Abstract

An efficient near-infrared (NIR) phosphor LiSrPO4:Eu2+, Pr3+ is synthesized by solid-state reaction and systematically investigated using x-ray diffraction, diffuse reflection spectrum, photoluminescence spectra at room temperature and 3 K, and the decay curves. The UV-Vis-NIR energy transfer mechanism is proposed based on these results. The results demonstrate Eu2+ can be an efficient sensitizer for harvesting UV photon and greatly enhancing the NIR emission of Pr3+ between 960 and 1060 nm through efficient energy feeding by allowed 4f-5d absorption of Eu2+ with high oscillator strength. Eu2+/Pr3+ may be an efficient donor-acceptor pair as solar spectral converter for Si solar cells.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells90(15), 2329–2337 (2006).
    [CrossRef]
  2. J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ Co-doped YAG ceramics,” J. Appl. Phys.106(4), 043101–043105 (2009).
    [CrossRef]
  3. K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl.17(3), 191–197 (2009).
    [CrossRef]
  4. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008).
    [CrossRef] [PubMed]
  5. G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments11(4), 303–317 (1989).
    [CrossRef]
  6. T. Fix, H. Rinnert, M. G. Blamire, A. Slaoui, and J. L. MacManus-Driscoll, “Nd: SrTiO3 thin film as photon downshifting layers for photovoltaics,” Sol. Energy Mater. Sol. Cells102, 71–74 (2012).
    [CrossRef]
  7. Y. Iso, S. Takeshita, and T. Isobe, “Effects of YVO4:Bi3+, Eu3+ nanophosphors spectral down-shifter on properties of monocrystalline silicon photovoltaic module,” J. Electrochem. Soc.159(3), J72–J76 (2012).
    [CrossRef]
  8. H. Fu, S. Cui, Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids358(9), 1217–1220 (2012).
    [CrossRef]
  9. J. J. Velázquez, V. D. Rodríguez, A. C. Yanes, J. del-Castillo, and J. Méndez-Ramos, “Down-shifting in Ce3+–Tb3+ Co-doped SiO2–LaF3 nano-glass–ceramics for photon conversion in solar cells,” Opt. Mater.34(12), 1994–1997 (2012).
    [CrossRef]
  10. A. Santana-Alonso, A. C. Yanes, J. Méndez-Ramosb, J. del-Castilloa, and V. D. Rodríguez, “Down-shifting by energy transfer in Dy3+-Yb3+ co-doped YF3-based solgel nano-glass-ceramics for photovoltaic applications,” Opt. Mater.33(4), 587–591 (2011).
    [CrossRef]
  11. Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+,Yb3+ phosphor,” J. Mater. Chem.19(38), 7088–7092 (2009).
    [CrossRef]
  12. G. S. Smith and R. L. Snyder, “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Cryst.12(1), 60–65 (1979).
    [CrossRef]
  13. Z. C. Wu, J. X. Shi, J. Wang, M. L. Gong, and Q. Su, “A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs,” J. Solid State Chem.179(8), 2356–2360 (2006).
    [CrossRef]
  14. C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Improving optical properties of white LED fabricated by a blue LED chip with Yellow/Red phosphors,” J. Electrochem. Soc.157(9), H900–H9038 (2010).
    [CrossRef] [PubMed]
  15. Y. Chen, J. Wang, X. G. Zhang, G. G. Zhang, M. L. Gong, and Q. Su, “An intense green emitting LiSrPO4:Eu2+, Tb3+for phosphor-converted LED,” Sens. Actuators B Chem.148(1), 259–263 (2010).
    [CrossRef]
  16. O. K. Moune, M. D. Faucher, and N. Edelstein, “Spectroscopic investigations and configuration-interaction-assisted crystal field analysis of Pr3+ in YPO4 single crystal,” J. Lumin.96(1), 51–68 (2002).
    [CrossRef]
  17. M.-T. Paques-Ledent, “Vibrational spectra and structure of LiB2+PO4 compounds with B=Sr, Ba, Pb,” J. Solid State Chem.23(1-2), 147–154 (1978).
    [CrossRef]
  18. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)21(30), 1–5 (2009).
    [CrossRef]
  19. Y. H. Wang, L. Xie, and H. J. Zhang, “Cooperative near-infrared quantum in Tb3+, Yb3+ codoped polyborates La0.99-xYbxBaB9O16:Tb0.01,” Appl. Phys. (Berl.)105, 023528–023534 (2009).

