Abstract

We demonstrate that conventional modulated spectroscopy apparatus, used for laser frequency stabilization in many atomic physics laboratories, can be enhanced to provide a wideband lock delivering deep suppression of frequency noise across the acoustic range. Using an acousto-optic modulator driven with an agile oscillator, we show that wideband frequency modulation of the pump laser in modulation transfer spectroscopy produces the unique single lock-point spectrum previously demonstrated with electro-optic phase modulation. We achieve a laser lock with 100 kHz feedback bandwidth, limited by our laser control electronics. This bandwidth is sufficient to reduce frequency noise by 30 dB across the acoustic range and narrows the imputed linewidth by a factor of five.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett.39, 680–682 (1981).
    [CrossRef]
  2. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B32, 145–152 (1983).
    [CrossRef]
  3. S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Scholten, “Laser frequency offset locking using electromagnetically induced transparency,” Appl. Phys. Lett.90, 171120 (2007).
    [CrossRef]
  4. C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B35, 5141–5151 (2002).
    [CrossRef]
  5. N. P. Robins, B. J. J. Slagmolen, D. A. Shaddock, J. D. Close, and M. B. Gray, “Interferometric, modulation-free laser stabilization,” Opt. Lett.27, 1905–1907 (2002).
    [CrossRef]
  6. G. Camy, C. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturating beam,” Opt. Commun.41, 325–330 (1982).
    [CrossRef]
  7. J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett.7, 537–539 (1982).
    [CrossRef] [PubMed]
  8. D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol.19, 105601 (2008).
    [CrossRef]
  9. J. Eble and F. Schmidt-Kaler, “Optimization of frequency modulation transfer spectroscopy on the calcium 41S0 to 41P1 transition,” Appl. Phys. B88, 563–568 (2007).
    [CrossRef]
  10. F. du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas.52, 288–291 (2003).
    [CrossRef]
  11. Q. Xiang-Hui, C. Wen-Lan, Y. Lin, Z. Da-Wei, Z. Tong, X. Qin, D. Jun, Z. Xiao-Ji, and C. Xu-Zong, “Ultra-stable rubidium-stabilized external-cavity diode laser based on the modulation transfer spectroscopy technique,” Chinese Phys. Lett.26, 044205 (2009).
    [CrossRef]
  12. F. du Burck, G. Tetchewo, A. N. Goncharov, and O. Lopez, “Narrow band noise rejection technique for laser frequency and length standards: application to frequency stabilization to I2 lines near dissociation limit at 501.7 nm,” Metrologia46, 599–606 (2009).
    [CrossRef]
  13. AOM: Crystal Tech. 3080-122; Laser controller: MOGlabs DLC-202.
  14. C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum.72, 4477–4479 (2001).
    [CrossRef]
  15. Four times the geometric mean of the horizontal and vertical standard deviations of the beam intensity distribution. D4σ diameter is equivalent to 1/e2 diameter for Gaussian beams, and is less affected by noise for non-Gaussian beams such as those used in the spectrometer.
  16. E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum.76, 063112 (2005).
    [CrossRef]
  17. E. Jaatinen, “An iodine stabilized laser source at two wavelengths for accurate dimensional measurements,” Rev. Sci. Instrum.74, 1359–1361 (2003).
    [CrossRef]
  18. J. Zhang, D. Wei, C. Xie, and K. Peng, “Characteristics of absorption and dispersion for rubidium D2 lines with the modulation transfer spectrum,” Opt. Express11, 1338–1344 (2003).
    [CrossRef] [PubMed]
  19. VCO: Mini-Circuits (MCL) ZX95-78-S+; PLL board: Analog Devices EVAL-ADF411X-EB1; DDS board: Novatech DDS9m; Bias tee: MCL ZFBT-4R2GW+; Phase detector: MCL ZRPD-1.
  20. Photodetector: Thorlabs PDA36A, +10 dB gain setting, 12 MHz bandwidth.
  21. L. Mudarikwa, K. Pahwa, and J. Goldwin, “Sub-Doppler modulation spectroscopy of potassium for laser stabilization,” J. Phys. B45, 065002 (2012).
    [CrossRef]
  22. Z. Zhou, R. Wei, C. Shi, and Y. Wang, “Observation of modulation transfer spectroscopy in the deep modulation regime,” Chinese Phys. Lett.27, 124211 (2010).
    [CrossRef]
  23. E. Jaatinen and D. J. Hopper, “Compensating for frequency shifts in modulation transfer spectroscopy caused by residual amplitude modulation,” Opt. Laser. Eng.46, 69–74 (2008).
    [CrossRef]
  24. D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys.72, 631–637 (2004).
    [CrossRef]
  25. The peak-to-peak height and width of each spectral feature were obtained by numerically locating the outermost pair of stationary points within the expected frequency range of the spectral feature and above a threshold amplitude, then calculating the frequency and amplitude difference between them. This method is immune to RAM, which causes a distortion with even symmetry around the transition frequency. The MTS features are odd-symmetric around this frequency, thus RAM distortion shifts both stationary points by a common distance in frequency and amplitude. Other stationary points, such as the central trough in the 7 MHz closed transition feature (due to high levels of RAM), are ignored by the algorithm.
  26. H. Noh, S. E. Park, L. Z. Li, J. Park, and C. Cho, “Modulation transfer spectroscopy for 87Rb atoms: theory and experiment,” Opt. Express19, 23444–23452 (2011).
    [CrossRef] [PubMed]
  27. E. Jaatinen, “Theoretical determination of maximum signal levels obtainable with modulation transfer spectroscopy,” Opt. Commun.120, 91–97 (1995).
    [CrossRef]
  28. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, “Numerical Recipes in C: The Art of Scientific Computing” (Cambridge University Press, 1992).
  29. L. D. Turner, K. Weber, C. Hawthorn, and R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun.201, 391–397 (2002).
    [CrossRef]
  30. D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A26, 12–18 (1982).
    [CrossRef]
  31. G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt.49, 4801–4807 (2010).
    [CrossRef] [PubMed]
  32. S. Hädrich, P. Jauernik, L. McCrumb, and P. Feru, “Narrow linewidth ring laser with frequency doubling for titanium:sapphire and dye operation,” Proc. SPIE6871, 68711S (2008).
    [CrossRef]
  33. D. J. Thompson and R. E. Scholten, “Narrow linewidth tunable external cavity diode laser using wide bandwidth filter,” Rev. Sci. Instrum.83, 023107 (2012).
    [CrossRef] [PubMed]

