Abstract

We present experimental results of output power bistability in a vertical-cavity surface-emitting laser under optical injection induced by frequency detuning or power variation of the master laser. An ultra-wide hysteresis cycle of 3.7 nm (473.3 GHz) is achieved through frequency detuning, which is more than 11 times wider than that achieved in the state-of-the-art (37 GHz). Furthermore, the width of injection power induced hysteresis cycle we achieved is as large as 7.3 dB. We theoretically analyzed the hysteresis cycles based on standard optical injection locking rate equations including the interference effect of master laser reflection and found excellent agreement with experimental results.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ng'oma, D. Fortusini, D. Parekh, W. Yang, M. Sauer, S. Benjamin, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Performance of a multi-Gb/s 60 GHz radio over fiber system employing a directly modulated optically injection-locked VCSEL,” J. Lightwave Technol.28(16), 2436–2444 (2010).
    [CrossRef]
  2. D. Parekh, B. Zhang, X. Zhao, Y. Yue, W. Hofmann, M. C. Amann, A. Willner, and C. J. Chang-Hasnain, “Long distance single-mode fiber transmission of multimode VCSELs by injection locking,” Opt. Express18(20), 20552–20557 (2010).
    [CrossRef] [PubMed]
  3. L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microw. Theory Tech.54(2), 788–796 (2006).
    [CrossRef]
  4. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron.39(10), 1196–1204 (2003).
    [CrossRef]
  5. E. K. Lau, L. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron.15(3), 618–633 (2009).
    [CrossRef]
  6. W. Yang, P. Guo, D. Parekh, and C. J. Chang-Hasnain, “Reflection-mode optical injection locking,” Opt. Express18(20), 20887–20893 (2010).
    [CrossRef] [PubMed]
  7. I. Gatare, K. Panajotov, and M. Sciamanna, “Frequency-induced polarization bistability in vertical-cavity surface-emitting lasers with orthogonal optical injection,” Phys. Rev. A75(2), 023804 (2007).
    [CrossRef]
  8. A. Quirce, A. Valle, and L. Pesquera, “Very wide hysteresis cycles in 1550 nm-VCSELs subject to orthogonal optical injection,” IEEE Photon. Technol. Lett.21(17), 1193–1195 (2009).
    [CrossRef]
  9. A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. J. Adams, “Power and wavelength polarization bistability with very wide hysteresis cycles in a 1550 nm-VCSEL subject to orthogonal optical injection,” Opt. Express17(26), 23637–23642 (2009).
    [CrossRef] [PubMed]
  10. S. H. Lee, H. W. Jung, K. H. Kim, M. H. Lee, B.-S. Yoo, J. Roh, and K. A. Shore, “1-GHz all-optical flip-flop operation of conventional cylindrical-shaped single-mode VCSELs under low power optical injection,” IEEE Photon. Technol. Lett.22(23), 1759–1761 (2010).
    [CrossRef]
  11. W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, “High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs,” Electron. Lett.42(17), 976–977 (2006).
    [CrossRef]
  12. P. Guo, W. Yang, D. Parekh, A. Xu, Z. Chen, and C. J. Chang-Hasnain, “An ellipse model for cavity mode behavior of optically injection-locked VCSELs,” Opt. Express20(7), 6980–6988 (2012).
    [CrossRef] [PubMed]

2012

2010

2009

A. Quirce, A. Valle, and L. Pesquera, “Very wide hysteresis cycles in 1550 nm-VCSELs subject to orthogonal optical injection,” IEEE Photon. Technol. Lett.21(17), 1193–1195 (2009).
[CrossRef]

A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. J. Adams, “Power and wavelength polarization bistability with very wide hysteresis cycles in a 1550 nm-VCSEL subject to orthogonal optical injection,” Opt. Express17(26), 23637–23642 (2009).
[CrossRef] [PubMed]

E. K. Lau, L. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron.15(3), 618–633 (2009).
[CrossRef]

2007

I. Gatare, K. Panajotov, and M. Sciamanna, “Frequency-induced polarization bistability in vertical-cavity surface-emitting lasers with orthogonal optical injection,” Phys. Rev. A75(2), 023804 (2007).
[CrossRef]

2006

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microw. Theory Tech.54(2), 788–796 (2006).
[CrossRef]

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, “High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs,” Electron. Lett.42(17), 976–977 (2006).
[CrossRef]

2003

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron.39(10), 1196–1204 (2003).
[CrossRef]

Adams, M. J.

Amann, M. C.

Amann, M.-C.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, “High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs,” Electron. Lett.42(17), 976–977 (2006).
[CrossRef]

Atsuki, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron.39(10), 1196–1204 (2003).
[CrossRef]

Benjamin, S.

Bohm, G.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, “High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs,” Electron. Lett.42(17), 976–977 (2006).
[CrossRef]

Chang-Hasnain, C. J.

Chen, Z.

Chrostowski, L.

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microw. Theory Tech.54(2), 788–796 (2006).
[CrossRef]

Fortusini, D.

Gatare, I.