2012

T. Fix, H. Rinnert, M. G. Blamire, A. Slaoui, and J. L. MacManus-Driscoll, “Nd: SrTiO3 thin film as photon downshifting layers for photovoltaics,” Sol. Energy Mater. Sol. Cells102, 71–74 (2012).
[CrossRef]

Y. Iso, S. Takeshita, and T. Isobe, “Effects of YVO4:Bi3+, Eu3+ nanophosphors spectral down-shifter on properties of monocrystalline silicon photovoltaic module,” J. Electrochem. Soc.159(3), J72–J76 (2012).
[CrossRef]

H. Fu, S. Cui, Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids358(9), 1217–1220 (2012).
[CrossRef]

J. J. Velázquez, V. D. Rodríguez, A. C. Yanes, J. del-Castillo, and J. Méndez-Ramos, “Down-shifting in Ce3+–Tb3+ Co-doped SiO2–LaF3 nano-glass–ceramics for photon conversion in solar cells,” Opt. Mater.34(12), 1994–1997 (2012).
[CrossRef]

2011

A. Santana-Alonso, A. C. Yanes, J. Méndez-Ramosb, J. del-Castilloa, and V. D. Rodríguez, “Down-shifting by energy transfer in Dy3+-Yb3+ co-doped YF3-based solgel nano-glass-ceramics for photovoltaic applications,” Opt. Mater.33(4), 587–591 (2011).
[CrossRef]

2010

C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Improving optical properties of white LED fabricated by a blue LED chip with Yellow/Red phosphors,” J. Electrochem. Soc.157(9), H900–H9038 (2010).
[CrossRef] [PubMed]

Y. Chen, J. Wang, X. G. Zhang, G. G. Zhang, M. L. Gong, and Q. Su, “An intense green emitting LiSrPO4:Eu2+, Tb3+for phosphor-converted LED,” Sens. Actuators B Chem.148(1), 259–263 (2010).
[CrossRef]

2009

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)21(30), 1–5 (2009).
[CrossRef]

Y. H. Wang, L. Xie, and H. J. Zhang, “Cooperative near-infrared quantum in Tb3+, Yb3+ codoped polyborates La0.99-xYbxBaB9O16:Tb0.01,” Appl. Phys. (Berl.)105, 023528–023534 (2009).

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+,Yb3+ phosphor,” J. Mater. Chem.19(38), 7088–7092 (2009).
[CrossRef]

J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ Co-doped YAG ceramics,” J. Appl. Phys.106(4), 043101–043105 (2009).
[CrossRef]

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl.17(3), 191–197 (2009).
[CrossRef]

2008

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008).
[CrossRef] [PubMed]

2006

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells90(15), 2329–2337 (2006).
[CrossRef]

Z. C. Wu, J. X. Shi, J. Wang, M. L. Gong, and Q. Su, “A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs,” J. Solid State Chem.179(8), 2356–2360 (2006).
[CrossRef]

2002

O. K. Moune, M. D. Faucher, and N. Edelstein, “Spectroscopic investigations and configuration-interaction-assisted crystal field analysis of Pr3+ in YPO4 single crystal,” J. Lumin.96(1), 51–68 (2002).
[CrossRef]

1989

G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments11(4), 303–317 (1989).
[CrossRef]

1979

G. S. Smith and R. L. Snyder, “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Cryst.12(1), 60–65 (1979).
[CrossRef]

1978

M.-T. Paques-Ledent, “Vibrational spectra and structure of LiB2+PO4 compounds with B=Sr, Ba, Pb,” J. Solid State Chem.23(1-2), 147–154 (1978).
[CrossRef]

Aarts, L.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)21(30), 1–5 (2009).
[CrossRef]

Baldo, M. A.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Bätzner, D. L.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl.17(3), 191–197 (2009).
[CrossRef]

Bettiol, F.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl.17(3), 191–197 (2009).
[CrossRef]

Blamire, M. G.