2012

L. Mudarikwa, K. Pahwa, and J. Goldwin, “Sub-Doppler modulation spectroscopy of potassium for laser stabilization,” J. Phys. B45, 065002 (2012).
[CrossRef]

D. J. Thompson and R. E. Scholten, “Narrow linewidth tunable external cavity diode laser using wide bandwidth filter,” Rev. Sci. Instrum.83, 023107 (2012).
[CrossRef] [PubMed]

2011

2010

G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt.49, 4801–4807 (2010).
[CrossRef] [PubMed]

Z. Zhou, R. Wei, C. Shi, and Y. Wang, “Observation of modulation transfer spectroscopy in the deep modulation regime,” Chinese Phys. Lett.27, 124211 (2010).
[CrossRef]

2009

Q. Xiang-Hui, C. Wen-Lan, Y. Lin, Z. Da-Wei, Z. Tong, X. Qin, D. Jun, Z. Xiao-Ji, and C. Xu-Zong, “Ultra-stable rubidium-stabilized external-cavity diode laser based on the modulation transfer spectroscopy technique,” Chinese Phys. Lett.26, 044205 (2009).
[CrossRef]

F. du Burck, G. Tetchewo, A. N. Goncharov, and O. Lopez, “Narrow band noise rejection technique for laser frequency and length standards: application to frequency stabilization to I2 lines near dissociation limit at 501.7 nm,” Metrologia46, 599–606 (2009).
[CrossRef]

2008

E. Jaatinen and D. J. Hopper, “Compensating for frequency shifts in modulation transfer spectroscopy caused by residual amplitude modulation,” Opt. Laser. Eng.46, 69–74 (2008).
[CrossRef]

D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol.19, 105601 (2008).
[CrossRef]