I. Gatare, K. Panajotov, and M. Sciamanna, “Frequency-induced polarization bistability in vertical-cavity surface-emitting lasers with orthogonal optical injection,” Phys. Rev. A75(2), 023804 (2007).
[CrossRef]

Guo, P.

Hofmann, W.

Hurtado, A.

Jung, H. W.

S. H. Lee, H. W. Jung, K. H. Kim, M. H. Lee, B.-S. Yoo, J. Roh, and K. A. Shore, “1-GHz all-optical flip-flop operation of conventional cylindrical-shaped single-mode VCSELs under low power optical injection,” IEEE Photon. Technol. Lett.22(23), 1759–1761 (2010).
[CrossRef]

Kawashima, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron.39(10), 1196–1204 (2003).
[CrossRef]

Kim, K. H.

S. H. Lee, H. W. Jung, K. H. Kim, M. H. Lee, B.-S. Yoo, J. Roh, and K. A. Shore, “1-GHz all-optical flip-flop operation of conventional cylindrical-shaped single-mode VCSELs under low power optical injection,” IEEE Photon. Technol. Lett.22(23), 1759–1761 (2010).
[CrossRef]

Lau, E. K.

E. K. Lau, L. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron.15(3), 618–633 (2009).
[CrossRef]

Lee, M. H.

S. H. Lee, H. W. Jung, K. H. Kim, M. H. Lee, B.-S. Yoo, J. Roh, and K. A. Shore, “1-GHz all-optical flip-flop operation of conventional cylindrical-shaped single-mode VCSELs under low power optical injection,” IEEE Photon. Technol. Lett.22(23), 1759–1761 (2010).
[CrossRef]

Lee, S. H.

S. H. Lee, H. W. Jung, K. H. Kim, M. H. Lee, B.-S. Yoo, J. Roh, and K. A. Shore, “1-GHz all-optical flip-flop operation of conventional cylindrical-shaped single-mode VCSELs under low power optical injection,” IEEE Photon. Technol. Lett.22(23), 1759–1761 (2010).
[CrossRef]

Liu, Y.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, “High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs,” Electron. Lett.42(17), 976–977 (2006).
[CrossRef]

Murakami, A.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron.39(10), 1196–1204 (2003).
[CrossRef]

Ng'oma, A.

Ortsiefer, M.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, “High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs,” Electron. Lett.42(17), 976–977 (2006).
[CrossRef]

Panajotov, K.

I. Gatare, K. Panajotov, and M. Sciamanna, “Frequency-induced polarization bistability in vertical-cavity surface-emitting lasers with orthogonal optical injection,” Phys. Rev. A75(2), 023804 (2007).
[CrossRef]

Parekh, D.

Pesquera, L.

A. Quirce, A. Valle, and L. Pesquera, “Very wide hysteresis cycles in 1550 nm-VCSELs subject to orthogonal optical injection,” IEEE Photon. Technol. Lett.21(17), 1193–1195 (2009).
[CrossRef]

A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. J. Adams, “Power and wavelength polarization bistability with very wide hysteresis cycles in a 1550 nm-VCSEL subject to orthogonal optical injection,” Opt. Express17(26), 23637–23642 (2009).
[CrossRef] [PubMed]

Quirce, A.

A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. J. Adams, “Power and wavelength polarization bistability with very wide hysteresis cycles in a 1550 nm-VCSEL subject to orthogonal optical injection,” Opt. Express17(26), 23637–23642 (2009).
[CrossRef] [PubMed]

A. Quirce, A. Valle, and L. Pesquera, “Very wide hysteresis cycles in 1550 nm-VCSELs subject to orthogonal optical injection,” IEEE Photon. Technol. Lett.21(17), 1193–1195 (2009).
[CrossRef]

Roh, J.

S. H. Lee, H. W. Jung, K. H. Kim, M. H. Lee, B.-S. Yoo, J. Roh, and K. A. Shore, “1-GHz all-optical flip-flop operation of conventional cylindrical-shaped single-mode VCSELs under low power optical injection,” IEEE Photon. Technol. Lett.22(23), 1759–1761 (2010).
[CrossRef]

Sauer, M.

Sciamanna, M.

I. Gatare, K. Panajotov, and M. Sciamanna, “Frequency-induced polarization bistability in vertical-cavity surface-emitting lasers with orthogonal optical injection,” Phys. Rev. A75(2), 023804 (2007).
[CrossRef]

Shore, K. A.

S. H. Lee, H. W. Jung, K. H. Kim, M. H. Lee, B.-S. Yoo, J. Roh, and K. A. Shore, “1-GHz all-optical flip-flop operation of conventional cylindrical-shaped single-mode VCSELs under low power optical injection,” IEEE Photon. Technol. Lett.22(23), 1759–1761 (2010).
[CrossRef]

Valle, A.

A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. J. Adams, “Power and wavelength polarization bistability with very wide hysteresis cycles in a 1550 nm-VCSEL subject to orthogonal optical injection,” Opt. Express17(26), 23637–23642 (2009).
[CrossRef] [PubMed]

A. Quirce, A. Valle, and L. Pesquera, “Very wide hysteresis cycles in 1550 nm-VCSELs subject to orthogonal optical injection,” IEEE Photon. Technol. Lett.21(17), 1193–1195 (2009).
[CrossRef]

Willner, A.