T. Fix, H. Rinnert, M. G. Blamire, A. Slaoui, and J. L. MacManus-Driscoll, “Nd: SrTiO3 thin film as photon downshifting layers for photovoltaics,” Sol. Energy Mater. Sol. Cells102, 71–74 (2012).
[CrossRef]

Chan, T. S.

C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Improving optical properties of white LED fabricated by a blue LED chip with Yellow/Red phosphors,” J. Electrochem. Soc.157(9), H900–H9038 (2010).
[CrossRef] [PubMed]

Chen, Y.

Y. Chen, J. Wang, X. G. Zhang, G. G. Zhang, M. L. Gong, and Q. Su, “An intense green emitting LiSrPO4:Eu2+, Tb3+for phosphor-converted LED,” Sens. Actuators B Chem.148(1), 259–263 (2010).
[CrossRef]

Cotsell, J. N.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl.17(3), 191–197 (2009).
[CrossRef]

Cui, S.

H. Fu, S. Cui, Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids358(9), 1217–1220 (2012).
[CrossRef]

Currie, M. J.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008).
[CrossRef] [PubMed]

del-Castillo, J.

J. J. Velázquez, V. D. Rodríguez, A. C. Yanes, J. del-Castillo, and J. Méndez-Ramos, “Down-shifting in Ce3+–Tb3+ Co-doped SiO2–LaF3 nano-glass–ceramics for photon conversion in solar cells,” Opt. Mater.34(12), 1994–1997 (2012).
[CrossRef]

del-Castilloa, J.

A. Santana-Alonso, A. C. Yanes, J. Méndez-Ramosb, J. del-Castilloa, and V. D. Rodríguez, “Down-shifting by energy transfer in Dy3+-Yb3+ co-doped YF3-based solgel nano-glass-ceramics for photovoltaic applications,” Opt. Mater.33(4), 587–591 (2011).
[CrossRef]

Edelstein, N.

O. K. Moune, M. D. Faucher, and N. Edelstein, “Spectroscopic investigations and configuration-interaction-assisted crystal field analysis of Pr3+ in YPO4 single crystal,” J. Lumin.96(1), 51–68 (2002).
[CrossRef]

Fan, X.

H. Fu, S. Cui, Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids358(9), 1217–1220 (2012).
[CrossRef]

Faucher, M. D.

O. K. Moune, M. D. Faucher, and N. Edelstein, “Spectroscopic investigations and configuration-interaction-assisted crystal field analysis of Pr3+ in YPO4 single crystal,” J. Lumin.96(1), 51–68 (2002).
[CrossRef]

Fix, T.

T. Fix, H. Rinnert, M. G. Blamire, A. Slaoui, and J. L. MacManus-Driscoll, “Nd: SrTiO3 thin film as photon downshifting layers for photovoltaics,” Sol. Energy Mater. Sol. Cells102, 71–74 (2012).
[CrossRef]

Fu, H.

H. Fu, S. Cui, Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids358(9), 1217–1220 (2012).
[CrossRef]

Goffri, S.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Gong, M. L.

Y. Chen, J. Wang, X. G. Zhang, G. G. Zhang, M. L. Gong, and Q. Su, “An intense green emitting LiSrPO4:Eu2+, Tb3+for phosphor-converted LED,” Sens. Actuators B Chem.148(1), 259–263 (2010).
[CrossRef]

Z. C. Wu, J. X. Shi, J. Wang, M. L. Gong, and Q. Su, “A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs,” J. Solid State Chem.179(8), 2356–2360 (2006).
[CrossRef]

Guo, G. Y.

C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Improving optical properties of white LED fabricated by a blue LED chip with Yellow/Red phosphors,” J. Electrochem. Soc.157(9), H900–H9038 (2010).
[CrossRef] [PubMed]

Hanton, K.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl.17(3), 191–197 (2009).
[CrossRef]

Heidel, T. D.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Iso, Y.

Y. Iso, S. Takeshita, and T. Isobe, “Effects of YVO4:Bi3+, Eu3+ nanophosphors spectral down-shifter on properties of monocrystalline silicon photovoltaic module,” J. Electrochem. Soc.159(3), J72–J76 (2012).
[CrossRef]

Isobe, T.

Y. Iso, S. Takeshita, and T. Isobe, “Effects of YVO4:Bi3+, Eu3+ nanophosphors spectral down-shifter on properties of monocrystalline silicon photovoltaic module,” J. Electrochem. Soc.159(3), J72–J76 (2012).
[CrossRef]

Lau, G.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl.17(3), 191–197 (2009).
[CrossRef]

Lin, C. C.