S. Hädrich, P. Jauernik, L. McCrumb, and P. Feru, “Narrow linewidth ring laser with frequency doubling for titanium:sapphire and dye operation,” Proc. SPIE6871, 68711S (2008).
[CrossRef]

2007

J. Eble and F. Schmidt-Kaler, “Optimization of frequency modulation transfer spectroscopy on the calcium 41S0 to 41P1 transition,” Appl. Phys. B88, 563–568 (2007).
[CrossRef]

S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Scholten, “Laser frequency offset locking using electromagnetically induced transparency,” Appl. Phys. Lett.90, 171120 (2007).
[CrossRef]

2005

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum.76, 063112 (2005).
[CrossRef]

2004

D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys.72, 631–637 (2004).
[CrossRef]

2003

E. Jaatinen, “An iodine stabilized laser source at two wavelengths for accurate dimensional measurements,” Rev. Sci. Instrum.74, 1359–1361 (2003).
[CrossRef]

J. Zhang, D. Wei, C. Xie, and K. Peng, “Characteristics of absorption and dispersion for rubidium D2 lines with the modulation transfer spectrum,” Opt. Express11, 1338–1344 (2003).
[CrossRef] [PubMed]

F. du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas.52, 288–291 (2003).
[CrossRef]

2002

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B35, 5141–5151 (2002).
[CrossRef]

N. P. Robins, B. J. J. Slagmolen, D. A. Shaddock, J. D. Close, and M. B. Gray, “Interferometric, modulation-free laser stabilization,” Opt. Lett.27, 1905–1907 (2002).
[CrossRef]

L. D. Turner, K. Weber, C. Hawthorn, and R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun.201, 391–397 (2002).
[CrossRef]

2001

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum.72, 4477–4479 (2001).
[CrossRef]

1995

E. Jaatinen, “Theoretical determination of maximum signal levels obtainable with modulation transfer spectroscopy,” Opt. Commun.120, 91–97 (1995).
[CrossRef]

1983

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B32, 145–152 (1983).
[CrossRef]

1982

G. Camy, C. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturating beam,” Opt. Commun.41, 325–330 (1982).
[CrossRef]

J. H. Shirley, “Modulation transfer processes in optical heterodyne saturation spectroscopy,” Opt. Lett.7, 537–539 (1982).
[CrossRef] [PubMed]

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A26, 12–18 (1982).
[CrossRef]

1981

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett.39, 680–682 (1981).
[CrossRef]

Adams, C. S.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B35, 5141–5151 (2002).
[CrossRef]

Baer, T.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett.39, 680–682 (1981).
[CrossRef]

Bell, S. C.

S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Scholten, “Laser frequency offset locking using electromagnetically induced transparency,” Appl. Phys. Lett.90, 171120 (2007).
[CrossRef]

Bjorklund, G. C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B32, 145–152 (1983).
[CrossRef]

Bordé, C.

G. Camy, C. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturating beam,” Opt. Commun.41, 325–330 (1982).
[CrossRef]

Camy, G.

G. Camy, C. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturating beam,” Opt. Commun.41, 325–330 (1982).
[CrossRef]

Cho, C.

Close, J. D.

S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Scholten, “Laser frequency offset locking using electromagnetically induced transparency,” Appl. Phys. Lett.90, 171120 (2007).
[CrossRef]

N. P. Robins, B. J. J. Slagmolen, D. A. Shaddock, J. D. Close, and M. B. Gray, “Interferometric, modulation-free laser stabilization,” Opt. Lett.27, 1905–1907 (2002).
[CrossRef]

Cornish, S. L.

D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol.19, 105601 (2008).
[CrossRef]

Cox, S. G.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B35, 5141–5151 (2002).
[CrossRef]

Da-Wei, Z.

Q. Xiang-Hui, C. Wen-Lan, Y. Lin, Z. Da-Wei, Z. Tong, X. Qin, D. Jun, Z. Xiao-Ji, and C. Xu-Zong, “Ultra-stable rubidium-stabilized external-cavity diode laser based on the modulation transfer spectroscopy technique,” Chinese Phys. Lett.26, 044205 (2009).
[CrossRef]

Di Domenico, G.

Donley, E. A.

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum.76, 063112 (2005).
[CrossRef]

du Burck, F.

