, “Electromagnetic wave analogue of an electronic diode,” New J. Phys.13, 033025–8 (2011).
[CrossRef]

Shalaev, V. M.

Shvets, G.

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett.105, 126804 (2010).
[CrossRef] [PubMed]

Silveirinha, M.

B. Edwards, A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev, Lett.100, 033903–4 (2008).
[CrossRef]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett.97, 157403–4 (2006).
[CrossRef] [PubMed]

Silveirinha, M. G.

A. Alu, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B75, 155410–13 (2007).
[CrossRef]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).
[CrossRef] [PubMed]

Soljacic, M.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature461, 772 (2009).
[CrossRef] [PubMed]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon.5, 523–530 (2011).

Sparks, W. B.

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” PNAS106, 7816–7821 (2009).
[CrossRef] [PubMed]

Sparksm, W.

L. Kolokolova, W. Sparksm, and D. Mackowski, “Astrobiological remote sensing with circular polarization” in Polarimetric Detection, Characterisation and Remote Sensing, M. I. Mishchenko, Y. S. Yatskiv, V. K. Rosenbush, and G. Videen, eds. (Springer, Netherlands, 2011) pp. 277–294.
[CrossRef]

Steinle, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal nanoplasmonics: Giant enhancement of thin film Faraday rotation,” (to be published).

Strelniker, Y. M.

D. J. Bergman and Y. M. Strelniker, “Anisotropic ac electrical permittivity of a periodic metal-dielectric composite film in a strong magnetic field,” Phys. Rev. Lett.80, 857–860 (1998).
[CrossRef]

Stritzker, B.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal nanoplasmonics: Giant enhancement of thin film Faraday rotation,” (to be published).

Tocci, M. D.

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett.66, 23246 (1995).
[CrossRef]

Tunnermann, A.

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” NanoLett.11, 4400–4404 (2011).
[CrossRef]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104, 253902 (2010).
[CrossRef] [PubMed]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–U32 (2008).
[CrossRef] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–U32 (2008).
[CrossRef] [PubMed]

Vengurlekar, A. S.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotech.6, 370–376 (2011).
[CrossRef]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).
[CrossRef] [PubMed]

Vittoria, C.

F. J Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett.99, 057202–4 (2007).
[CrossRef] [PubMed]

Walsworth, R.

P. K. Jain, Y. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” NanoLett.9, 1644–1650 (2009).
[CrossRef]

Wang, Z.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature461, 772 (2009).
[CrossRef] [PubMed]

Z. Yu, Z. Wang, and S. Fan, “One-way total reflection with one-dimensional magneto-optical photonic crystals,” Appl. Phys. Lett.90, 121133–3 (2007).
[CrossRef]

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon.5, 523–530 (2011).

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32, 856–858 (2007).
[CrossRef] [PubMed]

Wehlus, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal nanoplasmonics: Giant enhancement of thin film Faraday rotation,” (to be published).

Weiss, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal nanoplasmonics: Giant enhancement of thin film Faraday rotation,” (to be published).

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004).
[CrossRef] [PubMed]

Xiao, Y.

P. K. Jain, Y. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” NanoLett.9, 1644–1650 (2009).
[CrossRef]

Yakovlev, D. R.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotech.6, 370–376 (2011).
[CrossRef]

Young, M. E.

B. Edwards, A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev, Lett.100, 033903–4 (2008).
[CrossRef]

Yu, Z.

K. Fang, Z. Yu, V. Liu, and S. Fan, “Ultracompact non-reciprocal optical isolator based on guided resonance in a magneto-optical photonic crystal slab,” Opt. Lett.36, 4254–4256 (2011).
[CrossRef] [PubMed]

Z. Yu, Z. Wang, and S. Fan, “One-way total reflection with one-dimensional magneto-optical photonic crystals,” Appl. Phys. Lett.90, 121133–3 (2007).
[CrossRef]

Yuan, H. K.