C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Improving optical properties of white LED fabricated by a blue LED chip with Yellow/Red phosphors,” J. Electrochem. Soc.157(9), H900–H9038 (2010).
[CrossRef] [PubMed]

Liu, R. S.

C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Improving optical properties of white LED fabricated by a blue LED chip with Yellow/Red phosphors,” J. Electrochem. Soc.157(9), H900–H9038 (2010).
[CrossRef] [PubMed]

Luo, Q.

H. Fu, S. Cui, Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids358(9), 1217–1220 (2012).
[CrossRef]

MacManus-Driscoll, J. L.

T. Fix, H. Rinnert, M. G. Blamire, A. Slaoui, and J. L. MacManus-Driscoll, “Nd: SrTiO3 thin film as photon downshifting layers for photovoltaics,” Sol. Energy Mater. Sol. Cells102, 71–74 (2012).
[CrossRef]

Mapel, J. K.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008).
[CrossRef] [PubMed]

McIntosh, K. R.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl.17(3), 191–197 (2009).
[CrossRef]

Meijerink, A.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)21(30), 1–5 (2009).
[CrossRef]

Méndez-Ramos, J.

J. J. Velázquez, V. D. Rodríguez, A. C. Yanes, J. del-Castillo, and J. Méndez-Ramos, “Down-shifting in Ce3+–Tb3+ Co-doped SiO2–LaF3 nano-glass–ceramics for photon conversion in solar cells,” Opt. Mater.34(12), 1994–1997 (2012).
[CrossRef]

Méndez-Ramosb, J.

A. Santana-Alonso, A. C. Yanes, J. Méndez-Ramosb, J. del-Castilloa, and V. D. Rodríguez, “Down-shifting by energy transfer in Dy3+-Yb3+ co-doped YF3-based solgel nano-glass-ceramics for photovoltaic applications,” Opt. Mater.33(4), 587–591 (2011).
[CrossRef]

Moune, O. K.

O. K. Moune, M. D. Faucher, and N. Edelstein, “Spectroscopic investigations and configuration-interaction-assisted crystal field analysis of Pr3+ in YPO4 single crystal,” J. Lumin.96(1), 51–68 (2002).
[CrossRef]

Paques-Ledent, M.-T.

M.-T. Paques-Ledent, “Vibrational spectra and structure of LiB2+PO4 compounds with B=Sr, Ba, Pb,” J. Solid State Chem.23(1-2), 147–154 (1978).
[CrossRef]

Qiao, X.

H. Fu, S. Cui, Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids358(9), 1217–1220 (2012).
[CrossRef]

Richards, B. S.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl.17(3), 191–197 (2009).
[CrossRef]

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells90(15), 2329–2337 (2006).
[CrossRef]

Rinnert, H.

T. Fix, H. Rinnert, M. G. Blamire, A. Slaoui, and J. L. MacManus-Driscoll, “Nd: SrTiO3 thin film as photon downshifting layers for photovoltaics,” Sol. Energy Mater. Sol. Cells102, 71–74 (2012).
[CrossRef]

Rodríguez, V. D.

J. J. Velázquez, V. D. Rodríguez, A. C. Yanes, J. del-Castillo, and J. Méndez-Ramos, “Down-shifting in Ce3+–Tb3+ Co-doped SiO2–LaF3 nano-glass–ceramics for photon conversion in solar cells,” Opt. Mater.34(12), 1994–1997 (2012).
[CrossRef]

A. Santana-Alonso, A. C. Yanes, J. Méndez-Ramosb, J. del-Castilloa, and V. D. Rodríguez, “Down-shifting by energy transfer in Dy3+-Yb3+ co-doped YF3-based solgel nano-glass-ceramics for photovoltaic applications,” Opt. Mater.33(4), 587–591 (2011).
[CrossRef]

Santana-Alonso, A.

A. Santana-Alonso, A. C. Yanes, J. Méndez-Ramosb, J. del-Castilloa, and V. D. Rodríguez, “Down-shifting by energy transfer in Dy3+-Yb3+ co-doped YF3-based solgel nano-glass-ceramics for photovoltaic applications,” Opt. Mater.33(4), 587–591 (2011).
[CrossRef]

Seybold, G.