F. du Burck, G. Tetchewo, A. N. Goncharov, and O. Lopez, “Narrow band noise rejection technique for laser frequency and length standards: application to frequency stabilization to I2 lines near dissociation limit at 501.7 nm,” Metrologia46, 599–606 (2009).
[CrossRef]

F. du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas.52, 288–291 (2003).
[CrossRef]

Ducloy, M.

G. Camy, C. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturating beam,” Opt. Commun.41, 325–330 (1982).
[CrossRef]

Eble, J.

J. Eble and F. Schmidt-Kaler, “Optimization of frequency modulation transfer spectroscopy on the calcium 41S0 to 41P1 transition,” Appl. Phys. B88, 563–568 (2007).
[CrossRef]

El Basri, A.

F. du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas.52, 288–291 (2003).
[CrossRef]

Elliott, D. S.

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A26, 12–18 (1982).
[CrossRef]

Feru, P.

S. Hädrich, P. Jauernik, L. McCrumb, and P. Feru, “Narrow linewidth ring laser with frequency doubling for titanium:sapphire and dye operation,” Proc. SPIE6871, 68711S (2008).
[CrossRef]

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, “Numerical Recipes in C: The Art of Scientific Computing” (Cambridge University Press, 1992).

Goldwin, J.

L. Mudarikwa, K. Pahwa, and J. Goldwin, “Sub-Doppler modulation spectroscopy of potassium for laser stabilization,” J. Phys. B45, 065002 (2012).
[CrossRef]

Goncharov, A. N.

F. du Burck, G. Tetchewo, A. N. Goncharov, and O. Lopez, “Narrow band noise rejection technique for laser frequency and length standards: application to frequency stabilization to I2 lines near dissociation limit at 501.7 nm,” Metrologia46, 599–606 (2009).
[CrossRef]

Gray, M. B.

Griffin, P. F.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B35, 5141–5151 (2002).
[CrossRef]

Hädrich, S.

S. Hädrich, P. Jauernik, L. McCrumb, and P. Feru, “Narrow linewidth ring laser with frequency doubling for titanium:sapphire and dye operation,” Proc. SPIE6871, 68711S (2008).
[CrossRef]

Hall, J. L.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett.39, 680–682 (1981).
[CrossRef]

Hawthorn, C.

L. D. Turner, K. Weber, C. Hawthorn, and R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun.201, 391–397 (2002).
[CrossRef]

Hawthorn, C. J.

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum.72, 4477–4479 (2001).
[CrossRef]

Heavner, T. P.

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum.76, 063112 (2005).
[CrossRef]

Heywood, D. M.

S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Scholten, “Laser frequency offset locking using electromagnetically induced transparency,” Appl. Phys. Lett.90, 171120 (2007).
[CrossRef]

Hollberg, L.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett.39, 680–682 (1981).
[CrossRef]

Hopper, D. J.

E. Jaatinen and D. J. Hopper, “Compensating for frequency shifts in modulation transfer spectroscopy caused by residual amplitude modulation,” Opt. Laser. Eng.46, 69–74 (2008).
[CrossRef]

Hughes, I. G.

D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys.72, 631–637 (2004).
[CrossRef]

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B35, 5141–5151 (2002).
[CrossRef]

Jaatinen, E.

E. Jaatinen and D. J. Hopper, “Compensating for frequency shifts in modulation transfer spectroscopy caused by residual amplitude modulation,” Opt. Laser. Eng.46, 69–74 (2008).
[CrossRef]

E. Jaatinen, “An iodine stabilized laser source at two wavelengths for accurate dimensional measurements,” Rev. Sci. Instrum.74, 1359–1361 (2003).
[CrossRef]

E. Jaatinen, “Theoretical determination of maximum signal levels obtainable with modulation transfer spectroscopy,” Opt. Commun.120, 91–97 (1995).
[CrossRef]

Jauernik, P.

S. Hädrich, P. Jauernik, L. McCrumb, and P. Feru, “Narrow linewidth ring laser with frequency doubling for titanium:sapphire and dye operation,” Proc. SPIE6871, 68711S (2008).
[CrossRef]

Jefferts, S. R.