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–U32 (2008).
[CrossRef] [PubMed]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–U32 (2008).
[CrossRef] [PubMed]

Zhang, X.

W. Li, Z. Liu, X. Zhang, and X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett.100, 161108–4 (2012).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–U32 (2008).
[CrossRef] [PubMed]

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alu, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nature Commun.3, 1–7 (2012).
[CrossRef]

Zheludev, N. I

E. Plum, V. A. Fedotov, and N. I Zheludev, “Optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett.93, 191911–3 (2008).
[CrossRef]

Zheludev, N. I.

I. V. Shadrivov, V. A. Fedotov, D. A. Powell, Y. S. Kivshar, and N. I. Zheludev, “Electromagnetic wave analogue of an electronic diode,” New J. Phys.13, 033025–8 (2011).
[CrossRef]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” NanoLett8, 2940–2943 (2008).
[CrossRef]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97, 167401 (2006).
[CrossRef] [PubMed]

Zvezdin, A. K.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotech.6, 370–376 (2011).
[CrossRef]

Appl. Phys. Lett. (5)

E. Plum, V. A. Fedotov, and N. I Zheludev, “Optical activity in extrinsically chiral metamaterial,” Appl. Phys. Lett.93, 191911–3 (2008).
[CrossRef]

M. D. Tocci, M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, “Thin-film nonlinear optical diode,” Appl. Phys. Lett.66, 23246 (1995).
[CrossRef]

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “Reversible optical nonreciprocity in periodic structures with liquid crystals,” Appl. Phys. Lett.96, 063302–3 (2010).
[CrossRef]

Z. Yu, Z. Wang, and S. Fan, “One-way total reflection with one-dimensional magneto-optical photonic crystals,” Appl. Phys. Lett.90, 121133–3 (2007).
[CrossRef]

W. Li, Z. Liu, X. Zhang, and X. Jiang, “Switchable hyperbolic metamaterials with magnetic control,” Appl. Phys. Lett.100, 161108–4 (2012).
[CrossRef]

Earth, Moon and Planets (1)

V. S. Degtjarev and L. O. Kolokolova, “Possible application of circular polarisation for remote sensing of cosmic bodies,” Earth, Moon and Planets57, 213–223 (1992).
[CrossRef]

NanoLett (1)

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” NanoLett8, 2940–2943 (2008).
[CrossRef]

NanoLett. (2)

C. Helgert, E. Pshenay-Severin, M. Falkner, C. Menzel, C. Rockstuhl, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Chiral metamaterial composed of three-dimensional plasmonic nanostructures,” NanoLett.11, 4400–4404 (2011).
[CrossRef]

P. K. Jain, Y. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” NanoLett.9, 1644–1650 (2009).
[CrossRef]

Nature (2)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455, 376–U32 (2008).
[CrossRef] [PubMed]

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature461, 772 (2009).
[CrossRef] [PubMed]

Nature Commun. (1)

Y. Zhao, M. A. Belkin, and A. Alu, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nature Commun.3, 1–7 (2012).
[CrossRef]

Nature Nanotech. (1)

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nature Nanotech.6, 370–376 (2011).
[CrossRef]

Nature Photon. (1)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nature Photon.5, 523–530 (2011).

New J. Phys. (1)

I. V. Shadrivov, V. A. Fedotov, D. A. Powell, Y. S. Kivshar, and N. I. Zheludev, “Electromagnetic wave analogue of an electronic diode,” New J. Phys.13, 033025–8 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev, Lett. (1)

B. Edwards, A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev, Lett.100, 033903–4 (2008).
[CrossRef]

Phys. Rev. B (3)

A. Alu, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B75, 155410–13 (2007).
[CrossRef]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B74, 075103–5 (2006).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 43704379 (1972).
[CrossRef]

Phys. Rev. Lett. (9)