G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments11(4), 303–317 (1989).
[CrossRef]

Shi, J. X.

Z. C. Wu, J. X. Shi, J. Wang, M. L. Gong, and Q. Su, “A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs,” J. Solid State Chem.179(8), 2356–2360 (2006).
[CrossRef]

Slaoui, A.

T. Fix, H. Rinnert, M. G. Blamire, A. Slaoui, and J. L. MacManus-Driscoll, “Nd: SrTiO3 thin film as photon downshifting layers for photovoltaics,” Sol. Energy Mater. Sol. Cells102, 71–74 (2012).
[CrossRef]

Smith, G. S.

G. S. Smith and R. L. Snyder, “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Cryst.12(1), 60–65 (1979).
[CrossRef]

Snyder, R. L.

G. S. Smith and R. L. Snyder, “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Cryst.12(1), 60–65 (1979).
[CrossRef]

Su, Q.

Y. Chen, J. Wang, X. G. Zhang, G. G. Zhang, M. L. Gong, and Q. Su, “An intense green emitting LiSrPO4:Eu2+, Tb3+for phosphor-converted LED,” Sens. Actuators B Chem.148(1), 259–263 (2010).
[CrossRef]

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+,Yb3+ phosphor,” J. Mater. Chem.19(38), 7088–7092 (2009).
[CrossRef]

Z. C. Wu, J. X. Shi, J. Wang, M. L. Gong, and Q. Su, “A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs,” J. Solid State Chem.179(8), 2356–2360 (2006).
[CrossRef]

Takeshita, S.

Y. Iso, S. Takeshita, and T. Isobe, “Effects of YVO4:Bi3+, Eu3+ nanophosphors spectral down-shifter on properties of monocrystalline silicon photovoltaic module,” J. Electrochem. Soc.159(3), J72–J76 (2012).
[CrossRef]

Tanabe, S.

J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ Co-doped YAG ceramics,” J. Appl. Phys.106(4), 043101–043105 (2009).
[CrossRef]

Ueda, J.

J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ Co-doped YAG ceramics,” J. Appl. Phys.106(4), 043101–043105 (2009).
[CrossRef]

van der Ende, B. M.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)21(30), 1–5 (2009).
[CrossRef]

Velázquez, J. J.

J. J. Velázquez, V. D. Rodríguez, A. C. Yanes, J. del-Castillo, and J. Méndez-Ramos, “Down-shifting in Ce3+–Tb3+ Co-doped SiO2–LaF3 nano-glass–ceramics for photon conversion in solar cells,” Opt. Mater.34(12), 1994–1997 (2012).
[CrossRef]

Wagenblast, G.

G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments11(4), 303–317 (1989).
[CrossRef]

Wang, J.

Y. Chen, J. Wang, X. G. Zhang, G. G. Zhang, M. L. Gong, and Q. Su, “An intense green emitting LiSrPO4:Eu2+, Tb3+for phosphor-converted LED,” Sens. Actuators B Chem.148(1), 259–263 (2010).
[CrossRef]

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+,Yb3+ phosphor,” J. Mater. Chem.19(38), 7088–7092 (2009).
[CrossRef]

Z. C. Wu, J. X. Shi, J. Wang, M. L. Gong, and Q. Su, “A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs,” J. Solid State Chem.179(8), 2356–2360 (2006).
[CrossRef]

Wang, Y. H.

Y. H. Wang, L. Xie, and H. J. Zhang, “Cooperative near-infrared quantum in Tb3+, Yb3+ codoped polyborates La0.99-xYbxBaB9O16:Tb0.01,” Appl. Phys. (Berl.)105, 023528–023534 (2009).

Wu, Z. C.

Z. C. Wu, J. X. Shi, J. Wang, M. L. Gong, and Q. Su, “A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs,” J. Solid State Chem.179(8), 2356–2360 (2006).
[CrossRef]

Xiao, Z. R.

C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Improving optical properties of white LED fabricated by a blue LED chip with Yellow/Red phosphors,” J. Electrochem. Soc.157(9), H900–H9038 (2010).
[CrossRef] [PubMed]

Xie, L.