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum.76, 063112 (2005).
[CrossRef]

Jun, D.

Q. Xiang-Hui, C. Wen-Lan, Y. Lin, Z. Da-Wei, Z. Tong, X. Qin, D. Jun, Z. Xiao-Ji, and C. Xu-Zong, “Ultra-stable rubidium-stabilized external-cavity diode laser based on the modulation transfer spectroscopy technique,” Chinese Phys. Lett.26, 044205 (2009).
[CrossRef]

King, S. A.

D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol.19, 105601 (2008).
[CrossRef]

Lenth, W.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B32, 145–152 (1983).
[CrossRef]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B32, 145–152 (1983).
[CrossRef]

Levi, F.

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum.76, 063112 (2005).
[CrossRef]

Li, L. Z.

Lin, Y.

Q. Xiang-Hui, C. Wen-Lan, Y. Lin, Z. Da-Wei, Z. Tong, X. Qin, D. Jun, Z. Xiao-Ji, and C. Xu-Zong, “Ultra-stable rubidium-stabilized external-cavity diode laser based on the modulation transfer spectroscopy technique,” Chinese Phys. Lett.26, 044205 (2009).
[CrossRef]

Lopez, O.

F. du Burck, G. Tetchewo, A. N. Goncharov, and O. Lopez, “Narrow band noise rejection technique for laser frequency and length standards: application to frequency stabilization to I2 lines near dissociation limit at 501.7 nm,” Metrologia46, 599–606 (2009).
[CrossRef]

F. du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas.52, 288–291 (2003).
[CrossRef]

McCarron, D. J.

D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol.19, 105601 (2008).
[CrossRef]

McCrumb, L.

S. Hädrich, P. Jauernik, L. McCrumb, and P. Feru, “Narrow linewidth ring laser with frequency doubling for titanium:sapphire and dye operation,” Proc. SPIE6871, 68711S (2008).
[CrossRef]

Mudarikwa, L.

L. Mudarikwa, K. Pahwa, and J. Goldwin, “Sub-Doppler modulation spectroscopy of potassium for laser stabilization,” J. Phys. B45, 065002 (2012).
[CrossRef]

Noh, H.

Ortiz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B32, 145–152 (1983).
[CrossRef]

Pahwa, K.

L. Mudarikwa, K. Pahwa, and J. Goldwin, “Sub-Doppler modulation spectroscopy of potassium for laser stabilization,” J. Phys. B45, 065002 (2012).
[CrossRef]

Park, J.

Park, S. E.

Pearman, C. P.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B35, 5141–5151 (2002).
[CrossRef]

Peng, K.

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, “Numerical Recipes in C: The Art of Scientific Computing” (Cambridge University Press, 1992).

Qin, X.

Q. Xiang-Hui, C. Wen-Lan, Y. Lin, Z. Da-Wei, Z. Tong, X. Qin, D. Jun, Z. Xiao-Ji, and C. Xu-Zong, “Ultra-stable rubidium-stabilized external-cavity diode laser based on the modulation transfer spectroscopy technique,” Chinese Phys. Lett.26, 044205 (2009).
[CrossRef]

Robins, N. P.

Robinson, H. G.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett.39, 680–682 (1981).
[CrossRef]

Roy, R.

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A26, 12–18 (1982).
[CrossRef]

Schilt, S.

Schmidt-Kaler, F.

J. Eble and F. Schmidt-Kaler, “Optimization of frequency modulation transfer spectroscopy on the calcium 41S0 to 41P1 transition,” Appl. Phys. B88, 563–568 (2007).
[CrossRef]

Scholten, R. E.

D. J. Thompson and R. E. Scholten, “Narrow linewidth tunable external cavity diode laser using wide bandwidth filter,” Rev. Sci. Instrum.83, 023107 (2012).
[CrossRef] [PubMed]

S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Scholten, “Laser frequency offset locking using electromagnetically induced transparency,” Appl. Phys. Lett.90, 171120 (2007).
[CrossRef]

L. D. Turner, K. Weber, C. Hawthorn, and R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun.201, 391–397 (2002).
[CrossRef]

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum.72, 4477–4479 (2001).
[CrossRef]

Shaddock, D. A.

Shi, C.