B. Edwards and N. Engheta, “Experimental verification of displacement-current conduits in metamaterials-inspired optical circuitry,” Phys. Rev. Lett.108, 193902–5 (2012).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett.84, 4184–4187 (2000).
[CrossRef] [PubMed]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett.97, 157403–4 (2006).
[CrossRef] [PubMed]

A. B. Khanikaev, S. H. Mousavi, G. Shvets, and Y. S. Kivshar, “One-way extraordinary optical transmission and nonreciprocal spoof plasmons,” Phys. Rev. Lett.105, 126804 (2010).
[CrossRef] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97, 167401 (2006).
[CrossRef] [PubMed]

D. J. Bergman and Y. M. Strelniker, “Anisotropic ac electrical permittivity of a periodic metal-dielectric composite film in a strong magnetic field,” Phys. Rev. Lett.80, 857–860 (1998).
[CrossRef]

F. J Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett.99, 057202–4 (2007).
[CrossRef] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104, 253902 (2010).
[CrossRef] [PubMed]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100, 013904 (2008).
[CrossRef] [PubMed]

Phys. Rev. X (1)

M. Schferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: Design principles for chiral plasmonic nanostructures,” Phys. Rev. X2, 031010 (2012).
[CrossRef]

PNAS (1)

W. B. Sparks, J. Hough, T. A. Germer, F. Chen, S. DasSarma, P. DasSarma, F. T. Robb, N. Manset, L. Kolokolova, N. Reid, F. D. Macchetto, and W. Martin, “Detection of circular polarization in light scattered from photosynthetic microbes,” PNAS106, 7816–7821 (2009).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys.67, 717754 (2004).
[CrossRef]

Science (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305, 788–792 (2004).
[CrossRef] [PubMed]

Other (4)

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal nanoplasmonics: Giant enhancement of thin film Faraday rotation,” (to be published).

L. Kolokolova, W. Sparksm, and D. Mackowski, “Astrobiological remote sensing with circular polarization” in Polarimetric Detection, Characterisation and Remote Sensing, M. I. Mishchenko, Y. S. Yatskiv, V. K. Rosenbush, and G. Videen, eds. (Springer, Netherlands, 2011) pp. 277–294.
[CrossRef]

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media, Second Edition: Volume 8 (Course of Theoretical Physics) (Butterworth-Heinemann, 1984).

CST Microwave Studio at www.cst.com

Supplementary Material (4)

» Media 1: MOV (750 KB)     
» Media 2: MOV (434 KB)     
» Media 3: MOV (774 KB)     
» Media 4: MOV (952 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of RCP forward and backward transmission through (a) reciprocal, (b) magneto-optical, and (c) magnetically active epsilon-near-zero slabs, respectively. (d) Transmittance of the forward and backward RCP plane waves through ENZ-MO slab (ε = 0 and α = 0.1) as a function of the slab thickness.

Fig. 2
Fig. 2

Schematic of the magneto-active structures exhibiting effective epsilon-near-zero permittivity: (a) periodic metal-MO stack, and (b) rectangular metallic (PEC) waveguide with a square cross-section. Red arrow shows the direction of magnetization.

Fig. 3
Fig. 3

(a) ( Media 1) and (b) ( Media 2) instantaneous electric field distribution for forward propagating RCP and LCP, respectively. (c) and (d) front views of the electric field for forward RCP and LCP, i.e. projections of the fields depicted in panels (a) and (b) on the (xy) plane, correspondingly.

Fig. 4
Fig. 4

Electric field distribution along the waveguide at different cross sections and different time frames: (a) above cut-off at 6.1THz ( Media 3), and (b) below cut-off at 5.98THz ( Media 4).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε ¯ ¯ = ( ε m o i α 0 i α ε m o 0 0 0 ε ) ,
forward k L C P + = ( ω / c ) α and k R C P + = ( ω / c ) α backward k L C P = ( ω / c ) α and k R C P = ( ω / c ) α .

Metrics