Y. H. Wang, L. Xie, and H. J. Zhang, “Cooperative near-infrared quantum in Tb3+, Yb3+ codoped polyborates La0.99-xYbxBaB9O16:Tb0.01,” Appl. Phys. (Berl.)105, 023528–023534 (2009).

Yanes, A. C.

J. J. Velázquez, V. D. Rodríguez, A. C. Yanes, J. del-Castillo, and J. Méndez-Ramos, “Down-shifting in Ce3+–Tb3+ Co-doped SiO2–LaF3 nano-glass–ceramics for photon conversion in solar cells,” Opt. Mater.34(12), 1994–1997 (2012).
[CrossRef]

A. Santana-Alonso, A. C. Yanes, J. Méndez-Ramosb, J. del-Castilloa, and V. D. Rodríguez, “Down-shifting by energy transfer in Dy3+-Yb3+ co-doped YF3-based solgel nano-glass-ceramics for photovoltaic applications,” Opt. Mater.33(4), 587–591 (2011).
[CrossRef]

Zhang, G. G.

Y. Chen, J. Wang, X. G. Zhang, G. G. Zhang, M. L. Gong, and Q. Su, “An intense green emitting LiSrPO4:Eu2+, Tb3+for phosphor-converted LED,” Sens. Actuators B Chem.148(1), 259–263 (2010).
[CrossRef]

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+,Yb3+ phosphor,” J. Mater. Chem.19(38), 7088–7092 (2009).
[CrossRef]

Zhang, H. J.

Y. H. Wang, L. Xie, and H. J. Zhang, “Cooperative near-infrared quantum in Tb3+, Yb3+ codoped polyborates La0.99-xYbxBaB9O16:Tb0.01,” Appl. Phys. (Berl.)105, 023528–023534 (2009).

Zhang, Q. H.

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+,Yb3+ phosphor,” J. Mater. Chem.19(38), 7088–7092 (2009).
[CrossRef]

Zhang, X.

H. Fu, S. Cui, Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids358(9), 1217–1220 (2012).
[CrossRef]

Zhang, X. G.

Y. Chen, J. Wang, X. G. Zhang, G. G. Zhang, M. L. Gong, and Q. Su, “An intense green emitting LiSrPO4:Eu2+, Tb3+for phosphor-converted LED,” Sens. Actuators B Chem.148(1), 259–263 (2010).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)21(30), 1–5 (2009).
[CrossRef]

Appl. Phys. (Berl.)

Y. H. Wang, L. Xie, and H. J. Zhang, “Cooperative near-infrared quantum in Tb3+, Yb3+ codoped polyborates La0.99-xYbxBaB9O16:Tb0.01,” Appl. Phys. (Berl.)105, 023528–023534 (2009).

Dyes Pigments

G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments11(4), 303–317 (1989).
[CrossRef]

J. Appl. Cryst.

G. S. Smith and R. L. Snyder, “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Cryst.12(1), 60–65 (1979).
[CrossRef]

J. Appl. Phys.

J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ Co-doped YAG ceramics,” J. Appl. Phys.106(4), 043101–043105 (2009).
[CrossRef]

J. Electrochem. Soc.

Y. Iso, S. Takeshita, and T. Isobe, “Effects of YVO4:Bi3+, Eu3+ nanophosphors spectral down-shifter on properties of monocrystalline silicon photovoltaic module,” J. Electrochem. Soc.159(3), J72–J76 (2012).
[CrossRef]

C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Improving optical properties of white LED fabricated by a blue LED chip with Yellow/Red phosphors,” J. Electrochem. Soc.157(9), H900–H9038 (2010).
[CrossRef] [PubMed]

J. Lumin.

O. K. Moune, M. D. Faucher, and N. Edelstein, “Spectroscopic investigations and configuration-interaction-assisted crystal field analysis of Pr3+ in YPO4 single crystal,” J. Lumin.96(1), 51–68 (2002).
[CrossRef]

J. Mater. Chem.

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+,Yb3+ phosphor,” J. Mater. Chem.19(38), 7088–7092 (2009).
[CrossRef]

J. Non-Cryst. Solids

H. Fu, S. Cui, Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids358(9), 1217–1220 (2012).
[CrossRef]

J. Solid State Chem.

Z. C. Wu, J. X. Shi, J. Wang, M. L. Gong, and Q. Su, “A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs,” J. Solid State Chem.179(8), 2356–2360 (2006).
[CrossRef]

M.-T. Paques-Ledent, “Vibrational spectra and structure of LiB2+PO4 compounds with B=Sr, Ba, Pb,” J. Solid State Chem.23(1-2), 147–154 (1978).
[CrossRef]

Opt. Mater.