Z. Zhou, R. Wei, C. Shi, and Y. Wang, “Observation of modulation transfer spectroscopy in the deep modulation regime,” Chinese Phys. Lett.27, 124211 (2010).
[CrossRef]

Shirley, J. H.

Slagmolen, B. J. J.

Smith, D. A.

D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys.72, 631–637 (2004).
[CrossRef]

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B35, 5141–5151 (2002).
[CrossRef]

Smith, S. J.

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A26, 12–18 (1982).
[CrossRef]

Tataw, M. O.

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum.76, 063112 (2005).
[CrossRef]

Tetchewo, G.

F. du Burck, G. Tetchewo, A. N. Goncharov, and O. Lopez, “Narrow band noise rejection technique for laser frequency and length standards: application to frequency stabilization to I2 lines near dissociation limit at 501.7 nm,” Metrologia46, 599–606 (2009).
[CrossRef]

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, “Numerical Recipes in C: The Art of Scientific Computing” (Cambridge University Press, 1992).

Thomann, P.

Thompson, D. J.

D. J. Thompson and R. E. Scholten, “Narrow linewidth tunable external cavity diode laser using wide bandwidth filter,” Rev. Sci. Instrum.83, 023107 (2012).
[CrossRef] [PubMed]

Tong, Z.

Q. Xiang-Hui, C. Wen-Lan, Y. Lin, Z. Da-Wei, Z. Tong, X. Qin, D. Jun, Z. Xiao-Ji, and C. Xu-Zong, “Ultra-stable rubidium-stabilized external-cavity diode laser based on the modulation transfer spectroscopy technique,” Chinese Phys. Lett.26, 044205 (2009).
[CrossRef]

Turner, L. D.

L. D. Turner, K. Weber, C. Hawthorn, and R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun.201, 391–397 (2002).
[CrossRef]

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, “Numerical Recipes in C: The Art of Scientific Computing” (Cambridge University Press, 1992).

Wang, Y.

Z. Zhou, R. Wei, C. Shi, and Y. Wang, “Observation of modulation transfer spectroscopy in the deep modulation regime,” Chinese Phys. Lett.27, 124211 (2010).
[CrossRef]

Weber, K.

L. D. Turner, K. Weber, C. Hawthorn, and R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun.201, 391–397 (2002).
[CrossRef]

Weber, K. P.

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum.72, 4477–4479 (2001).
[CrossRef]

Wei, D.

Wei, R.

Z. Zhou, R. Wei, C. Shi, and Y. Wang, “Observation of modulation transfer spectroscopy in the deep modulation regime,” Chinese Phys. Lett.27, 124211 (2010).
[CrossRef]

Wen-Lan, C.

Q. Xiang-Hui, C. Wen-Lan, Y. Lin, Z. Da-Wei, Z. Tong, X. Qin, D. Jun, Z. Xiao-Ji, and C. Xu-Zong, “Ultra-stable rubidium-stabilized external-cavity diode laser based on the modulation transfer spectroscopy technique,” Chinese Phys. Lett.26, 044205 (2009).
[CrossRef]

White, J. D.

S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Scholten, “Laser frequency offset locking using electromagnetically induced transparency,” Appl. Phys. Lett.90, 171120 (2007).
[CrossRef]

Xiang-Hui, Q.

Q. Xiang-Hui, C. Wen-Lan, Y. Lin, Z. Da-Wei, Z. Tong, X. Qin, D. Jun, Z. Xiao-Ji, and C. Xu-Zong, “Ultra-stable rubidium-stabilized external-cavity diode laser based on the modulation transfer spectroscopy technique,” Chinese Phys. Lett.26, 044205 (2009).
[CrossRef]

Xiao-Ji, Z.

Q. Xiang-Hui, C. Wen-Lan, Y. Lin, Z. Da-Wei, Z. Tong, X. Qin, D. Jun, Z. Xiao-Ji, and C. Xu-Zong, “Ultra-stable rubidium-stabilized external-cavity diode laser based on the modulation transfer spectroscopy technique,” Chinese Phys. Lett.26, 044205 (2009).
[CrossRef]

Xie, C.

Xu-Zong, C.