Wong, L.

E. K. Lau, L. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron.15(3), 618–633 (2009).
[CrossRef]

Wu, M. C.

E. K. Lau, L. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron.15(3), 618–633 (2009).
[CrossRef]

Xu, A.

Yang, W.

Yoo, B.-S.

S. H. Lee, H. W. Jung, K. H. Kim, M. H. Lee, B.-S. Yoo, J. Roh, and K. A. Shore, “1-GHz all-optical flip-flop operation of conventional cylindrical-shaped single-mode VCSELs under low power optical injection,” IEEE Photon. Technol. Lett.22(23), 1759–1761 (2010).
[CrossRef]

Yue, Y.

Zhang, B.

Zhao, X.

Zhu, N. H.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, “High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs,” Electron. Lett.42(17), 976–977 (2006).
[CrossRef]

Electron. Lett.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Bohm, Y. Liu, and M.-C. Amann, “High speed (>11 GHz) modulation of BCB-passivated 1.55 µm InGaAlAs-InP VCSELs,” Electron. Lett.42(17), 976–977 (2006).
[CrossRef]

IEEE J. Quantum Electron.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron.39(10), 1196–1204 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

E. K. Lau, L. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron.15(3), 618–633 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Quirce, A. Valle, and L. Pesquera, “Very wide hysteresis cycles in 1550 nm-VCSELs subject to orthogonal optical injection,” IEEE Photon. Technol. Lett.21(17), 1193–1195 (2009).
[CrossRef]

S. H. Lee, H. W. Jung, K. H. Kim, M. H. Lee, B.-S. Yoo, J. Roh, and K. A. Shore, “1-GHz all-optical flip-flop operation of conventional cylindrical-shaped single-mode VCSELs under low power optical injection,” IEEE Photon. Technol. Lett.22(23), 1759–1761 (2010).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microw. Theory Tech.54(2), 788–796 (2006).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Phys. Rev. A

I. Gatare, K. Panajotov, and M. Sciamanna, “Frequency-induced polarization bistability in vertical-cavity surface-emitting lasers with orthogonal optical injection,” Phys. Rev. A75(2), 023804 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic of experimental setup. (VCSEL: vertical-cavity surface-emitting laser; TUL: tunable laser; OC: optical circulator; PC: polarization controller; OSA: optical spectrum analyzer; PM: Power Meter). (b) Spectrum of the 1550 nm-VCSEL. The two modes (λ = 1531.30 nm, λ = 1531.02 nm) correspond to the two polarizations of the fundamental transverse mode of the VCSEL.

Fig. 2
Fig. 2

(a) Total optical output power on the locking map with increased wavelength detuning. (b) Total optical output power on the locking map with decreased wavelength detuning.

Fig. 3
Fig. 3

Total output power curves when wavelength detuning increases (solid lines) and decreases (dashed lines), for an injection ratio of (a) 16.0 dB, (b) 17.5 dB, and (c) 19.0 dB.

Fig. 4
Fig. 4

Total output power curves when injection ratio increases (solid lines) and decreases (dashed lines), for a wavelength detuning of (a) 0.25 nm, (b) 0.32 nm, and (c) 0.44 nm.

Fig. 5
Fig. 5

Output power without interference when wavelength detuning increases (solid lines) and decreases (dashed lines). Injection ratio is fixed at 15.0 dB. The locking condition of red point (injection locked) and blue point (unlocked) are both under 1.6 nm wavelength detuning.

Fig. 6
Fig. 6

(a)-(c) The details of red point’s S (photon number), ϕ (relative phase difference) and N (carrier number) in time domain within the 0.1 ns time series are plotted. (d) The trace of N~As (optical field vector) is plotted in 3D space.

Fig. 7
Fig. 7

(a)-(c) The details of blue point’s S, ϕ and N in time domain within the 0.1 ns time series are plotted. (d) The trace of N~As is plotted in 3D space.

Fig. 8
Fig. 8

Total output power when wavelength detuning increases (solid lines) and decreases (dashed lines). Injection ratio is fixed at 15.0 dB.

Fig. 9
Fig. 9

The ellipse model provides an intuitive visualization of the OIL bistability process and spectra. The origin is set to be λslave0 and the x-axis and y-axis is λcavity and λmaster. For each detuning value, a horizontal line y = λmaster intersects y = x and the solid blue curve. The x-coordinates of the two intersecting points represent the optical spectrum of λmaster and λcavity. (a) Increased wavelength detuning. (b) Decreased wavelength detuning.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

dS dt =[ Γ v g g n ( N N tr ) V a (1+εS) 1 τ p ]S+ βB V a N 2 +2κ S inj S cosϕ
dϕ dt = α 2 [ Γ v g g n ( N N tr ) V a (1+εS) 1 τ p ]2πΔfκ S inj S sinϕ
dN dt = I bias q N τ N Γ v g g n ( N N tr ) V a (1+εS) S

Metrics