J. J. Velázquez, V. D. Rodríguez, A. C. Yanes, J. del-Castillo, and J. Méndez-Ramos, “Down-shifting in Ce3+–Tb3+ Co-doped SiO2–LaF3 nano-glass–ceramics for photon conversion in solar cells,” Opt. Mater.34(12), 1994–1997 (2012).
[CrossRef]

A. Santana-Alonso, A. C. Yanes, J. Méndez-Ramosb, J. del-Castilloa, and V. D. Rodríguez, “Down-shifting by energy transfer in Dy3+-Yb3+ co-doped YF3-based solgel nano-glass-ceramics for photovoltaic applications,” Opt. Mater.33(4), 587–591 (2011).
[CrossRef]

Prog. Photovolt. Res. Appl.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl.17(3), 191–197 (2009).
[CrossRef]

Science

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

Y. Chen, J. Wang, X. G. Zhang, G. G. Zhang, M. L. Gong, and Q. Su, “An intense green emitting LiSrPO4:Eu2+, Tb3+for phosphor-converted LED,” Sens. Actuators B Chem.148(1), 259–263 (2010).
[CrossRef]

Sol. Energy Mater. Sol. Cells

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells90(15), 2329–2337 (2006).
[CrossRef]

T. Fix, H. Rinnert, M. G. Blamire, A. Slaoui, and J. L. MacManus-Driscoll, “Nd: SrTiO3 thin film as photon downshifting layers for photovoltaics,” Sol. Energy Mater. Sol. Cells102, 71–74 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Powder XRD pattern of LSP: Eu2+0.005, Pr3+0.0011.

Fig. 2
Fig. 2

PLE (a: λem = 618nm) and PL (b: solid, λex = 443nm; dash, λex = 581nm) spectra of LSP: Pr3+0.0045 at 3K and the luminescence decay curves (c: λex = 484 and 581 nm, d: λem = 609nm) of LSP: Pr3+0.0045 at room temperature.

Fig. 3
Fig. 3

The schematic diagrams of the cross-relaxation processes and ET from Eu2+ to Pr3+ in LSP and from Pr3+ to Si solar cells. (2c: [3P0, 3H4] → [3H6, 1D2]; 2d: [1D2, 3H4] → [1G4, 3F4]; 3b: the lattice thermalization loss).

Fig. 4
Fig. 4

(a): The PL spectrum of LSP: Pr3+0.0045 in near-infrared region (λex = 484nm and 590nm) at 3K; The diffuse reflection spectrum (b), PLE spectra (c, λem = 1035nm) of LSP: Pr3+0.0045 at room temperature.

Fig. 5
Fig. 5

PLE and PL spectra of LSP: Eu2+0.005 (a), LSP: Pr3+0.0045 (b) and LSP: Eu2+0.005, Pr3+0.0045 (c) at room temperature. The inset of Fig. 5(c) is the magnified emission lines between 550 and 650nm.

Fig. 6
Fig. 6

Visible (a) and NIR (b) PL spectra of LSP: Eu2+ 0.005, Pr3+yex = 350 nm, y = 0, 0.0011, 0.0023, 0.0033, 0.0045, 0.0056); inset (a) is the magnified of (a) between 550 and 650 nm; inset of Fig. 6(b) is the PL spectrum of LSP:Eu2+0.005,Pr3+0.0045(LSP) and Ca2BO3Cl:Ce3+0.002,Tb3+0.01,Yb3+0.01(CBC); (c) is the concentration dependence of the integrated emission intensities of Eu2+ and Pr3+ ion; (d) (color online) is the decay curves, lifetime and the ET efficiency (ηET) of LSP: Eu2+0.005, Pr3+y (y = 0, 0.0011, 0.0023, 0.0033, 0.0045, 0.0056; λex = 350 nm, λem = 445 nm).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ηET=1 τX τ0

Metrics