Q. Xiang-Hui, C. Wen-Lan, Y. Lin, Z. Da-Wei, Z. Tong, X. Qin, D. Jun, Z. Xiao-Ji, and C. Xu-Zong, “Ultra-stable rubidium-stabilized external-cavity diode laser based on the modulation transfer spectroscopy technique,” Chinese Phys. Lett.26, 044205 (2009).
[CrossRef]

Zhang, J.

Zhou, Z.

Z. Zhou, R. Wei, C. Shi, and Y. Wang, “Observation of modulation transfer spectroscopy in the deep modulation regime,” Chinese Phys. Lett.27, 124211 (2010).
[CrossRef]

Am. J. Phys.

D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys.72, 631–637 (2004).
[CrossRef]

Appl. Opt.

Appl. Phys. B

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B32, 145–152 (1983).
[CrossRef]

J. Eble and F. Schmidt-Kaler, “Optimization of frequency modulation transfer spectroscopy on the calcium 41S0 to 41P1 transition,” Appl. Phys. B88, 563–568 (2007).
[CrossRef]

Appl. Phys. Lett.

S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Scholten, “Laser frequency offset locking using electromagnetically induced transparency,” Appl. Phys. Lett.90, 171120 (2007).
[CrossRef]

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett.39, 680–682 (1981).
[CrossRef]

Chinese Phys. Lett.

Q. Xiang-Hui, C. Wen-Lan, Y. Lin, Z. Da-Wei, Z. Tong, X. Qin, D. Jun, Z. Xiao-Ji, and C. Xu-Zong, “Ultra-stable rubidium-stabilized external-cavity diode laser based on the modulation transfer spectroscopy technique,” Chinese Phys. Lett.26, 044205 (2009).
[CrossRef]

Z. Zhou, R. Wei, C. Shi, and Y. Wang, “Observation of modulation transfer spectroscopy in the deep modulation regime,” Chinese Phys. Lett.27, 124211 (2010).
[CrossRef]

IEEE Trans. Instrum. Meas.

F. du Burck, O. Lopez, and A. El Basri, “Narrow-band correction of the residual amplitude modulation in frequency-modulation spectroscopy,” IEEE Trans. Instrum. Meas.52, 288–291 (2003).
[CrossRef]

J. Phys. B

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B35, 5141–5151 (2002).
[CrossRef]

L. Mudarikwa, K. Pahwa, and J. Goldwin, “Sub-Doppler modulation spectroscopy of potassium for laser stabilization,” J. Phys. B45, 065002 (2012).
[CrossRef]

Meas. Sci. Technol.

D. J. McCarron, S. A. King, and S. L. Cornish, “Modulation transfer spectroscopy in atomic rubidium,” Meas. Sci. Technol.19, 105601 (2008).
[CrossRef]

Metrologia

F. du Burck, G. Tetchewo, A. N. Goncharov, and O. Lopez, “Narrow band noise rejection technique for laser frequency and length standards: application to frequency stabilization to I2 lines near dissociation limit at 501.7 nm,” Metrologia46, 599–606 (2009).
[CrossRef]

Opt. Commun.

G. Camy, C. Bordé, and M. Ducloy, “Heterodyne saturation spectroscopy through frequency modulation of the saturating beam,” Opt. Commun.41, 325–330 (1982).
[CrossRef]

E. Jaatinen, “Theoretical determination of maximum signal levels obtainable with modulation transfer spectroscopy,” Opt. Commun.120, 91–97 (1995).
[CrossRef]

L. D. Turner, K. Weber, C. Hawthorn, and R. E. Scholten, “Frequency noise characterisation of narrow linewidth diode lasers,” Opt. Commun.201, 391–397 (2002).
[CrossRef]

Opt. Express

Opt. Laser. Eng.

E. Jaatinen and D. J. Hopper, “Compensating for frequency shifts in modulation transfer spectroscopy caused by residual amplitude modulation,” Opt. Laser. Eng.46, 69–74 (2008).
[CrossRef]

Opt. Lett.

Phys. Rev. A

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser band-shape and bandwidth modification,” Phys. Rev. A26, 12–18 (1982).
[CrossRef]

Proc. SPIE

S. Hädrich, P. Jauernik, L. McCrumb, and P. Feru, “Narrow linewidth ring laser with frequency doubling for titanium:sapphire and dye operation,” Proc. SPIE6871, 68711S (2008).
[CrossRef]

Rev. Sci. Instrum.

D. J. Thompson and R. E. Scholten, “Narrow linewidth tunable external cavity diode laser using wide bandwidth filter,” Rev. Sci. Instrum.83, 023107 (2012).
[CrossRef] [PubMed]

C. J. Hawthorn, K. P. Weber, and R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum.72, 4477–4479 (2001).
[CrossRef]

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum.76, 063112 (2005).
[CrossRef]

E. Jaatinen, “An iodine stabilized laser source at two wavelengths for accurate dimensional measurements,” Rev. Sci. Instrum.74, 1359–1361 (2003).
[CrossRef]

Other

Four times the geometric mean of the horizontal and vertical standard deviations of the beam intensity distribution. D4σ diameter is equivalent to 1/e2 diameter for Gaussian beams, and is less affected by noise for non-Gaussian beams such as those used in the spectrometer.

AOM: Crystal Tech. 3080-122; Laser controller: MOGlabs DLC-202.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, “Numerical Recipes in C: The Art of Scientific Computing” (Cambridge University Press, 1992).

VCO: Mini-Circuits (MCL) ZX95-78-S+; PLL board: Analog Devices EVAL-ADF411X-EB1; DDS board: Novatech DDS9m; Bias tee: MCL ZFBT-4R2GW+; Phase detector: MCL ZRPD-1.

Photodetector: Thorlabs PDA36A, +10 dB gain setting, 12 MHz bandwidth.

The peak-to-peak height and width of each spectral feature were obtained by numerically locating the outermost pair of stationary points within the expected frequency range of the spectral feature and above a threshold amplitude, then calculating the frequency and amplitude difference between them. This method is immune to RAM, which causes a distortion with even symmetry around the transition frequency. The MTS features are odd-symmetric around this frequency, thus RAM distortion shifts both stationary points by a common distance in frequency and amplitude. Other stationary points, such as the central trough in the 7 MHz closed transition feature (due to high levels of RAM), are ignored by the algorithm.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Electro-optical schematic of our acousto-optic MTS system. Frequency modulation is imparted to the pump beam via a double pass of the acousto-optic modulator (AOM). Modulation is transferred from the pump to the probe within the rubidium vapor cell. The beat of the probe frequency components at photodetector PD1 (12 MHz bandwidth) is demodulated to produce an error signal. F1, F2, F3 = +100, −35, +100 mm.

Fig. 2
Fig. 2

Variation of MTS spectra with modulation frequency: a) solid (dashed) spectra represent 0° (90°) components, with b) amplitudes and c) trough-to-peak widths of each spectral feature at 0°. Solid lines in b) and c) represent the predictions of Eq. 1 in [27] using a linewidth value of 9.5 MHz; the line in b) is scaled to the experimental amplitudes using a least-squares fit. Widths are omitted where signal amplitude is too small for their reliable determination. [blue circle] (F = 2 → F′ = {1, 2}) and [green triangle] (F = 2 → F′ = {1, 3}) are crossover resonances. [red square] (F = 2 → F′ = 3) is the closed ‘cooling’ transition.

Fig. 3
Fig. 3

Laser stabilization properties. a) Composite Sδν (f), showing both EagleEye and MTS error signal frequency noise, for (top to bottom) piezo feedback with minimal gain, piezo and current feedback with minimal gains, piezo and current with optimal gains. Dark (light) traces represent EagleEye (MTS error signal) data. Below 30 kHz both are displayed, while above 30 kHz only MTS error signal data are shown. The β-separation line (red) and off-resonant MTS error signal noise floor (black) are shown (EagleEye photodetector noise floor is below this by 30 dB). b) (outer to inner) corresponding inferred lineshapes, calculated from spectra in (a) using Sδν (f) from EagleEye data below 30 kHz, and MTS error signal data from 30 kHz to 1.5 MHz.

Tables (1)

Tables Icon

Table 1 FWHM and RMS linewidths under the locking circumstances of Fig. 3. All quantities in kilohertz.

Metrics